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1. Introduction

Multicore architectures are becoming increasingly common
in domains ranging from personal computing to server ap-
plications and even embedded systems. Exploiting the
power of additional cores is a challenging issue, for several
reasons. First, writing parallel programs is harder than
writing sequential programs, and even state-of-the-art par-
allel programs comprise sequential sections that constitute
a major limiting factor to overall performance. Second,
synchronization between threads can cause major over-
head. Using fine-grained synchronization primitives can
limit this overhead, albeit at the cost of a greater com-
plexity, lower maintainability and lower extendability of
the source code. Finally, low-level cache coherence algo-
rithms are costly, especially when the locality of the shared
data between threads is low.

Exploiting the computing power offered by a large num-
ber of processing cores is especially hard for programs that
are run within Java Virtual Machines (JVMs). Indeed, in
Java, the only concurrency management mechanism is the
synchronized block, which does not allow for low-level op-
timizations (e.g. improving data locality between threads
or limiting contention via fine-grained locking). Such opti-
mizations have to be implemented within the virtual ma-
chine itself.

In the long term, we plan to experiment with a novel
approach to improve the performance of legacy Java ap-
plications on multicore hardware. The general idea is to
improve data locality between cores in order to limit data
transfers caused by cache coherency algorithms. Since
Java synchronized blocks are used to ensure coherency
when accessing shared variables, they can be used as delim-
iters of code areas that use shared data. Our idea, based
on this observation, is to dedicate a number of processing
cores to the execution of synchronized blocks in order to
improve performance: indeed, these dedicated cores will
be likely to have most of the shared data readily available
in their local cache, most of the time. Since the major-
ity of architectures will feature a large number of cores in
the near future, dedicating a few cores to a dedicated task
should not have a major negative impact on performance.

There is however a tradeoff between the increased local-
ity of shared data and the loss of locality caused by the
need to fetch context variables (i.e. thread-local variables
used in synchronized blocks) from the original processing
core. Furthermore, executing a synchronized block on a
dedicated core requires a transfer of control to this core.
This is not the case in the traditional way of executing
Java programs, in which all synchronized blocks are exe-
cuted locally. We therefore have to figure out when the
cost of the transfer of control is covered by the perfor-
mance gain caused by the availability of data in the cache
memory of the dedicated core.

In the context of this internship, we focus on evaluating
the tradeoff between executing synchronized blocks locally
and migrating them to improve data locality. Preliminary
results show that our technique is profitable on a 8-core
microprocessor with a moderate number of shared cache
lines accessed by each critical section (>15 cache lines), if
a reasonable number of context variables are used. These
encouraging results lead us to decide to further pursue this
analysis in the context of a PhD thesis, in which we plan

to implement the automatic migration of critical sections
towards dedicated cores in a Java Virtual Machine.

The remainder of this report is organized as follows.
In Section 2, we present chosen works from the research
literature related to the main issues we are faced with in
the context of our project. In Section 3, we present the
experiments we performed in the context of this internship.
We conclude in Section 4.

2. Related work

In this section, we analyze the existing work which, to
our knowledge, best tackles the major issues raised by our
project. Since, in the context of our project, we aim to
evaluate the tradeoff between the performance gain caused
by improved data locality and the overhead caused by
transfers of control on multicore architectures, the ma-
jor issues we will have to deal with will be performance-
related. This is especially true since multicore architec-
tures raise complex issues regarding performance: pro-
grammers who write code for these architectures are of-
ten faced with problems such as bottlenecks caused by
contention, poor locality of shared variables, and costly
transfers of control and data between cores.

In Section 2.1, we focus on cache locality issues. Then,
in Section 2.2, we focus on the major cause of overhead
in multicore architectures : contention. In Section 2.3, we
raise the issue of inter-process communication. Section 2.4
is dedicated to fast remote execution of code between cores.
In Section 2.5, we discuss ways to improve performance
on heterogeneous architectures. Finally, we conclude this
analysis in section 2.6.

2.1. Cache locality

In this section, we focus on cache locality issues, about
which two recent works have provided us with considerable
insight: Pesterev et al.’s DProf [13] and Koufaty et al.’s bias
scheduling [11].

DProf

DProf is a profiling tool that dynamically tracks indi-
cators associated with data structures instead of code lo-
cations in order to allow for more efficient localization of
cache-related bottlenecks. It offers four views of the col-
lected data: the Data Profile view shows the number of
cache misses for each of the most common data types; the
Miss Clarification view shows which types of misses (due
to sharing, associativity or capacity overload) are most
common for each data type; the Working Set view indi-
cates which data types were most active, how many of
each were active at any given time and the cache associa-
tivity sets used by each data type; finally, the Data Flow
view shows the most common sequences of functions that
reference particular objects of a given type.

To create these views, DProf collects two kinds of data:
path traces and address sets. A path trace records all ac-
cesses to a single data object. An address set is a data
structure that contains the address and type of every ob-
ject allocated during execution. Both of these data struc-
tures are built from the two kinds of raw data ultimately
collected by DProf: access samples and object access his-
tories. An access sample records information for randomly
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chosen memory-referencing instructions, and an object ac-
cess history is a complete trace of all instructions that read
or write a particular data object, from when it was allo-
cated to when it was freed. To collect access samples,
DProf uses AMD’s proprietary Instruction Based Sam-
pling (IBS), but similar facilities are available on Intel
chips.

Pesterev et al. show that, in two case studies, DProf pro-
vides much more helpful information than both lock_stat
(a profiling tool that reports statistics about locks) and
OProfile (a traditional execution profiler). Furthermore,
performance experiments show that DProf’s overhead
varies depending on several variables (IBS sampling rate,
number of debug register interrupts triggered by second,
etc.). However, it is usually reasonably low and remains
lower than 15%.

DProf is interesting to us at two levels. On a first level,
the tool itself will probably be useful to monitor bottle-
necks if we do not manage to compensate the cost of
transfers of controls by the performance increase caused
by cache locality efficiently enough in our project. On a
second level, DProf’s implementation itself is extremely
interesting, since it uses special CPU instructions to mon-
itor cache misses in order to infer cache locality penalties.
Pesterev et al. provide advanced information on how they
use these instructions in their article; we will not, how-
ever, discuss this point into more details in this document,
for fear of getting too technical. The reader is invited to
directly refer to Pesterev et al.’s paper [13] for more infor-
mation.

Bias scheduling

Koufaty et al. [11] propose to optimize the scheduling
of processes on performance-asymmetric multicore archi-
tectures with an algorithm that evaluates the performance
gain of running an application on a fast core rather than
on a slow core. Their approach estimates the number of
internal stalls, caused by local (internal to the core) cache
misses and delays, and external stalls, caused by accesses
to shared last level caches, memory and I/O. To estimate
internal stalls, they compute the number of cycles during
which the front-end of the machine is not delivering in-
structions to the back end, thus effectively measuring the
time during which cores are idling due to a lack of in-
structions. To estimate external stalls, they measure the
number of requests serviced outside the core. The details
of these mechanisms are not clearly stated in their paper,
but we plan to analyse their implementation. We hope
that this will allow us to find out how to obtain efficient
statistics about cache misses that we will use to compute
our cache locality penalties.

Now that we have considered cache locality issues di-
rectly, we will focus on the related problem of contention
management. Indeed, cache locality issues are often linked
with contention, since a lot of cache misses are caused by
access conflicts over data stored in a given cache line. This
is the object of the next subsection.

2.2. Contention management

Contention is a major issue on the target architecture for
our project, i.e machines that feature a large number of
cores. Migrating critical sections to remote cores will re-

quire the use of shared structures for synchronizations and
data transfers; therefore, we must find ways to limit con-
tention since, in the context of our project, our main ob-
jective is to ensure good performance.

In this subsection, we first discuss strategies to limit the
size of critical sections to limit the use of shared data struc-
tures. Finally, we focus on the locks themselves, whose
efficiency is crucial to any multithreaded environment.

2.2.1. Limiting the sharing of global data structures

The most obvious way to limit contention is to limit the
sharing of global data structures. Wickizer et al. wrote an
operating system named Corey [15] that aims to be very
efficient on architectures having a large number of cores.
Corey limits the sharing of kernel data structures that are
shared among cores in order to improve performance.

More precisely, Corey’s motto is that applications should
control sharing. Indeed, traditional operating systems
tend to share a lot of data structures between kernel and
user threads by default, which can lead to contention.
Wickizier et al. argue that the kernel should arrange each
data structure so that only a single processor needs update
it, unless directed otherwise by the application.

Corey provides three basic operating system abstrac-
tions to allow applications to control inter-core sharing and
to take advantage of architectures having many process-
ing cores by dedicating some of them to specific operating
system functions. These abstractions are address ranges,
kernel cores and shares.

Address ranges allow applications to selectively share
parts of address spaces, instead of being forced to make an
all-or-nothing decision. Indeed, traditional OSes give only
two choices for shared memory: applications can either use
a single address space shared by all threads, or a separate
address space per thread. This can be inefficient if only a
subset of the threads need to access a data set. Address
ranges are more flexible and thus allow for finer-grained
optimizations.

Kernel cores allow applications to dedicate cores to ker-
nel functions or data. For instance, a core can be devoted
to interacting with a given device. Multiple cores can then
communicate with this dedicated core via shared-memory
IPCs when they need to interact with the device. In a
traditional OS, each core would directly interact with the
device, using locks to access these data structures concur-
rently, which would drastically impede performance due to
contention. With Corey’s architecture, there is no direct
contention over the data structures of the device driver.
This limits the overhead caused by locks.

Shares allow applications to dynamically create lookup
tables for system data structures and determine how these
tables are shared. Indeed, many kernel operations involve
looking up identifiers in tables to obtain pointers to inter-
nal kernel data structures. The use of these tables can be
costly due to contention: in mainstream OSes, they are
usually either shared between all the threads of a process
(this is typically the case for Unix file descriptors, for in-
stance) or between all processes (this is typically the case
for Unix process identifiers). With Corey, these tables are
shared only between the cores that need them: each of an
application’s cores starts with one share (its root share),
which is private to that core. Then, if two cores wish
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to share a share, they create one and add its ID to their
private root share (or to a share reachable from their root
share). A root share doesn’t use a lock (since it is private),
but a shared share does. When an application requests the
creation of a new kernel object, it decides which share will
hold the identifier.

Thus, a share maps application-visible identifiers to ker-
nel data structures. Each core can use all the shares reach-
able from its root share. Contention only arises when two
cores manipulate the same share, and overhead due to con-
tention can be greatly limited by constricting the sharing
scope of shares that are only reachable by a subset of the
cores.

Performance experiments show that Corey performs
25% faster than Linux when using 16 cores on a MapRe-
duce task and a Web Server task. Hardware event counters
show that these improvements are due to Corey’s original
handling of shared memory.

Corey’s idea of arranging data structures so that a single
processor accesses it is reminiscent of our project, we plan
to migrate synchronized blocks to dedicated cores in order
to limit the number of processors that access shared data
(ideally, one, if there is a single dedicated core). However,
in our project, we will be able to detect where shared vari-
ables are accessed (thanks to synchronized blocks); this is
not the case with Corey in which client applications can
access shared variables anywhere.

Other projects have focused on the concept of limiting
shared data to improve performance. Baumann et al. [2]
propose a new type of operating system named the multi-
kernel which uses one kernel per core with all of the kernel
data structures replicated on each core. This is another
way to limit the sharing of global data structures. Actu-
ally, multikernels limit the sharing of data structures so
much that they completely prohibit shared memory. Fäh-
ndrich et al. [6] propose another OS that follows this same
paradigm. Not sharing data structures at all goes much
further than limiting the sharing of data structures: this is
a matter of inter-process communication. We will discuss
these issues more in detail in Section 2.3. Before discussing
these matters that bring us well beyond traditional con-
tention management mechanisms, we will focus on ways to
optimize the most common tool in traditional contention
management techniques : the lock.

