
Assignment 2: More MapReduce with Hadoop

Jean-Pierre Lozi
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Provided files An archive that contains all files you will need for this assignment can be found at the
following URL:

http://sfu.ca/~jlozi/cmpt732/assignment2.tar.gz

Download it and extract it (using “tar -xvzf assignment2.tar.gz”, for instance).

1 Hadoop Streaming

We are now going to use the Hadoop Streaming API to write MapReduce programs in Python. If you are not
familiar with Python, you can use another scripting language in this exercise (Ruby, PHP, etc.). Any language
that can read from the standard input and write to the standard output works. The input file is written to the
standard input of the Map function. The Mapper outputs key/value pairs as tab-delimited lines to the standard
output. The Reducer reads tab-delimited key/value pairs from the standard input and also writes tab-delimited
key/value pairs to the standard output. Here is an example of how Word Count would be written in Python:

File wc_mapper.py:

#!/usr/bin/env python

import sys

# We read from the standard input.

for line in sys.stdin:

# Remove whitespaces at the beginning and the end of the line.

line = line.strip()

# Split the line into words.

words = line.split()

# Count!

for word in words:

# Write to stdout, using a tabulation between the key and the value.

print ’%s\t%s’ % (word, 1)
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File wc_reducer.py:

#!/usr/bin/env python

from operator import itemgetter

import sys

current_word = None

current_count = 0

word = None

# We read from the standard input.

for line in sys.stdin:

# Remove whitespaces at the beginning and the end of the line.

line = line.strip()

# Split the line to extract the key and the value.

word, count = line.split(’\t’, 1)

# Since we’re using the standard input, everything is text. We have to

# convert the count variable to an integer (we ignore the value if it cannot

# be parsed).

try:

count = int(count)

except ValueError:

continue

# Hadoop sorts the output by key before it is parsed by the reducer.

# Therefore, we know that we are counting the number of occurences of the

# same word until the current word changes.

if current_word == word:

current_count += count

else:

# We are done for this word. Write the result to the standard output.

if current_word:

print ’%s\t%s’ % (current_word, current_count)

current_count = count

current_word = word

# This is needed to output the last word.

if current_word == word:

print ’%s\t%s’ % (current_word, current_count)

Question 1 You will find the wc_mapper.py and wc_reducer.py files in the archive provided with this
assignment. Use them to count the words of the gutenberg-100M.txt text file. You will use the following
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command:

$ hadoop jar /usr/lib/hadoop-mapreduce/hadoop-streaming.jar \

-files wc_mapper.py,wc_reducer.py \

-input gutenberg-100M.txt -output output \

-mapper wc_mapper.py -reducer wc_reducer.py \

As a reminder, you can find the gutenberg-100M.txt file at the following location:

/cs/bigdata/datasets/gutenberg-100M.txt

The -files argument is needed to tell Hadoop to copy the Python files to remote nodes. Is the output the
same as the one you obtained in the first assignment?

Question 2 Can we use a Combiner in this case in order to speed things up? How would you achieve this
with a minimum amount of work?

Question 3 One of the advantages of the Hadoop Streaming interface is that we can test our scripts locally,
in a single thread, without using Hadoop at all. All we need to do is to write the input file to the standard input
of the mapper, to sort the result of the Mapper and to write the result to the standard input of the Reducer.
How can we do that with a single command line in the console? What are the advantages and disadvantages
of this approach.

Question 4 Modify wc_mapper.py so that it produces the same output as your Word Count program from
the first assignment.

Question 5 We will now use the Hadoop Streaming API to work on the NCDC Weather data that we
already used in the previous assignment. Like in the first assignment, we’ll use the following file:

/cs/bigdata/datasets/ncdc-2013-sorted.csv

Using the Hadoop Streaming API, write a Mapper and a Reducer that will find the maximum of the minimum
daily temperatures, and the minimum of the maximum daily temperatures, for each day. We want to use a
single Reducer to solve the problem. You will disregard values below -79◦C and above 59◦C as being invalid.
Unfortunately, this will not remove all invalid values, consequently, some of your results may look suspicious.

Question 6 The file ghcnd-countries.txt, provided with this assignment, associates country codes with
countries:

AC,Antigua and Barbuda,

AE,United Arab Emirates,

AF,Afghanistan

AG,Algeria,

AJ,Azerbaijan,

...

Again, we will use the 2013 NCDC results. Remember, the file starts like this:
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AE000041196,20130101,TMAX,250,,,S,

AG000060390,20130101,PRCP,0,,,S,

AG000060390,20130101,TMAX,171,,,S,

AG000060590,20130101,PRCP,0,,,S,

AG000060590,20130101,TMAX,170,,,S,

...