2.2.2. Optimizing locks

Another way to optimize multithreaded applications is to
optimize the internal implementation of locks. Two oppos-
ing locking strategies are generally used: to wait for a lock
to be released, a thread can either spin, actively polling a
resource in a loop; or block, i.e. putting the thread to sleep
and trusting the scheduler to wake it up when needed.

Spinning provides high reactivity (no context switch
needed, instant detection of lock releases) but wastes sig-
nificant CPU resources. Moreover, on an overloaded sys-
tem using spinlocks, the scheduler often preempts lock
holders to wake waiting threads up; these threads then
waste their time slices actively polling a resource that can-
not be released. This phenomenon can drastically impede
performance.

Block-based approaches usually fare better that spin-
locks under high load but their lack of reactivity intro-

duces high overheads on the critical path of computation,
thereby increasing the likelihood that other threads will
encounter contention and block. This causes a vicious cy-
cle of extremely slow lock handoffs known as a convoy.
This is especially programs that use fine-grained locking
since their critical sections usually take less time to exe-
cute than a single context switch.

Hybrid solutions that somewhat improve performance
have been developed, but they still perform rather poorly,
simply offering other tradeoffs between reactivity and CPU
usage. However, Johnson et al. [10] proposed an interest-
ing alternative to spinlocks and blocking locks that does
not seem to suffer from this issue.

According to Johnson et al., contention management
and load management (i.e. scheduling) are two orthogonal
problems that should be treated separately. They propose
a library that relies on a novel algorithm, known as load
control, that regulates the number of active threads de-
pending on the load. Basically, to acquire a lock, a thread
either (1) blocks, if there are too many threads running or
(2) spins otherwise. That way, threads are very reactive
since they use spinlocks as much as they can and perfor-
mance never collapses because the load is regulated.

To limit the load, threads are only allowed to run if
they are unable to register themselves into a bounded ar-
ray known as the sleep slot buffer because it is full. More
precisely, the proposed algorithm—implemented by the
load control library—works as follows: to acquire a lock, a
thread spins until a) the lock is released or b) it is able to
register itself into the sleep slot buffer. In the latter case,
the thread blocks until it is removed from the sleep slot
buffer or until 100ms pass, whichever comes first. Once
the thread wakes up it restarts the lock acquire process as
if it just arrived.

To control the number of running threads, a controller
increases or decreases the size of the sleep slot buffer and
wakes up threads when they get kicked out of the buffer.
Thus, the controller acts as a local scheduler that only
manages the load whereas the threads themselves only
manage contention: contention and load management are
effectively decoupled.

Experiments show that on various benchmarks, load
control performs just as well as spinlocks under low load.
Performance gracefully degrades under high load instead
of collapsing as is the case with spinlock-based algorithms.
Block-based algorithms’ performance also degrades grace-
fully under high load, but they are initially much slower.
Load control therefore offers the best of both worlds. It
is worth noting that the spinlocks and blocking locks in
the experiments used state-of-the art locking algorithms,
which shows how efficient Johnson et al.’s approach is.
Load balancing is orthogonal to our work, since it aims
to improve locking by making locks load-aware, whereas
we aim to improve locking by improving data locality.

2.3. Efficient inter-process communication

Another way to improve performance in multicore envi-
ronments is to improve communication between processes.
This issue has been mainly tackled by OS designers and
researchers, since OSes have to handle multiple processes
running on multiple cores. Two opposing approaches are
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(a) (b)

Single	process

(c) Domain	A

Domain	B

Process	BProcess	A

Figure 1: Two components sharing data (a) using standard, marshalled communication over pipes, (b) directly, both
components being embedded into the same process, and (c) using Opal’s approach with memory protection domains
decoupled from execution domains (Source: [4]).

generally used for the communication between processes:
shared memory and message-based communication.

This dichotomy is mainly an opposition between two
isolation paradigms. Some (Chase et al. [4], for instance)
argue that memory should be easily sharable. They design,
for instance, OSes with global address spaces to improve
sharing. Others argue (Baumann et al. [2]), Fähndrich et
al. [6, 8]) that, on the contrary, shared memory should be
prohibited by the OS. Both approaches have various reper-
cussions on performance, safety, and ease of development.
In this subsection, we focus on performance only, safety is-
sues being beyond our scope. Performance-wise, the main
difference between the two approaches is that when shared
memory is directly used by applications, the OS cannot
control the use of shared memory areas, which can lower
performance. As for the ease of development, this matter
is beyond the scope of this document since we only plan
to change the inner workings of an JVM in our project,
without having any direct influence on the development of
higher-level applications on a semantic level.

2.3.1. Shared memory

Shared memory is the most common way by which pro-
cesses communicate in traditional OSes. Its main advan-
tages are simplicity and flexibility. However, sharing mem-
ory can cause contention problems that need to be over-
come with safety and security mechanisms.

The Opal operating system, designed by Chase et al. [4],
provide a good example of performance-optimized com-
munication by shared memory. Opal uses a single 64 bit
address space for all applications. This allows programs
to directly use pointers to memory locations that they
do not own, without the need for translation mechanisms
between address spaces. Since sharing pointers to mem-
ory between programs with Opal is so easy, data is rarely
ever copied from one program to another—transfers are
all zero-copy. Traditional operating systems usually offer
mechanisms for zero-copy communication, but they tend
to be very complex. Another way to use easy zero-copy
mechanisms between two components would be to place
them in the same process, but this compromises protec-
tion and hinders modularity. Opal’s decorrelates memory
protection from execution, thereby allowing distinct pro-
cesses to directly work on the same data. This approach,
illustrated in Figure 1, combines simplicity with modular-
ity.

In Opal, segments of memory can be shared across pro-
cesses with protection mechanisms based on capabilities.
In order to allow several applications to work together

safely on in-memory data structures, data from a shared
segment is accessed through shared procedures that are
also stored in the same segment. This technique permits
to maintain a high level of isolation and modularity while
still benefiting from the very high performance provided
by Opal’s direct sharing of data.

Chase et al. show that Opal allows several applications
from the Boeing CAD system that use the same data to
directly work together on in-memory data structures with-
out the need for marshalization, copy, or address-space
translation. A custom benchmark is also used to evalu-
ate Opal’s performance. This benchmark uses three tools,
(1) a producer that creates and deletes fixed-size records,
(2) a consumer that maintains its own index structure on
the same data and (3) a mediator that keeps the index
up to date between the consumer and the producer. Ex-
periments with this benchmark show that using directly
shared segments (i.e. without address translation) is as
efficient as embedding the three tools into the same pro-
cess, and up to ten times more efficient than using three
processes that communicate via traditional IPCs.

Opal’s use of a global address space is therefore very ef-
ficient. However, it has several drawbacks, in particular, it
uses an abstraction layer above the hardware that makes
impossible for applications to use advanced, low-level op-
timizations on complex architectures that feature a large
number of cores.

2.3.2. Message-based communication

Recent works on OSes optimized for multicore architec-
tures show a tendency to discard shared memory alto-
gether and to vouch for communication via messages only
instead. Indeed, communication via shared memory has
several drawbacks, in particular, on architectures with a
large number of cores, using shared memory presupposes
cache coherency mechanisms. These mechanisms are in-
creasingly complex to implement and their overhead is
getting worse as the number ef cores increases. Some re-
cent processors do not ensure coherence between caches.
Furthermore, at a lower level, these mechanisms are imple-
mented by message passing. Allowing applications to di-
rectly handle the message passing mechanisms allow them
to send and receive just as many messages as they need,
without the need to assert the strong invariant of cache
coherence, thereby improving performance.

We are now going to discuss two recent research OSes for
multi-core (or multi-processor) architectures that make use
of message-passing as their sole means of communication:
Barrelfish (a multikernel) and Singularity.
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The Multikernel: A new OS architecture for scalable multicore systems

Andrew Baumann∗, Paul Barham†, Pierre-Evariste Dagand‡, Tim Harris†, Rebecca Isaacs†,
Simon Peter∗, Timothy Roscoe∗, Adrian Schüpbach∗, and Akhilesh Singhania∗

∗Systems Group, ETH Zurich
†Microsoft Research, Cambridge ‡ENS Cachan Bretagne

Abstract
Commodity computer systems contain more and more
processor cores and exhibit increasingly diverse archi-
tectural tradeoffs, including memory hierarchies, inter-
connects, instruction sets and variants, and IO configu-
rations. Previous high-performance computing systems
have scaled in specific cases, but the dynamic nature of
modern client and server workloads, coupled with the
impossibility of statically optimizing an OS for all work-
loads and hardware variants pose serious challenges for
operating system structures.

We argue that the challenge of future multicore hard-
ware is best met by embracing the networked nature of
the machine, rethinking OS architecture using ideas from
distributed systems. We investigate a new OS structure,
the multikernel, that treats the machine as a network of
independent cores, assumes no inter-core sharing at the
lowest level, and moves traditional OS functionality to
a distributed system of processes that communicate via
message-passing.

We have implemented a multikernel OS to show that
the approach is promising, and we describe how tradi-
tional scalability problems for operating systems (such
as memory management) can be effectively recast using
messages and can exploit insights from distributed sys-
tems and networking. An evaluation of our prototype on
multicore systems shows that, even on present-day ma-
chines, the performance of a multikernel is comparable
with a conventional OS, and can scale better to support
future hardware.

1 Introduction

Computer hardware is changing and diversifying faster
than system software. A diverse mix of cores, caches, in-
terconnect links, IO devices and accelerators, combined
with increasing core counts, leads to substantial scalabil-
ity and correctness challenges for OS designers.
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Figure 1: The multikernel model.

Such hardware, while in some regards similar to ear-
lier parallel systems, is new in the general-purpose com-
puting domain. We increasingly find multicore systems
in a variety of environments ranging from personal com-
puting platforms to data centers, with workloads that are
less predictable, and often more OS-intensive, than tradi-
tional high-performance computing applications. It is no
longer acceptable (or useful) to tune a general-purpose
OS design for a particular hardware model: the deployed
hardware varies wildly, and optimizations become obso-
lete after a few years when new hardware arrives.

Moreover, these optimizations involve tradeoffs spe-
cific to hardware parameters such as the cache hierarchy,
the memory consistency model, and relative costs of lo-
cal and remote cache access, and so are not portable be-
tween different hardware types. Often, they are not even
applicable to future generations of the same architecture.
Typically, because of these difficulties, a scalability prob-
lem must affect a substantial group of users before it will
receive developer attention.

We attribute these engineering difficulties to the ba-
sic structure of a shared-memory kernel with data struc-
tures protected by locks, and in this paper we argue for
rethinking the structure of the OS as a distributed sys-
tem of functional units communicating via explicit mes-

1

Figure 2: General architecture of Barrelfish (Source: [2]).

Barrelfish

Baumann et al. [2] argue that designing OSes that han-
dle better architectures having a large number of cores1

is a crucial research goal. Indeed, commodity computer
systems containing multiple cores and/or processors are
becoming more and more common. Most mainstream
OSes have historically been developed for monoprocessors
or multiprocessors having a limited number of processing
units, using a model that scaled well in this context (global
structures with locks, communication via shared memory,
etc.). This model however has difficulties scaling well with
newer hardware due to contention. Given the increasing
number of cores in modern architectures and the complex-
ity of interconnections between processing units, computer
systems resemble more and more medium-scale distributed
systems: Baumann et al. argue that designing an OS like
an actual distributed system could improve scalability.

A Multikernel is a new type of operating system pro-
posed by Baumann et al. that aims to this problem. Mul-
tikernels are multithreaded, with an instance of the OS
running on each available core. Cores do not share global
structures as in a traditional OS; instead, the OS state is
replicated on each one of them. Cores do not communicate
via shared memory, relying on cache coherence algorithms;
instead, all communication is explicit and happens through
asynchronous messaging.

Baumann et al. wrote an experimental version of a Mul-
tikernel named Barrelfish. In Barrelfish, a CPU driver and
a monitor are bound to each core. CPU drivers handle
system calls, schedule processes and threads on their cores
and perform other low-level core-bound operations. Mon-
itors are processes running on each core that coordinate
the system-wide state via messages and encapsulate most
of the higher-level functions that are usually found in a
traditional kernel. The architecture of Barrelfish is shown
in Figure 2.

The ability to send messages from one process to an-
other within the same core or across cores is provided to
user applications. However, applications can also commu-
nicate through shared memory like in a regular OS.

Baumann et al.’s experiments evaluate the performance
of Barrelfish’s basic features. They focus on the OS’ han-
dling of concurrency, messaging, computation and I/Os.

1This is reminiscent of Corey. Indeed, Corey, Barrelfish and
as we will see later, Singularity, all constitute recent attempts
at dealing with this problem.

Through these experiments, Baumann et al. show that
the performance of their messaging facilities is compara-
ble to L4’s IPCs, which is rather good even though L4 is
not a fully-featured, widly used microkernel. Performing
a TLB shootdown (i.e. invalidating pages in the Transla-
tion Lookaside Buffer) and therefore unmapping pages is
much faster on Barrelfish than on traditional OSes when
the underlying hardware uses more than 14 cores on their
test configuration, showing Barrelfish’s greater scalability
in this context. They also show that Barrelfish is faster
than Linux for sending and receiving messages through the
IP loopback (these tasks involve the messaging, buffering
and networking subsystems of the OS). Other experiments
show that Barrelfish has a comparable performance to that
of Linux for compute-bound and IO workloads.

Even though Barrelfish is an experimental OS, its per-
formance rivals that of classical, highly-optimized OSes on
computer systems that have a large number of cores, which
tends to show that the Multikernel approach effectively de-
livers in terms of scalability. Let us note, however, that
traditional OSes may have not been optimized for these
systems yet though, so we cannot be sure they will not
scale well.

We have now seen Baumann et al.’s take on the use
of message-passing only for communication between pro-
cesses and threads. Barrelfish is not the only such oper-
ating system that has been designed, however. Fähndrich
et al.’s Singularity [6] (and Helios [12], which is based on
Singularity) also explored this path: we will focus on this
operating system in the next subsection.

Singularity

Fähndrich et al. also propose to design an operating
system that uses message-passing as their sole means of
communication. It is worth noting that their main mo-
tivation for building such an OS is not performance, but
modularity and security. In the current subsection, we
mostly focus on performance issues.

Singularity [6] aims to overcome a major drawback of
message-based communication: data is often copied in-
stead of shared when using the event-driven paradigm,
which leads to poor performance. To overcome this, Sin-
gularity uses a new programming language based named
Sing# that provides efficient messaging capabilities.

Messages are exchanged over bi-directional channels.
These channels can also be used to exchange channel end-
points or pointers to memory location. This last point is
crucial: it allows for fast data transfers by removing the
burden of copying memory blocks.

In Singularity, processes are isolated and individu-
ally garbage-collected. Therefore, passing data from one
thread to another could be an obstacle to safe garbage col-
lection. Sending data pointers to allow for zero-copy mes-
saging seems like an even more complex task: one could
wonder which garbage collectors are responsible for such
pointers. Singularity uses strong ownership invariants to
solve this problem.

Let us consider this approach more in detail. When a
message is sent, references to message arguments or trans-
fered data blocks can be found in both the sending and
receiving threads, for instance. To solve this issue, the
Sing# compiler statically checks that processes only ac-
cess memory that they own and that a memory block al-
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Singularity communication mechanisms and kernel API do
not allow pointers to be passed from one SIP to another.
Taken together, these mechanisms ensure the sealed
process invariants, even for SIPs executing in the same
address space.

Exchange Heap

Process 1 Process 2 Process 3

Figure 2. The Exchange Heap.

A SIP starts with a single thread, enough memory to hold
its code, an initial set of channel endpoints, and a small
heap. It obtains additional memory by calling the kernel’s
page manager, which returns new, unshared pages. These
pages need not be adjacent to the SIP’s existing address
space, since safe programming languages do not require
contiguous address spaces.

Because user code is verified safe, several SIPs can share
the same address space. Moreover, SIPS can safely
execute at the same privileged level as the kernel.
Eliminating these hardware protection barriers reduces the
cost to create and switch contexts between SIPs. 

Low cost, in turn, makes it practical to use SIPs as a fine-
grain isolation and extension mechanism. With software
isolation, system calls and inter-process communication
execute significantly faster (30–500%) and 
communication-intensive programs run up to 33% faster
than on hardware-protected operating systems. Aiken et al. 
[2] present an extensive comparison of hardware and
software isolation in Singularity.

SIPs are created from a signed manifest [39]. The manifest
describes the SIP’s code, resources, and dependencies on 
the kernel and on other SIPs. All code within a SIP must
be listed in the manifest. Singularity SIP manifests are
entirely declarative. They describe the desired state of the 
application configuration after an installation, not the
algorithm for installing the application. This frees the OS 
to employ consistent algorithms to update system
configuration and to verify that an update has the desired
effect.

Upon creation, SIPs receive an immutable security
principal name based on their manifest. Because SIPs are
sealed, security policies can place high confidence that a
SIP will not be subverted by third party code. Wobber et
al. [51] describe how the Singularity security architecture
builds robust security policies on the foundation of sealed
processes.

3.3. Light-Weight Language Runtime 
Unlike previous systems that relied on language safety
(e.g., Smalltalk, Cedar/Mesa, etc.), Singularity SIPs 
execute autonomously. Each SIP contains its own memory
pages, language runtime, and garbage collector (GC).
Moreover, even communicating SIPs need not share a
common runtime or GC.

Because of the state isolation invariant, the runtime and 
garbage collector can employ data layout and GC
algorithms appropriate for code in a particular SIP.
Experience and the large number of published garbage
collection algorithms strongly suggest that no one garbage
collector is appropriate for all applications [17].
Singularity’s sealed process architecture decouples the 
algorithm, data structures, and execution of each SIP’s
garbage collector. Each SIP can select a GC to 
accommodate its objectives. Moreover, the GC in a SIP
can run without coordinating with any other SIP.

A light-weight, customizable runtime is an integral part of 
Singularity’s implementation of the closed process
architecture because it allows developers to use SIPs
liberally without incurring large memory overheads.
Because programs are compiled to native code at install 
time, Singularity’s language runtime can be quite small.
The language runtime includes a GC, exception handling
mechanisms, and a limited amount of reflection to
determine the type of objects at runtime. Above the
language runtime sits the base class library. Because SIPs
are sealed, Bartok can reduce the footprint of the runtime
and base class library even further by removing unused
code, a process called “tree shaking” [16].

3.4. Channels
Singularity SIPs communicate exclusively by sending 
messages over channels [14]. Channels enforce stronger
semantics than the low-level IPC mechanisms of other
systems. Channel communication is governed by statically
verified channel contracts, which describe messages,
message field types, and valid message interaction
sequences as finite state machines.

Messages are tagged collections of values or message
blocks in the Exchange Heap. Object references are
excluded from messages by the type system. Messages are
ownership is transferred from a sending SIP to a receiving 
SIP during communication.

Endpoints and message data reside in a special set of pages
known as the Exchange Heap. The Exchange Heap is not
garbage collected, but instead uses reference counts to
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Figure 3: Singularity’s exchange heap (Source: [6]).

ways belongs to a single thread at any given time. To this
end, data on the GC heap is separated from data in the
exchange heap, as illustrated on Figure 3. The exchange
heap is used to exchange all data between processes, i.e.
messages and memory pointed to by exchanged pointers.
At any time, each memory block is owned by a function
in a process: ownership is automatically passed from a
function (and thread) to another through simple rules—
when a variable is passed as a parameter, its ownership is
passed to the called function for the whole time of its exe-
cution, for example. The only exception to this automatic
ownership management strategy is when memory pointers
are exchanged between threads: to explicitly track mem-
ory blocks from the exchange heap whose pointers are ex-
changed via messages, a special type of object, TCell, is
provided. Sing#’s strong type-checking mechanisms com-
bined with this system of ownership management allows
the whole system to dismiss hardware memory protection
altogether, which removes a major cause of overhead.

Performance experiments show that Singularity is faster
than Linux and Windows for certain tasks. Performing
a system call, switching between two threads, and, more
importantly, sending a message are faster on Singularity.
Moreover, the authors show that sending a block of mem-
ory from one thread to another is fast and does not depend
on the size of the block. Linux and Windows are slower
at performing this task, especially for larger blocks, since
they copy the data instead of just passing a pointer.

This analysis of Singularity and Barrelfish showed that
inter-core communication based on specialized algorithms
improves data transfer performance. These algorithms will
be a major source of inspiration to us since we will need to
design efficient communication algorithms to transfer con-
trol and variables between cores when migrating synchro-
nized blocks. Moreover, the works of Baumann et al. and
Fähndrich et al. showed that limiting the use of shared
memory could improve performance by limiting the un-
derlying work of cache coherency algorithms, which is the
main basis of our project: we wish to delegate synchro-
nized blocks to dedicated cores in order to limit the over-
head caused by the transfer of cache lines between cores.

In this subsection, we discussed solutions to transfer
data from one thread to another. We will now focus on a
related problem: the transfer of control between threads.

2.4. Fast transfer of control

Optimizing the transfer of data from one thread to an-
other is a good way to improve performance on multicore
architectures, since it is linked with the major problem of

these architectures: contention. However, another way to
improve performance is to speed up the transfer of control
from one thread to another, i.e. calling code from another
thread. Indeed, we are in dire need of efficient mechanisms
to dispatch the execution of code to threads: our project
consists in finding efficient ways to transfer the control
from one thread to another to delegate the execution of
synchronized blocs.

Calling remote procedures from one thread to another
is usually done through Remote Procedure Calls, or RPC.
RPCs usually permit to call remote procedures from one
core to another, as well as from a computer to another on a
network. Such calls encapsulate the underlying transmis-
sion mechanisms, allowing developers to call procedures
transparently without having to worry whether calls are
local (between threads) or remote (over a network). Such
an abstraction is usually viewed as a good thing, since it
permits to write distributed systems on a network with
very simple semantics. We are not interested in such ca-
pabilities, however: we only wish to dispatch the execution
of code between cores in an efficient way.

In this subsection, we focus on three works that pro-
vide solutions to these issues : Bershad, et al.’s URPC [3],
Huang et al.’s LRPC [7] and Ford et al.’s proposition of a
migrating thread model [5].

URPC

URPC [3] aims to facilitate the design of highly-
specialized RPC systems. Using custom RPC systems in-
stead of generic ones makes it possible to use semantics
that are not always provided by standard RPC packages.
The loss of genericity also permits to improve performance,
since unused parts of the RPC mechanism can be removed,
thereby removing unnecessary overhead (messages, CPU
time).