We want to join the two files, so that we know the number of lines of each type of record (TMAX, TMIN, PRCP...)
we have for each country. The file ghcnd-countries.txt is incomplete, you will ignore the countries that
are not found in that file (or create an Unknown category for them). The Mapper will take both files as its
input (you can use -input twice), and output a list of values that include all relevant values for both files
(some values will be undefined, depending on which file input comes from). The output will be designed so
that lines that link country codes to country names will precede all NCDC data from that country after the
Shuffle/Sort phase. The reduce will merge the data, relying on the ordering of its input.
Your output file should look like this:

United Arab Emirates PRCP 157

United Arab Emirates TMAX 296

United Arab Emirates TMIN 226

Algeria PRCP 1433

Algeria TMAX 1190

Algeria TMIN 1126

...

2 MapReduce for Graphs

The objective of this exercise will be to use MapReduce to manipulate graphs. The dataset we will use is a
graph of Wikipedia, in which nodes are pages, and their neighbors are the pages they link to. The dataset
consists in two files:

/cs/bigdata/datasets/links-simple-sorted.txt

/cs/bigdata/datasets/titles-sorted.txt

The first file (links-simple-sorted.txt) contains the graph per se. Here are the first lines of the file:

1: 1664968

2: 3 747213 1664968 1691047 4095634 5535664

3: 9 77935 79583 84707 564578 594898 681805 681886 835470 880698 1109091 1125108 1279972

1463445 1497566 1783284 1997564 2006526 2070954 2250217 2268713 2276203 2374802 2571397

2640902 2647217 2732378 2821237 3088028 3092827 3211549 3283735 3491412 3492254 3498305

3505664 3547201 3603437 3617913 3793767 3907547 4021634 4025897 4086017 4183126 4184025

4189168 4192731 4395141 4899940 4987592 4999120 5017477 5149173 5149311 5158741 5223097

5302153 5474252 5535280

4: 145

...
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From the first line, we can deduce that page #1 contains a single link to page #1,664,968. Page #2 contains
links to pages #3, #747,213, #1,664,968, #1,691,047, #4,095,634, #5,535,664, and so on. The second file
(titles-sorted.txt) contains the list of titles of all Wikipedia pages, with the title of page #n being located
at the nth line of the file.

2.1 Finding the shortest path

You will write a Hadoop program that finds the shortest path between two pages. It will take the identifiers of
two pages as command-line arguments, and return the shortest path that goes the source page to the target
page. For instance, going from page #2,111,690 (“Hadoop”) to page #4,371,964 (“SFU_Vancouver”) should
give the following result:

"Hadoop" (2111690) -> "2008" (88822) -> "Canadian_federal_election,_2008" (899021) ->

"British_Columbia" (792600) -> "Simon_Fraser_University" (4605555) ->

"SFU_Vancouver" (4371964)

The algorithm will run a series of MapReduce jobs over the graph: the output of each job will be fed as the
input of the next one. You will have to make sure to set an upper bound on the number of iterations (<10,
for instance) so that in case there is a bug in your code, you don’t end up with an infinite loop wasting the
resources of the cluster.
The general idea of the algorithm is the following: the source page will initially have a distance of 0 while all
other pages will have a distance of ∞. The first MapReduce iteration will make it so that all of the neighbors
of the source page have a distance of 1. The second iteration will make it so that the neighbors’ neighbors
will have a distance of 2 unless they have already been reached with a distance of 1. At each iteration,
the algorithm memorizes the path that was used to reach all nodes. When the targed node is reached, the
algorithm stops and returns the shortest path that was used to reach it. This algorithm is illustrated in Figure 1.

0 ∞

∞ ∞

∞A B

D

C

E

Iteration #1

0 1 A

∞ ∞

1 A
A B

D

C

E

Iteration #2

0 1 A

2 B:A 2 C:A

1 A
A B

D

C

E

Iteration #3

Figure 1: Algorithm for finding the shortest path (between A and E). Each iteration is MapReduce phase.

The Mapper receives the identifier of a page as an argument, and information about the page as its value,
namely, the shortest distance, the corresponding partial path, and the list of its neighbors’ identifiers. The
pseudo-code for the Mapper is shown in Algorithm 1.
The Reducer first outputs the key and the value it receives so that the list of neighbors is not lost. If the
node has been reached already, it updates the distance and the path of all of its neighbors, and outputs the
corresponding key/value pairs.
The reduce() function is shown in Algorithm 2. The Reducer looks at all neighbors of a page that have been
output by the Mapper, finds the one with the minimum distance, and outputs that neighbor with the path used
to reach it.
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function map(page_id, page = 〈distance, path, neighbor_ids〉) :
output(page_id, page);
if distance 6= ∞ then

for neighbor_id ∈ neighbor_ids do
output(neighbor_id, 〈distance+1, page_id . ” : ” . path〉);

end
end

Algorithm 1: map() function

function reduce(page_id, [_page,neighbor1,neighbor2, ...])
distance← ∞;
path← null;
for x ∈ [_page,neighbor1,neighbor2, ...] do

if x is a node then
page← x;

if x.distance < distance then
distance← x.distance;
path← x.path;

end
page.distance← distance;
page.path← path;
output(page_id, page);

Algorithm 2: reduce() function

Here are a few tips to help you write the program:

• Start by creating a class that will represent a page, with its distance, partial path, and list of neighbors.
Write a function that converts a text representation of the page into an instance of the class.