URPC comprises a runtime library, a stub generator
and an name server, all of which are highly customizable.
The URPC runtime library (see shaded boxes in Figure 4)
makes it possible to customize the protocol machines of the
RPC mechanism (Client PM on Figure 4) as well as com-
munication services. The protocol machines encapsulate
the RPC topology, call semantics and failure semantics of
the RPC system. The protocol machine can be customized
using Cicero, a protocol description language that handles
advanced features such as multithreading. On the client
side, the protocol machine’s routine for assembling and
disassembling messages (Client RPC ) is factored out of
the protocol machine. This routine allows, for instance, to
customize marshalling and unmarshalling functions. The
communication services component comprises routines to
facilitate point-to-point communication between RPC par-
ticipants, using a generic send/receive model that makes
it possible to model any type of communication between
nodes.

The stub generator includes special annotations to RPC
signatures to support advanced communication schemes.
These extensions allow for peer-to-peer communication (as
well as standard client/server communication) and com-
munication schemes that require multiple calls to complete
for a given callback, such as asynchronous communication.

The name server uses a generic naming structure that
accommodates for different naming models (a simple
colon-separated list of attributes). It handles simple and
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Figure 4: Architecture of the URPC runtime library
(Source: [3]).

multiple end-point lookups to support unicast as well as
multicast communication. In order to locate sets of hosts
corresponding to given characteristics, numerical boolean
relationships (such as <, > or 6=, for instance) can be used
to select hosts based on their attributes.

Bershad et al. show through examples that URPC can
be used to design various types of RPCs, such as multi-
cast RPCs, asynchronous RPCs and callback RPCs. These
two last possibilities show that URPC is suitable for our
project. Furthermore, their implementation of a special
type of RPC that use at-most-once failure semantics shows
a 10% performance gain over SUN RPCs, which shows that
custom RPCs can be at least as fast as normal RPC.

On a final note, Bershad et al. advertise URPC as
a tool to prototype RPC systems. However Barrelfish
uses URPC as its main communication mechanism, which
shows that URPC can be used in complex projects where
performance is an issue.

LRPC

LRPC [7] (for Lightweight Remote Procedure Call) is a
RPC library optimized for communication between cores
on the same machine. This is particularly interesting to us
since we do not need to transfer control to remote machines
in our project.

With LRPC, calls to procedures are implemented with
kernel traps. When a client starts a RPC, a kernel trap is
called. The kernel validates the caller, creates a call link-
age, and dispatches the client’s thread to the server pro-
cess. The client provides the server with a pointer to an
argument stack as well as it thread of execution. The ker-
nel switches to this thread with an upcall. After the pro-
cedure call completes, control and results return through
the kernel back to the point of the client’s call.

Three main optimizations are used. First, the kernel
switches threads by updating a few registers (the stack
pointer, the virtual memory registers, and a few other ones
to pass the information described above) and by perform-
ing an upcall. This is much more efficient than performing
a true context switch. Second, arguments are only copied
to argument stacks (in shared memory) then back into the
client thread, instead of needing up to seven copies in with
regular RPCs2. Third, on multicores architectures, server

2The following copies are usually needed with unoptimized
RPCs: from the client thread to the message, from the sender

processes are cached on idle processors. Thus, on a proce-
dure call, if the server process is available on an idle core,
the RPC can be processed very quickly, since a context
switch is not needed. It is also worth noting that, accord-
ing to Huang et al., the multiprocessor implementation
avoids contention on data structures as much as possible.

LRPC is 2 to 3 times faster than Taos3 RPC on a simple
benchmark performing 100,000 RPC requests in a loop.
On four processors, LRPC is 3.7 times faster than on a
single processor with the same benchmark. This shows
how interesting LRPC is for our project: it provides fast
transfer of control capabilities on multiprocessors.

Migrating thread model

Ford et al. propose another compelling way to speed up
transfer of control between threads: the migrating thread
model [5]. In traditional OSes, threads belong to processes
and cannot move from one process to another. With the
migrating thread model, a thread abstraction moves be-
tween processes with the logical flow of control.

To manage this, Ford et al. decouple the execution con-
text from the schedulable thread of control. The execu-
tion context encapsulates the state of the registers, pro-
gram counter, stack pointer, and references to the contain-
ing process and designated exception handler, whereas the
schedulable thread of control represents the thread itself
in which the program is executed.

Ford et al. implemented their migrating thread model
above Mach 3.0’s kernel. In pratice, threads are based
into the kernel, and make incursions into processes (in user
mode) via upcalls. Moving a thread from one process to
another is cheaper than a context switch: the kernel only
reproduces part of the functionality implemented by the
scheduler. For instance, since the kernel is now calling the
server rather than vice-versa, it no longer needs to save
and restore the server’s registers on every RPC. Moreover,
thanks to the server’s first-hand knowledge of the RPCs,
it no longer needs to create, translate, and consume reply
ports4 to match a reply to its request. Also, the kernel no
longer needs to manage message buffers since the data is
directly copied from source to destination.

Migrating threads are especially powerful when com-
bined with RPCs, allowing for fast transfer of control on
a single machine. Ford et al. implemented their thread
model on the Mach 3.0 kernel. They show that regular
RPCs require 5 times as many instructions and 4 times
as many load/store operations than RPCs that use the
migrating thread model.

This ends our subsection about fast transfer of control
and our discussion of optimizations for homogeneous archi-
tectures. Indeed, until now, we discussed possible perfor-
mance optimizations based on the hypothesis that the tar-
get architecture’s cores share the same performance, ISAs,
and characteristics. We will now extend our discussion to
heterogeneous architectures.

domain to the kernel domain, from the kernel domain to the
receiver domain, from the message to the server stack, from the
receiver domain to the kernel domain, from the kernel domain
to the sender domain, from the message into the client result.

3Taos is the operating system developed for the for the DEC
SRC Firefly multiprocessor workstation [14].

4A port is a protected message queue for communication
between tasks in the Mach kernel.
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2.5. Heterogeneous architectures

Heterogeneous architectures, i.e. architectures whose pro-
cessing cores differ in computing power, ISAs, and other
characteristics, are getting more and more common. Even
standard PCs can be viewed as heterogeneous architec-
tures, since several of their components (NICs, GPUs) can
be used as independent processing cores. Being able to
optimize the performance of our approach (i.e. migrating
critical sections to dedicated cores) on heterogeneous ar-
chitectures could be an interesting long-term goal. This is
the object of this subsection.

Bias scheduling

Koufaty et al. propose a scheduling algorithm that aims
to improve performance on a common case of heteroge-
neous architectures: those having two types of cores only
(faster and slower ones, called big and small cores, respec-
tively). Their algorithm is novel in that it doesn’t require
offline profiling or dynamic sampling on all cores: it col-
lects all of its data on-the-fly.

Koufaty et al. propose new metrics to evaluate the per-
formance gain of executing a process on a big core rather
than a small core (i.e. application bias). We mentioned
in Section 2.1 that in addition to the traditional Clocks
Per Instruction (CPI) metric, they also monitor internal
stalls (caused by accesses to resources internal to the core)
and external stalls (caused by accesses to shared last level
caches, memory and I/O). They show that a process has a
big core bias (i.e. its speedup from running on a big core
compared to a small core is large) when the number of
stalls (especially external stalls) is low. The number of in-
ternal and external stalls is measured at runtime and used
to compute application bias. As this bias is not constant
during the execution of an application, it is measured over
a sliding instruction window. This allows the algorithm
to schedule more efficiently applications whose behavior
changes throughout their execution.

When the system is unbalanced, the scheduler tries to
migrate threads from the busiest core to the idlest core,
using application biases to optimize its choice of threads
to move. When the system is balanced, the runqueues of
each core are periodically checked: the scheduler looks for
processes that would benefit from being swapped from big
to small cores and conversely according to their application
bias.

Since heterogeneous chips are uncommon, Koufaty et
al. emulate one via an homogeneous quad-core Intel Xeon
processor. They show that the standard approach of down-
clocking some of the cores to turn them into small cores is
not representative of architectures that have structurally
diverse cores. This is an issue because these architectures
are expected to be the obvious choice for manufacturers,
since it makes it possible to optimize the smaller cores for
physical size and energy efficiency. Therefore, they use
proprietary tools to enable a debug mode on some cores
that reduces instruction retirement from four to one micro-
op per cycle. They show that this throttling method gives
performance results similar to actual heterogeneous archi-
tectures whose small cores are in-order whereas their big
cores are out-of-order.

To evaluate performance, Koufaty et al. perform experi-
ments with heterogeneous workloads (i.e. workloads whose

processes have very different biases) based on the SPEC
CPU2006 benchmark. On average, they obtain a 9% per-
formance improvement over the default Linux scheduler.
This is close to an upper bound found by running the
tests on the same processor without throttling any of the
cores. They also perform experiments with more homoge-
neous workloads and obtain a 5% gain on average. They
show that this improvement is due to the fact that even
though the application biases are similar overall, they vary
throughout the execution of each benchmark.

Koufaty et al.’s work is extremely interesting to us, since
it permits to improve the scheduling of applications on
a common case heterogeneous architectures: performance
asymmetric CPUs. Other research works have focused
on more general heterogeneous architectures, considering
each processing unit in a system (such as NICs or GPUs)
as a normal CPU on which processes can be executed.

Multikernels

We discussed multikernels in Section 2.3.2. Multikernels
have been designed with such heterogeneous architectures
in mind. Indeed, Baumann et al. argue that architectures
are getting increasingly diverse (memory hierarchies, in-
struction sets, interconnects, etc.) and that OSes have
been statically optimized for the most common architec-
tures at a low level for now. Given the varying nature of
workloads and the diversity of hardware designs in modern
computer systems, they argue that this approach will likely
not be efficient enough anymore in the near future. Bau-
mann et al. propose that designing OSes like distributed
computer systems allows them to adapt better to various
architectures, just like network applications are able to dy-
namically adapt to architecturally diverse networks.

Multikernels are mostly hardware-independent. The
only architecture-specific modules are the messaging trans-
port mechanism and the interfaces to the hardware
(CPUs/cores and devices). Bauman et al.’s implementa-
tion of a multikernel, Barrelfish, uses a knowledge database
containing information regarding the underlying hardware
(found by polling and measurements) that it uses to op-
timize its communication scheme. This database can be
used to select appropriate message transports for inter-
core communication or to allow for NUMA-aware memory
allocation, for instance.

Helios

Helios [12], an OS based on Singularity (cf. Section
2.3.2), provides an interesting alternative solution to the
problem of handling heterogeneous architectures. Helios
does not rely on multiple identical kernels, instead, it uses
a main kernel and satellite kernels that (1) export a stan-
dardized set of kernel abstractions on all cores, (2) provide
transparent and unified IPCs5 for communication between
cores, and (3) support heterogeneous ISAs via an interme-
diate bytecode to which applications are compiled.

Helios uses an affinity metric to automatically place ap-
plications on cores. This affinity metric allows developers
to express the fact that two processes would benefit from
running on the same core (or the opposite). This is rem-

5Helios’ IPCs uses Singularity’s zero-copy mechanism for lo-
cal message parsing if used between two local threads. Other-
wise, Helios transparently marshals messages between the initi-
ating thread and the remote service.
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Name Layer Communication scheme

Multikernel OS URPC + + + +
Singularity OS LMP (local, zero-copy) + + + +
Helios OS LMP + RMP (distant, marshalling) +
Corey OS Shared memory + + +
Opal OS Shared memory (global address space) + +
Bias scheduling library n/a + +
URPC library URPC + + +
LRPC library LRPC + + + +
Migrating threads library Migrating threads + +
Load scheduling library n/a + + +

Figure 5: Summary of the improvements from the research works analyzed. ‘+’ is a shorthand for “substantial improvement”.
VMKit and DProf are not listed because the chosen criteria were not applicable.

iniscent of the implementation of bias scheduling that we
discussed earlier.

We will not elaborate any further on the mechanisms
provided by operating systems such as Multikernel and
Helios to handle complex heterogeneous architectures since
this subject is beyond the scope of our project for now.

2.6. Conclusion

In this section, we have reviewed a selection of scientific
publications that tackle best the issues we are faced with
in our project, at least to our knowledge. Figure 5 sum-
marizes the improvements provided by each research work
we mentioned our analysis. The next section describes the
experiments we performed on thread migration to ensure
that our approach is viable.

3. Experiments

For our experiments, we used two machines, featuring 8
and 48 cores respectively. Since we only received the sec-
ond (48-core) machine recently, data from this machine is
still incomplete; most experiments have been performed
on the 8-core machine only. These two machines are de-
scribed below.

− The first machine, codenamed bossa, is a Mac Pro
(3.1) featuring two X5472 quad-core 3.2Ghz Xeon
CPUs. Each of the two processors combines two dual-
core dies6. Bossa uses a Intel 5400 chipset with a
1.6Ghz system bus and 10GB of DDR2 SDRAM. It
runs Debian Linux 5.0.5 with a 64-bit 2.6.31 Linux
kernel.

− The second machine, amd48, uses four “Magny-
Cours” 6172 Opterons, featuring two six-core dies.
The four CPUs are interconnected via HyperTrans-
port links. Amd48 uses an AMD RD890 chipset with
32GB of DDR3-SDRAM. It runs Mandriva Linux
2010.1 (x64) with a 2.6.34 Linux kernel.

6In the context of CPUs, a die is a small block of semi-
conducting material on which one or several cores along with
other components are fabricated. Communication between dies
is slower than communication between cores on the same die.
Cores on the same die usually share a cache chip (typically, the
L2 cache).

Our aim is to determine the parameter spaces under
which each of these two solutions are the more efficient:

− Solution (a): execute the critical sections from
within the thread they belong to. The main over-
head of this solution is caused by cache misses when
shared variables are not available in the L1 cache and
have to be fetched from remote cores (or higher-level
caches).

− Solution (b): execute the critical sections on a ded-
icated core7. This solution induces two major causes
of overhead: (1) it requires a transfer of control from
the local core to the dedicated core (modelized by a
local RPC in our benchmarks) each time a critical
section is executed and (2) since local context vari-
ables are not directly available on the distant core,
they have to be transferred, similarly to shared vari-
ables in solution a.

The simplest way to modelize this issue is to consider
that Solution (b) is more efficient than Solution (a) when:

Equation (A): crpc + ncontextm < nsharedm

Where crpc is the cost of a transfer of control (i.e. a
RPC between cores), ncontext and nshared are the number
of context and shared cache lines respectively, and m is
the average cost of fetching a cache line from a distant
core. This is a simplification, of course, because m varies
depending on where the variable is available in the cache
hierarchy. Both ncontext and nshared are dependent on the
programs being executed in the Java Virtual Machine and
cannot be evaluated precisely. On a given architecture,
however, crpc, and m can be measured. If the values of
these three variables are known, we can obtain a gross
estimate of the parameter space, i.e. the values of ncontext

and nshared, in which Solution (b) is more efficient than
Solution (a). This is the object of this section.

In Section 3.1, we evaluate the cost of cache misses, in
Section 3.2 we evaluate the cost of a transfer of control,
and in Section 3.3, we provide a rough estimate of the
values of ncontext and nshared for which Equation (A) is
verified.

7We ignore the case where several cores are dedicated to the
execution of critical sections for now, to simplify the analysis.

10



Master SAR/M2 - Internship at LIP6/Regal Internship Report

3.1. Rough estimates

This subsection evaluate the cost of m and c, i.e. the av-
erage cost of a cache miss and the cost of a transfert of
control.

3.1.1. Cost of cache misses

In order to evaluate the cost of cache misses, we used
memal, a program from the benchmark suite used byWick-
izer et al. to evaluate the performance of the Corey oper-
ating system [15]. Memal uses two threads, a server and
a client thread, each of these threads being pinned on two
different cores specified by the user. A memory area (C ar-
ray) is shared between the two threads. The server thread
uses low-level techniques to place the memory area within
its L1 cache, L2 cache or an owned memory area. The
client thread then reads each cache line from this buffer,
and the benchmark returns the average number of cycles
needed to read each cache line.

Memal uses low-level techniques initially proposed by
Yotov et al. [16] in order to prevent the compiler from
removing data accesses and to prevent cache prefetching
from altering the results. More precisely, the shared mem-
ory area is not accessed by the client in a linear fashion.
Instead, each 64-bytes word of this memory area contains
an address to another word of the same memory area, in
such a way that by reading the first address, using the
read address to know which address to read next, and so
on until enough 64-byte words have been read, one can
read the whole memory block in a pseudo-random fash-
ion. In the end, the last value is passed to a system call
that does not produce any effect (a printf with an empty
string as its first parameter). Thus, the reads are depen-
dant from each other, and the last read value is used: this
prevents the compiler from thinking some of the mem-
ory accesses can be removed as an optimization. More-
over, since 64-byte words are accessed randomly, the pro-
cessor cannot efficiently prefetch cache lines. This tech-
nique might prove important for us in some of the bench-
marks we are about to write, even though for now we found
simpler–albeit platform-dependent–workarounds to avoid
optimization and prefetching issues.

The results of the memal benchmark on bossa are shown
in Figure 6. Each graph shows the number of cycles needed
for a client on Core i to access data located on Core j, in
the L1 cache, L2 cache and in the RAM, respectively. The
core IDs of the client and server threads are on the X and
Y axes of each graph8.

Bossa uses two Xeon X5472 processors, each of which
has two dual-core dies. Each core has a local L1 cache,
and the L2 cache is shared between each two cores from
the same die. There is no L3 cache, the third level is
the RAM itself. Since Bossa uses NUMA (Non-Uniform
Memory Access), access times to the RAM are processor-
dependent.

The first graph exhibits three different latency access
times to the L1 cache. accessing the local L1 cache takes

8Since all graphs are symmetric, it does not matter which
axis represents client and server threads: it takes as much time
for a client thread on Core i to access a variable in a given cache
level (or in the RAM) from Core j than for a client thread on
Core j to access a variable in a given cache level (or in the
RAM) from Core i.

Latency of L1 cache accesses

Latency of L2 cache accesses

Latency of RAM accesses

Figure 6: Latencies of cache RAM accesses relative to the
cores between which cache lines are transferred, on bossa,
as measured with the memal benchmark. Each processor
uses two Dies, each die use two cores. Cores 1 to 4 belong
to the first processor (Die 1: Core 1 and 2; Die 2: Core 3
and 4), and Cores 5 to 8 belong to the second processor
(Die 1: Core 5 and 6; Die 2: Core 7 and 8).
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Placement of the client and the server Number of cycles Number of L1 cache misses Number of L2 cache misses
Same die ∼302 1 0
Same processor, different die ∼412 1 1
Different processors ∼968 1 1

Results of the null_rpc benchmark with both synchronization variables on the same cache line

Placement of the client and the server Number of cycles Number of L1 cache misses Number of L2 cache misses
Same die ∼547 2 0
Same processor, different die ∼525 2 2
Different processors ∼1190 2 2

Results of the null_rpc benchmark with both synchronization variables on two different cache lines

Figure 7: Results of the null_rpc benchmark on bossa. Note: the number of cache misses was measured on the server
only, therefore, the total number of cache misses is the double of the number given.

1 for (i = 0; i < number_of_rpcs; i++)
2 {
3 rpc_requested = 1;
4

5 while (!done_with_rpc)
6 pause;
7

8 /* Protected code */
9

10 done_with_rpc = 0;
11 }

Critical section from the client thread

1 for (i = 0; i < number_of_rpcs; i++)
2 {
3 while (!rpc_requested)
4 pause;
5

6 /* Protected code */
7

8 rpc_requested = 0;
9 done_with_rpc = 1;

10 }

Critical section from the server thread

Figure 8: Pseudo-code of the critical sections from the
client and sever thread in the null_rpc.c benchmark.

about 5 cycles. Accessing a variable from the L1 cache of
any other core on the same processor takes about 75 cycles,
because in each case the variable has to be fetched by the
L2 cache, then passed back to the local L1 cache. When ac-
cessing data located on the L1 cache of a remote processor,
125 cycles are needed. The second graph shows that when
the data is available from the L2 cache, the access times are
15-20 cycles. When the data has to be fetched from a lo-
cal L2 cache, the latency is about 75 cycles. Fetching data
located in the cache of a remote processor takes about 125
cycles. Finally, the third graph shows that the access time
to a variable from the RAM itself is highly variable if done
locally (i.e. on a single processor), with access times vary-
ing between 50 and 140 cycles. Accessing data from the
RAM takes about 150 cycles if the variable has been mod-
ified by the remote processor. This difference of latency

between variables accessed locally (i.e. same processor)
and remotely (i.e. different processor) shows that because
of NUMA, access times to the RAM are not constant.

3.1.2. Cost of transfers of control

To evaluate the cost of transferring the control between
two processors, we implemented a simple benchmark that
uses two threads, a client and a server, pinned on cores
whose IDs are provided by the user. In this benchmark,
the clients request the executions of a given number of
RPCs by the server. The benchmark uses the PAPI li-
brary [1] in order to measure the number of cycles per
RPC, or the number of L1/L2 cache misses. The code
of this benchmark (null_rpc.c) is available in the ap-
pendix.

RPCs are not implemented using blocking locks, in-
stead, we used spinlocks, in order to minimize the reaction
time. We are of course wasting cycles (cf. Section 2.2.2),
but in a system having a large number of cores, one could
consider that wasting cycles from a number of unused cores
is negligible. Minimizing the cost of RPCs is crucial how-
ever, since we hope the performance gain from increased
data locality will be greater than the loss in performance
caused by RPCs. The full code of this benchmark is pro-
vided in the appendix (null_rpc.c).

Figure 8 shows the pseudo-code of the critical sections
of the client and the server threads. For each iteration, the
client thread sets the rpc_requested variable to 1. This
automatically starts a RPC. Then, the client busy-waits9

for the server to set the done_with_rpc variable to 1.
When this happens, the server is done with the RPC. The
client sets its done_with_rpc variable to 0 and starts the
process again. On the server side, for each iteration, the
server busy-waits for the rpc_requested variable to be
set to 1. When this happens, the client has requested a
RPC. The server just resets the rpc_requested variable
to 0 and sets the done_with_rpc variable to 1, to warn
the client that it is done with processing the RPC.

We ran this benchmark on bossa using two different con-
figurations. In the first configuration, the two synchroniza-
tion variables, rpc_requested and done_with_rpc are

9The pause x86 instruction provides a hint to the processor
that the code sequence is a spin-wait loop. The processor uses
this hint to avoid the memory order violation in most situations,
which greatly improves processor performance[9].
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1 for (i = 0; i < number_of_rpcs; i++)
2 {
3 *local_sv = 0;
4

5 while (CAS(global_sv,
6 0,
7 &local_sv) == 0)
8 pause;
9

10 /* Protected code */
11

12 while (*local_sv == 0)
13 pause;
14 }

Critical section from the client thread

1 for (i = 0; i < number_of_rpcs; i++)
2 {
3 while (*global_sv != 0)
4 pause;
5

6 /* Protected code */
7

8 **global_sv = 1;
9 *global_sv = 0;

10 }

Critical section from the server thread

Figure 9: Pseudo-code of the critical sections from the
client and sever thread in the first version of the bench-
mark from Section 3.2.

on the same cache line, and in the second configuration
they are on different cache lines. In the second configura-
tion, we actually leave two full cache lines between the two
variables, because on our architecture, when a cache line
is fetched, the next one is automatically prefetched. The
results are presented in Figure 7.