• Your program will first convert the input file into a temporary file that contains the text representation of
each node that you defined. In this temporary input file, all nodes will have a distance of Integer.MAX_-
VALUE (∞), except the source node, whose distance will be 0. You can use the KeyValueTextInputFormat

class to make it so that the Mapper will directly get the right key/value pairs from that input file.

• You will run a MapReduce job for each iteration, making sure that the output path of iteration n is used
as the input path of iteration n+1.

• You can use a Counter object to communicate between the Reducer and the function that runs MapRe-
duce jobs: when the Reducer detects that the shortest path has been found, it can write the shortest path
and the corresponding distance to a Counter.

• The pseudo-code shown in Algorithm 1 and 2 only aims to explain the general idea of the algorithm.
You may face problems that require workarounds when you implement these functions, it is normal
if they are longer than the pseudo-code. For instance, the pseudo-code considers that all pages have
an entry in the input file, whereas not all pages have an entry in links-simple-sorted.txt: pages that
don’t contain any links are only listed as neighbors.
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• Finally, you will have to write a function that returns the title of a page given its identifier in order to
output the shortest path between the source and the target page.

To debug your code, don’t use the Wikipedia dataset at first: create an input file that contains a small graph
with a few nodes, using the same format as links-simple-sorted.txt. When everything works, run your
code on the Wikipedia dataset.

2.2 PageRank

You will now calculate PageRank over the Wikipedia graph. PageRank is the algorithm used by Google to
rank its search results. The main idea of PageRank is that it gives a higher score to pages that have more
inbound links. However, it penalizes inbound links that come from pages that have a high number of outbound
links. Here is the formula PageRank uses for a node n:

PageRank(n) =
1−d
|graph|

+d ∑
x ∈ inbound_links(n)

PageRank(x)
x.outbound_links

In this formula, d is the damping factor, for which we will use the value 0.85.
Each vertex in the graph starts with a seed value, which is 1 divided by the number of nodes in the graph. At
each iteration, each node propagates its value to all pages it links to, using the PageRank formula. Normally,
the iterative process goes on until convergence is achieved, but in order to simplify things and to avoid
wasting the cluster’s resources, in this exercise, we will only use five iterations.
The Mapper receives the identifier of a page as an argument, and information about the page as its value, as
was the case in the shortest path algorithm. The pseudo-code for the Mapper is shown in Algorithm 3.

function map(page_id, page = 〈page_rank, neighbor_ids〉) :
output(page_id, page);
out_page_rank← page.page_rank

|page.neighbor_ids| ;
for neighbor_id ∈ neighbor_ids do

output(neighbor_id, 〈out_page_rank〉);
end

Algorithm 3: map() function

The Reducer goes through adds up the values received from all neighbors, and uses the PageRank formula to
update the PageRank of the current page. The pseudo-code of the reduce() function is shown in Algorithm 4.
Here are a few tips to help you write the program:

• Like for the shortest path, you will need a class that will represent a page. What information will it
contain?

• You will need to find out the number of nodes in the graph, i.e., the number of pages. To this end, you
can just count the number of lines in the titles-sorted.txt file.

• Like for the shortest path, your program will convert the input file into a temporary file that contains
the text representation of each node. This time, you will add the default value for the PageRank for
each node (1/|graph|) to each entry.
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function reduce(page_id, [page, page_rank1, page_rank2, ...])
sum← 0;
page← null;
for x ∈ [page, page_rank1, page_rank2, ...] do

if x is a node then
page← x;

else
sum← sum+ x;

end
end
page.page_rank← 1−d

|graph| +d · sum;
output(page_id, page);

Algorithm 4: reduce() function

• You will run a MapReduce job for each iteration, making sure that the output path of iteration n is used
as the input path of iteration n+1.

• As was the case for Algorithms 1 and 2, the pseudo-code shown in Algorithms 3 and 4 only aims to
explain the general idea of the PageRank algorithm. You may face problems that require workarounds
when you implement these functions, it is normal if they are longer than the pseudo-code. For instance,
the pseudo-code considers that all pages have an entry in the input file, whereas not all pages have an
entry in links-simple-sorted.txt: pages that don’t contain any links are only listed as neighbors.

Again, to debug your code, don’t use the Wikipedia dataset at first: create an input file that contains a small
graph with a few nodes, using the same format as links-simple-sorted.txt. When everything works, run
your code on the Wikipedia dataset. What are the 10 pages with the highest PageRank? The five pages with
the highest page ranks should be “United States”, “2007”, “2008”, “Geographic coordinate system”, and
“United Kingdom”.
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