Figure 7 shows that if the client and the server are on
the same core with synchronization variables on the same
cache line (resp. on different cache lines), each RPC takes
about 302 (resp. 547) cycles; with two cores on the same
processor but on different dies, each RPC takes about 412
(resp. 525) cycles, and with two cores on different proces-
sors, each RPC takes about 968 (resp. 1190) cycles.

3.1.3. Cost comparison

Now that we have latencies for all cache levels and an
estimate of the cost of RPCs between cores, we can es-
timate, in a restricted case (i.e. one client only), when
our approach (Solution (b)) is faster than the traditional
approach (Solution (a)).

− When the client and the server are on the same die,
the minimum cost of a transfer of control is about 300
cycles, and the cost of transferring a variable from one
core to another is between 15 and 20 cycles. With
20 more cache lines used by shared variables than
cache lines used by context variables, Equation (A)
is verified.

− When the client on the server are on the same core,
but on a different die, the cost of a transfer of control

Figure 10: Number of elapsed cycles per RPC on bossa,
depending on the number of clients and the Core n on
which the server thread is pinned. The clients are pinned
to Cores n+1 mod 8 to n+c mod 8 where c is the number
of clients.

is about 500 cycles, and the cost of transferring a
variable from one core to another is about 75 cycles.
With 7 more cache lines used by shared variables than
cache lines used by context variables, Equation (A)
is verified.

− When the client and the server are on different pro-
cessors, the cost of a transfer of control is about 1000
cycles, and the cost of transferring a variable from one
core to another is between 125 and 150 cycles. With 8
more cache lines used by shared variables than cache
lines used by context variables, Equation (A) is be
verified.

These initial results show that Equation (A) can be ver-
ified for a relatively low number of cache lines (8 to 20).
Of course, the considerations from this subsection are not
based on a microbenchmark that emulates an environment
with multiple clients and with actual context and shared
variables. Instead, since only one client was used, the
transfers of the cache lines containing synchronization vari-
ables were limited and contention was inexistent. These
first results are therefore very optimistic. Finding more
accurate results with a more realistic microbenchmark is
the object of the next sections.

3.2. NULL RPCs with multiple clients

The second phase of our work was to improve the initial
null_rpc.c benchmark to use several clients (one client
par core) in order to better simulate Solution (b). We
wrote a first prototype whose critical sections are shown
in Figure 9. The prototype uses c+1 synchronization vari-
ables where c is the total number of clients. Each client
has a local_sv synchronization variable, and the server
has its own synchronization variable, named global_sv.
We do not use regular, blocking locks to avoid slow re-
action times caused by context switches. Instead, we use
a Compare-And-Swap (CAS)10 primitive to optimize re-

10The compare-and-swap primitive executes the comparison
and the ‘swapping’ of a variable atomically: first it compares
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Results with the server on Core 1

Results with the server on Core 2

Results with the server on Core 5

Figure 11: Sampled executions on bossa (100000 RPCs
per client, 100 RPCs per sample).

sponse times. The general idea is that each client tries
to set the global_sv synchronization variable to the ad-

the value of a variable with a given value, and if they are
equal, the variable is set to another value given as a parameter.
The compare-and-swap primitive returns a boolean to indicate
whether the swapping happened.

Figure 12: Sampled executions on Core 1 using a Test-
And-Test-And-Set loop, on bossa.

dress of its local local_sv variable using a CAS primitive
in a busy-wait loop. When a client manages this opera-
tion, this means it managed to get the server to service
its RPC. Since the server has the address of local_sv
variable from the client whose RPC is being serviced, it
can set it to 1 to indicate when it is done servicing the
RPC. Since, we are only implementing null RPCs, the ac-
tual bodies of the RPCs on the server side is empty. The
aim of the benchmark is to measure the elapsed time per
RPCs, in number of cycles. Since we want all clients to ex-
ecute their RPCs simultaneously, we use a synchronization
barrier before entering the critical sections. The results of
this first prototype on bossa are shown in Figure 10.

As shown in Figure 10, only a subset of all possible
configurations were tested. First, we tried to use 1 to 7
clients with the server thread pinned to the first core of
each processor and each client pinned to Cores n+1 mod 8
to n + c mod 8, where n is the core number of the server
thread and c the number of clients. Then, for 7 clients,
we ran our benchmark with the server on each of the 8
cores. Unsurprisingly, increasing the number of clients in-
creases the latency, because of contention over the cache
lines. More interestingly, the experiments give much bet-
ter results when the server is located on the first processor.
This clearly shows that the bus between the two processors
is not symmetric.

Sampling

Even though we obtained coherent results with our first
prototype, those are not very accurate because we noticed
that small changes in the initialization code for the client
and server threads caused the results to vary. For instance,
adding a simple i++ instruction before the synchroniza-
tion barrier could, in some cases, add up to 500 cycles to
the results with 7 clients (while preserving the same gen-
eral tendency, i.e. that RPCs take less time to execute if
the server is located on the first processor). To deal with
this issue, we tried various approaches; in particular, we
tried to service a single RPC par client and to save the
order in which the clients were serviced, in order to under-
stand whether the variance in execution times was corre-
lated with this order. This solution proved unsuccessful.

14



Master SAR/M2 - Internship at LIP6/Regal Internship Report

1 while (CAS(global_sv,
2 0,
3 &local_sv) == 0)
4 pause;

TAS loop

1 for (;;)
2 {
3 if (global_sv == 0)
4 {
5 if (CAS(global_sv,
6 0,
7 &local_sv) == 0)
8 continue;
9

10 else break;
11 }
12

13 pause;
14 }

TATAS loop

Figure 13: TAS and TATAS loops from the benchmark
prototype.

In order to better understand what was really happening
during the experiment, we decided we needed to find a
way to plot temporary results about the experiment in a
temporal fashion. This lead us to divide the execution in
samples.

Sampling the execution of the benchmark was a very
simple idea that allowed us to better understand what hap-
pened at a lower level. The idea was to stop the execution
of RPCs for a very short while every x RPCs to store data
about the experiment. We chose to record (1) the number
of cycles per RPC in each sample and (2) the core of the
last client serviced in each sample. An example of result
of such an execution is shown in Figure 11 (100,000 RPCs
per client, 100 RPCs per sample).

Figure 11 shows that bossa’s hardware does not ensure
fairness, which is an issue we did not think of at first.
On this figure, the red points show the average through-
put during the previous sample (i.e. (1) from the previous
paragraph) and the green points show the core of the last
client serviced in each sample (i.e. (2) from the previ-
ous paragraph). The execution is split in phases, during
which only some clients have their requests serviced by the
server. Switches between phases happen when some of the
clients are done executing their RPCs. For instance, let
us consider the first graph in Figure 11. In this figure, the
server is pinned to the first core of the first processor. The
two clients located on the second die of this same proces-
sor are mainly serviced first, even if a few other clients get
serviced occasionally11. This is Phase 1. When these two
clients are done with their RPCs (both are done almost

11We only monitor the core of the last client in the sample
in order to prevent the measurements from altering the result.
In practice, that means that we only check which client gets
serviced once in a while. This still shows a valid tendency re-
garding which cores get serviced, because the results clearly
show that the execution works by phases during which only a
subset of cores are serviced.

Figure 14: Average throughput as a function of the delay,
using either a TAS or a TATAS loop, on bossa (7 clients).

silmutaneously, which shows their RPCs were serviced at
a similar rate) we enter Phase 2: all other clients get ser-
viced, although the client from the second core (same die
as the server) gets serviced faster than the others. Finally,
when this client is done, the 4 clients from the remote pro-
cessor are serviced at about the same rate. This is Phase
3. The value and variance of the elapsed time per RPC is
characteristic of each phase: in the first phase, RPCs are
serviced in about 2700 cycles, with a deviation of about
500 cycles. Then in Phase 2, RPCs are serviced faster
: about 1200 cycles on average, with a greater variation,
which is probably due to the fact that RPCs from clients
located on the local processor are executed much faster
than RPCs from clients on the remote processor. Finally,
in phase 3, RPCs take more time to execute than in Phase
2 (because they all come from remote clients) but faster
than in Phase 1 (because less clients try to execute RPCs).
The deviation is very low because all RPCs come from the
distant processor (same latency). The two other graphs
from Figure 11 show executions from Core 2 (Processor
1, Die 1) and Core 5 (Processor 2, Die 1). The general
tendency seems to be that the two cores from the remote
die on the local processor (relative to the server core) are
serviced first, then the core from the local die is serviced
simultaneously (albeit faster) than the cores. Some sub-
phases might appear when some cores serviced at a similar
rate do not finish their execution at the exact same time.

Test-And-Test-And-Set (TATAS)

These experiments showed us that our first measurements
were performed in a degenerate case in which fairness was
not preserved. In order to solve this issue, our first ap-
proach was to use a Test-And-Test-And-Set (TATAS) loop
instead of the Test-And-Set (TAS) loop we used until then
(implemented with a Compare-And-Swap). In Figure 9,
what we refer to a TAS loop is the loop from lines 7 to
10. Figure 13 shows the difference between a TAS loop
and a TATAS loop. When using a TAS loop, all clients
repeatedly try to set the value of the global_sv global
variable to the address of the local_sv local variable in
order to start a RPC. When using a TATAS loop, clients
first check the value of the global_sv variables, and only
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Delay = 1000 cycles (contended case)

Delay = 6100 cycles (maximum throughput)

Delay = 10000 cycles (high delay)

Figure 15: Sampled results for three different values of the
waiting delay, using a TAS loop, on bossa. With a low
delay, fairness is not ensured, which hints that there is
a high level of contention. Increasing the delay improves
fairness, until the benchmark is fully fair for the delay for
which the throughput reaches its maximum (6100 cycles in
our case, cf. Figure 14). Increasing the delay any further
only lowers the throughput.

Figure 16: Number of lock acquisitions per second as a
function of the delay, on bossa (7 clients).

try a CAS if this initial comparison hinted that the CAS
would be successful. Using a TATAS is sometimes pre-
ferred to using a TAS, because it limits the number of
CAS. A TATAS loops uses more comparisons, but com-
parisons are less costly than CASes, because they don’t
require to acquire writing rights to cache lines. However,
since there is no way to ensure that the value of the syn-
chronization variable will change between the comparison
and the CAS, the actual results of using a TATAS loop
are hard to predict, and depend largely on the underlying
hardware.

Figure 12 shows the result of a sampled execution of
our prototype modified to use a TATAS loop instead of
a TAS loop. This technique greatly improves equity: all
cores are able to acquire the RPC lock, even though local
cores are privileged. However, the performance is worse,
probably because cache lines are more contended with a
TATAS loop.

Delays

Another approach we tried to limit contention over cache
lines was to add a busy-wait loop after each RPC request
on the client side in order to limit the contention on the
cache lines. We performed experiments to find the optimal
delay. The results are shown on Figure 14 (red/orange
curve). There is a clear optimum, in both TAS and TATAS
configurations, at 3000 and 1300 cycles respectively. With
no delay or a small delay, the throughput is slow, and the
variance is strong. It is also highly dependent on the initial
conditions, which explains the issues we had with our first
prototype.

Figure 15 shows sampled results of the execution of our
prototype with a waiting delay of 1000, 6100 and 10000 cy-
cles between each RPC request, using a TAS loop. With
1000 cycles, the experience is more fair to the clients than
with no delay (cf. Figure 11, first graph): indeed, all
clients get served from the first phase, albeit at varying
rates (not all clients terminate at the same time). Increas-
ing the delay improves fairness, until we reach the max-
imum throughput of 6100 cycles (cf. Figure 14). With
6100 cycles, the experience is perfectly fair to clients (the
whole experiment is a single phase), and the throughput
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Maximum throughput Corresponding delays

Figure 17: Maximum throughput and associated delays as a function of the number of context and shared variables, using
RPCs (i.e. our implementation of Solution (b)) on bossa.

Maximum throughput Corresponding delays

Figure 18: Maximum throughput and associated delays as a function of the number of context and shared variables, using
locks (i.e. our implementation of Solution (a)) on bossa.

is maximal. When we increase the delay past this limit,
fairness cannot be improved anymore and the throughput
decreases. Our experiments show that the same obser-
vation can be made for the TATAS case: the maximum
throughput corresponds to the minimal delay for which all
clients are serviced fairly.

Waiting for a given delay on the client side is therefore
a good way to ensure that our measurements are not lim-
ited by contention, and the maximum throughput of an
experiment is a key value that characterizes the maximum
number of RPCs per second that can be obtained in a
given experimental case. This is a crucial point that will
be used in later benchmarks (cf. section 3.4) to compare
the results of such experiments.

3.3. Final benchmark

The final benchmark, whose code is presented in the ap-
pendix benchmark.c, implements two additional func-
tionalities. It makes it possible (1) to execute critical sec-
tions on the clients based on lock acquisitions (this corre-

sponds to Solution (a)) and (2) to access/modify context
and shared variables from within the critical sections. This
is the object of the two next subsections.

3.3.1. Executing critical sections locally

Up to now, we focused on the development of a benchmark
that modelized our solution, i.e. “Solution (b)”. In order
to compare Solution (a) and Solution (b), we needed to
modelize Solution (a), i.e. the execution of critical sections
on the clients themselves. We implemented this solution
using a global lock that all clients try to acquire in order
to execute their critical sections. After the execution of a
critical section, the lock is released. The pseudo-code of
the critical section for Solution (a) is shown in Figure 20.

Figure 16 shows the throughput of this solution with
both a TAS and a TATAS loop. Once again, the TAS
solution is more efficient than the TATAS solution. We
obtain a maximum throughput of about 1.2e+07 critical
sections per second as compared to 2.7+e06 critical sec-
tions per second when we used RPCs (cf. Figure 14). As
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3D view (X, Y) view

Figure 19: Maximum throughputs of our modelization of Solution (a) substracted from the maximum throughputs obtained
for Solution (b), on bossa.

1 for (i = 0; i < number_of_rpcs; i++)
2 {
3 *local_sv = 0;
4

5 while (CAS(global_sv,
6 0,
7 1) == 0)
8 pause;
9

10 /* Protected code */
11

12 global_sv = 1
13 }

Figure 20: Critical section for Solution (a).

explained before, we plan to compensate for this overhead
with the potential performance improvement caused by
the increase in locality when all critical sections are exe-
cuted on a dedicated core. This is the object of the next
subsection.

3.3.2. Context and shared variables

The last phase of the development of our benchmark was to
add accesses to context and shared variables in and around
the critical sections. We do not count the number of vari-
ables we access directly, since results could vary depending
on where the variables are located in memory. Since the
unit of data transfer between caches is the cache line, we
allocate memory areas aligned with cache lines and access
variables located every two cache lines (we skip one cache
line between each variable to avoid issues with prefetch-
ing, as with null_rpc.c). One memory area per client is
allocated for the context variables, and a global memory
area is allocated for shared variables. Each memory access
is a read/write access (++ operator from C). Here is the
algorithm we chose for data accesses:

− Shared variables are accessed (i.e. incremented in a
loop) once in each critical section, i.e. on the client
side with our modelization of Solution (a) and on the
server side with our modelization of Solution (b).

− Context variables are accessed once outside each crit-
ical section, and once in each critical section. We
have to access the variables outside the critical sec-
tions to repatriate them from the cache hierarchy of
the server to the cache hierarchy of the client before
each critical section. This properly modelizes the be-
haviour context variables being accessed from whithin
the critical section, and afterwards. This is different
from the modelization that we used in Section 3.1 in
which we considered context variables were ignored
after having been used in a critical section. By con-
sidering that all context variables are always accessed
after the critical sections, we modelized a worst case
scenario, in which it is harder to compensate for the
cost of the transfer of control and the transfer of con-
text variables with the increased locality of shared
variables.

Figure 17 shows the results of our benchmark for Solu-
tion (b). The first graph (labelled ‘Maximum throughput’)
shows the value of the peak throughput for a given num-
ber of cache lines used by context and shared variables.
The peak throughput is found as in the previous sections
(cf. Figures 14 and 16), i.e. by finding the delay value for
which the throughput is maximal. The graph shows that
adding shared variables only has a slight impact on the
throughput, which is what we expected: since all shared
variables are in the local cache of the dedicated core, the
overhead caused by shared variables is limited, thanks to
the improved data locality. On the other hand, however,
adding context variables is costly, because we have to fetch
them from the client cores.

The second graph of Figure 17 show the corresponding
delays we needed to reach the peak throughput. This is of
no direct relevance on our final result, but allows us to bet-
ter understand the inner workings of our benchmark and
the validity of choosing a waiting delay as a way to avoid
contention. The graph shows that the longer the experi-
ment, the longer the delay needs to be. This is due to the
fact that in a perfect scenario, all clients wait for the aver-
age time needed for the execution of a RPC: in this case,
at the end of each RPC, a new unique client requests the
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Figure 21: Throughput for Solutions (a) and (b) as a func-
tion of the delay, on amd48.

RPC, and there is no contention over the synchronization
variables.

Similarly to Figure 17, Figure 18 shows the results of
our benchmark for Solution (a). The peak throughput at
(0,0) is much higher (10.0e+06 vs 3.1e+06), since in this
case we do not migrate critical sections. The situation is
the opposite with this solution compared to Solution (b):
indeed, this time, adding context variable only induces lim-
ited overhead whereas the use of shared variables is pro-
hibitive. This is of course the results we expected since
the reason why we were not satisfied with Solution (a) was
that the use of shared variable was too costly. The second
graph of Figure 18 shows the delays corresponding to the
maximum throughput and, unsurprisingly, they get higher
when the critical sections get more costly.

In order to compare the two solutions, we substract the
first curve from Figure 18 from the first curve from Fig-
ure 17. If the result is positive, this means that Solution
(b) is more efficient than Solution (a). The result is shown
on Figure 19 (using two different view). Our approach
(Solution (b)) is more efficient than Solution (a) in the
yellow/orange positive area.

This final result shows that, on bossa, with 7 clients on 8
cores, our approach (Solution (b)) is not profitable if less
than 15 cache lines are shared. More precisely, it seems
that Solution (b) is more efficient than Solution (a) when:

nshared > 2ncontext + 15

Where nshared is the number of shared variables and
ncontext is the number of context variables. This result
is of course dependent on the hardware chosen and our
experiment, but it gives us a general idea as to how efficient
our approach can be.

3.4. Future experiments

The next phase will be to reproduce our experiments on
amd48, in order to ensure that the results we obtain on a
different architecture are similar. Moreover, since amd48
uses a large number of cores, it is a better example of a tar-
get architecture for our solution. Some experiments have
already been reproduced: Figure 21 shows the through-
put as a function of the delay for both Solution (a) and

Solution (b) on amd48. For this experiment, we used the
same settings as we did for bossa in figures 14 and 16,
except there are now 47 threads instead of 7 (one per
core, excluding the server). The variance is higher than
in our experiments with bossa, probably due to the in-
creased complexity of the hardware. Due to the increase
in contention, the throughput is much lower (less than
1e+06 as compared to more than 1.2e+07 with Solution
(b) on bossa). However, on both bossa and amd48, the
ratio between the peak throughputs for Solution (a) and
Solution (b) is still around 1/2, which tends to show that,
even with the increased contention issues caused by a large
number of cores, we are confident that the results of our
benchmarks will be similar on amd48.

4. Conclusion

To ensure that our approach–outsourcing critical sections
to dedicated cores–is viable, more experiments will be
needed. First, we will have to reproduce our results on
amd48, which has a different hardware architecture and a
much higher number of cores. From the results on amd48
and bossa, we believe we will have a better idea of how
viable our approach can be on various hardware configu-
rations. Second, we will have to find a way to estimate
the average number of cache lines used by shared and con-
text variables in real-world Java programs. Finally, the
parameter space in which our approach is profitable is too
restricted, we will have to find automated ways to guess
whether migrating critical sections is profitable before ex-
ecuting them.

For now, we remain optimistic, since the experiments
we performed during this internship show that migrating
critical sections to dedicated cores can be profitable under
restricted conditions on the number of cache lines used by
shared and context variables: for at least 15 cache lines
used by context variables and a moderate number of con-
text variables, outsourcing critical sections to a dedicated
core is more efficient than executing them locally. These
results show the potential of this approach which we will
continue exploring in the context of a PhD thesis.
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Appendix: source code

null rpc.c

1 /* ########################################################################## */
2 /* null_rpc.c */
3 /* (C) Jean-Pierre Lozi, 2010 */
4 /* -------------------------------------------------------------------------- */
5 /* This program should be compiled with the -O0 compiler flag. */
6 /* ########################################################################## */
7 #define _GNU_SOURCE
8

9 #include <papi.h>
10 #include <pthread.h>
11 #include <stdio.h>
12 #include <stdlib.h>
13

14 #define PAUSE __asm__ __volatile__ ("rep; nop" : : );
15

16 #define PADDING 0
17 /* L2 cache lines are 32 bytes long, but they’re fetched two at a time. */
18 /*#define PADDING 64*/
19

20 #define NUMBER_OF_ITERATIONS 1000000
21

22 void *client_main(void *ptr);
23 void *server_main(void *ptr);
24

25 int client_core, server_core, papi_cache_miss_level;
26

27 /* This structure contains the booleans we use as flags to signal events. */
28 struct flags {
29 volatile unsigned char rpc_requested;
30 volatile unsigned char padding[PADDING];
31 volatile unsigned char done_with_rpc;
32 } flags;
33

34

35 int main(int argc, char **argv)
36 {
37 if (argc != 4)
38 {
39 client_core = 0;
40 server_core = 1;
41 papi_cache_miss_level = 1;
42

43 fprintf(stderr,
44 "Usage : %s client_core server_core papi_cache_miss_level\n",
45 argv[0]);
46 fprintf(stderr,
47 "Default values used (0, 1, 1)\n");
48 }
49 else
50 {
51 client_core = atoi(argv[1]);
52 server_core = atoi(argv[2]);
53 papi_cache_miss_level = atoi(argv[3]);
54

55 if (papi_cache_miss_level < 1 || papi_cache_miss_level > 2) {
56 fprintf(stderr,
57 "Usage : %s client_core server_core "
58 "papi_cache_miss_level\n",
59 argv[0]);
60 fprintf(stderr,
61 "papi_cache_miss_level is invalid. Exiting.\n");
62 exit(EXIT_FAILURE);
63 }
64 }
65

66 /* We use both a client and a server. The client calls remote procedures
67 from the server. */
68 pthread_t client, server;
69

70 flags.rpc_requested = 0;
71 flags.done_with_rpc = 0;
72

73 /* We create both threads. */
74 if (pthread_create(&client, NULL, client_main, NULL) < 0)
75 perror("pthread_create");
76

77 if (pthread_create(&server, NULL, server_main, NULL) < 0)
78 perror("pthread_create");
79

80 /* We wait for both threads to finish their work. */
81 if (pthread_join(client, NULL) < 0)
82 perror("pthread_join");
83

84 if (pthread_join(server, NULL) < 0)
85 perror("pthread_join");
86

87 /* Everything went as expected. */
88 return EXIT_SUCCESS;
89 }
90

91 void *client_main(void *ptr)
92 {
93 unsigned int j;
94 int i;
95 long long start_cycles, end_cycles;
96 cpu_set_t cpuset;
97

98 int event_set = PAPI_NULL;
99 int events[1];
100 long long values[1];

101

102 /* We want to pin this thread to the right core. */
103 CPU_ZERO(&cpuset);
104 CPU_SET(client_core, &cpuset);
105 /* We wish to avoid the server’s core. */
106 CPU_CLR(server_core, &cpuset);
107

108 /* We set the thread’s affinity. */
109 if (pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset) < 0)
110 perror("pthread_setaffinity_np");
111

112 /* We monitor either L1 data cache misses or L2 data cache misses. */
113 if (papi_cache_miss_level == 1)
114 events[0] = PAPI_L1_STM;
115 else
116 events[0] = PAPI_L2_STM;
117

118 /* We print miscellaneous informations about our computation. */
119 printf("Client here. I’m running on core %d.\n", sched_getcpu());
120 printf("Addresses : %x %x.\n", &flags.rpc_requested, &flags.done_with_rpc);
121 printf("Starting %d RPCs.\n", NUMBER_OF_ITERATIONS);
122

123 /* We initialize PAPI. */
124 if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT)
125 perror("PAPI_library_init");
126

127 if (PAPI_thread_init(pthread_self) != PAPI_OK)
128 perror("PAPI_thread_init");
129

130 /* We execute the first RPC separately, because it can be longer than others
131 if the server isn’t initialized yet.*/
132 flags.rpc_requested = 1;
133

134 while (!flags.done_with_rpc)
135 PAUSE;
136

137 flags.done_with_rpc = 0;
138

139 /* We initialize PAPI and start recording events. */
140 if (PAPI_create_eventset(&event_set) != PAPI_OK)
141 perror("PAPI_create_eventset");
142

143 if (PAPI_add_events(event_set, events, 1) != PAPI_OK)
144 perror("PAPI_add_events");
145

146 if (PAPI_start(event_set) != PAPI_OK)
147 perror("PAPI_start");
148

149 /* We start counting cycles. */
150 start_cycles = PAPI_get_real_cyc();
151

152 /* We execute the right number of RPCs. */
153 for (i = 0 ; i < NUMBER_OF_ITERATIONS ; i++)
154 {
155 flags.rpc_requested = 1;
156

157 while (!flags.done_with_rpc)
158 PAUSE;
159

160 flags.done_with_rpc = 0;
161

162 /*
163 In order to measure events in a limited part of the loop, these two ’if’
164 statements can be used around the instructions we wish to monitor.
165

166 if (PAPI_reset(event_set) != PAPI_OK)
167 perror("PAPI_reset");
168

169 if (PAPI_accum(event_set, values) != PAPI_OK)
170 perror("PAPI_accum");
171 */
172 }
173

174 /* We stop the measurements. */
175 end_cycles = PAPI_get_real_cyc();
176

177 /* We read the counters. */
178 if (PAPI_read(event_set, values) != PAPI_OK)
179 perror("PAPI_read");
180

181 printf("L%d cache misses : %lld\n", papi_cache_miss_level, values[0]);
182

183 /* We print the result. */
184 printf("Client : done. %lu cycles per null rpc. (total : %lld) %d\n",
185 (end_cycles - start_cycles) / (long long)NUMBER_OF_ITERATIONS,
186 end_cycles - start_cycles, j);
187

188 /* We kill the server. */
189 exit(EXIT_SUCCESS);
190

191 return NULL;
192 }
193

194 void *server_main(void *ptr)
195 {
196 unsigned int j;
197

198 cpu_set_t cpuset;
199

200 /* We want to pin this thread to the right core. */
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201 CPU_ZERO(&cpuset);
202 CPU_SET(server_core, &cpuset);
203 /* We avoid the client’s core. */
204 CPU_CLR(client_core, &cpuset);
205

206 /* We set the thread’s affinity. */
207 if (pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset) < 0)
208 perror("pthread_setaffinity_np");
209

210 /* We print miscellaneous informations about our computation. */
211 printf("Server here. I’m running on core %d.\n", sched_getcpu());
212

213 /* We start answering RPCs. */
214 for (;;)
215 {
216 while (!flags.rpc_requested)
217 PAUSE;
218

219 flags.rpc_requested = 0;
220 flags.done_with_rpc = 1;
221 }
222

223 return NULL;
224 }
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benchmark.c

1 /* ########################################################################## */
2 /* benchmark.c */
3 /* (C) Jean-Pierre Lozi, 2010 */
4 /* -------------------------------------------------------------------------- */
5 /* This program should be compiled with the -O0 compiler flag. */
6 /* ########################################################################## */
7 #define _GNU_SOURCE
8

9

10 /* ########################################################################## */
11 /* Headers */
12 /* ########################################################################## */
13 #include <math.h>
14 #include <papi.h>
15 #include <pthread.h>
16 #include <stdint.h>
17 #include <stdio.h>
18 #include <stdlib.h>
19 #include <unistd.h>
20

21 #include <sys/resource.h>
22 #include <sys/time.h>
23

24

25 /* ########################################################################## */
26 /* Definitions */
27 /* ########################################################################## */
28 /*
29 Use blocking locks?
30

31 This parameter is experimental. When it’s on, the benchmark uses blocking
32 locks but only certain configurations are supported (no sampling, for
33 instance). This mode cannot be accessed through command-line parameters
34 because it is more of an experiment than anything else.
35 */
36 /* #define USE_BLOCKING_LOCKS */
37

38 /* Default values for the command-line arguments. */
39 #define DEFAULT_NUMBER_OF_RUNS 1
40 #define DEFAULT_NUMBER_OF_ITERATIONS_PER_SAMPLE 10
41 #define DEFAULT_SERVER_CORE 0
42 #define DEFAULT_NUMBER_OF_ITERATIONS_PER_CLIENT 1000
43 #define DEFAULT_NUMBER_OF_CONTEXT_VARIABLES 0
44 #define DEFAULT_NUMBER_OF_SHARED_VARIABLES 0
45

46 /* Maximum number of cores, used to avoid malloc/realloc cycles. */
47 #define MAX_NUMBER_OF_CORES 1024
48

49 /* Maximum line size used when reading results from unix commands. */
50 #define MAX_LINE_SIZE 32
51

52 /* PAUSE instructions for spinlocks */
53 #define PAUSE __asm__ __volatile__ ("rep; nop" : : );
54

55 /* This macro performs the conversion between cycles and throughput. */
56 #define TO_THROUGHPUT(x) (cpu_frequency * 1000000 / (x))
57

58

59 /* ########################################################################## */
60 /* Global variables */
61 /* -------------------------------------------------------------------------- */
62 /* FIXME: some volatile keywords may not be necessary. We declare all global */
63 /* variables as volatile for now. */
64 /* ########################################################################## */
65 /* Environment data ========================================================= */
66 /* Number of cores */
67 volatile int number_of_cores;
68 /* CPU frequency, in MHz */
69 volatile float cpu_frequency;
70 /* This array maps physical to virtual core IDs. */
71 volatile int *physical_to_virtual_core_id;
72

73 /* Execution parameters ===================================================== */
74 /*
75 Critical sections
76 */
77 /* Critical sections can either be null RPCs (serviced by a single server) or
78 lock acquisitions. */
79 typedef enum _critical_sections_type {
80 NULL_RPCS,
81 LOCK_ACQUISITIONS
82 } critical_sections_type_t;
83 volatile critical_sections_type_t critical_sections_type;
84

85 /*
86 Execution mode
87 */
88 /* Three execution modes are available :
89 - MULTIPLE_RUNS_AVERAGED means that the test is run multiple times and the
90 averaged results are returned (along with the variance and standard
91 deviation).
92 - SINGLE_RUN_SAMPLED means that the test is only run once, and statistics
93 are gathered all along the execution.
94 - SINGLE_RUN_ORDERED means that the test is only run once and that the order
95 in which clients managed to execute their critical section is returned.
96 */
97 typedef enum _execution_mode_t {
98 MULTIPLE_RUNS_AVERAGED,
99 SINGLE_RUN_SAMPLED,
100 SINGLE_RUN_ORDERED
101 } execution_mode_t;
102 volatile execution_mode_t execution_mode;
103 /* Number of runs over which the results are averaged (used in the
104 MULTIPLE_RUNS_AVERAGED mode only). */
105 volatile int number_of_runs;
106 /* Number of iterations per sample (used in the SINGLE_RUN_SAMPLED only). */
107 volatile int number_of_iterations_per_sample;
108

109 /*
110 Execution settings
111 */

112 /* Core on which the server runs */
113 volatile int server_core;
114 /* Number of clients */
115 volatile int number_of_clients;
116 /* Number of iterations per client */
117 volatile int number_of_iterations_per_client;
118 /* Delay between RPCs, in cycles. */
119 volatile int delay;
120 /* ROW mode activated? */
121 volatile int read_only_wait;
122 /* Number of context variables */
123 volatile int number_of_context_variables;
124 /* Number of shared variables */
125 volatile int number_of_shared_variables;
126

127 /*
128 Measurements
129 */
130 /* Should we count cycles or events? */
131 typedef enum _measurement_type {
132 NUMBER_OF_CYCLES,
133 NUMBER_OF_EVENTS
134 } measurement_type_t;
135 volatile measurement_type_t measurement_type;
136 /* ID of the monitored PAPI event if measurement_type = NUMBER_OF_EVENTS */
137 volatile int monitored_event_id;
138 /* Should we perform the measurements on the server or the clients? */
139 typedef enum _measurement_location {
140 SERVER,
141 CLIENTS
142 } measurement_location_t;
143 volatile measurement_location_t measurement_location;
144 /* Should we return the result in throughput or cycles? */
145 typedef enum _measurement_unit {
146 THROUGHPUT,
147 CYCLES_PER_ITERATION,
148 TOTAL_CYCLES_MAX
149 } measurement_unit_t;
150 volatile measurement_unit_t measurement_unit;
151

152 /* Execution variables ====================================================== */
153 /* Adresses of the rpc_done addresses for each thread */
154 volatile void ** volatile rpc_done_addresses;
155 /* Synchronization variables for the barrier between the server and the
156 clients, before the main loop */
157 volatile int * volatile ready;
158

159 /* Data specific to the MULTIPLE_RUNS_AVERAGED mode */
160 /* Results (cycles or number of events) for each iteration */
161 volatile double * volatile iteration_result;
162

163 /* Data specific to the SINGLE_RUN_SAMPLED mode */
164 /* Number of iterations per sample */
165 volatile float * volatile multiple_samples_results;
166 /* Address of the rpc_done variable from the core whose RPC was serviced last.
167 Translated into the core ID at the end of the computation. */
168 volatile void ** volatile multiple_samples_rpc_done_addrs;
169

170 /* Data specific to the SINGLE_RUN_ORDERED mode */
171 /* Order in which the RPCs are processed */
172 volatile int * volatile order;
173

174 /* Global crical section variables ========================================== */
175 /* This structure models a cache line. It should be allocated on a 64-byte
176 boundary. */
177 typedef char cache_line_t[64];
178

179 /*
180 This structure models the data passed to threads upon their creation.
181 Variables for both the ’NULL RPCs’ and ’lock acquisitions’ modes are passed
182 in order to simplify the code.
183 */
184 typedef struct _thread_arguments_block_t {
185 /* Logical thread id (local, not provided by pthreads). */
186 int id;
187

188 /* ’NULL RPCs’ mode synchronization variables =========================== */
189 /*
190 Global synchronization variable used to limit the number of NULL RPCs
191 serviced concurrently to 1. Its value can either be:
192 - 0 if no RPC is requested.
193 - The address to a client-bound variable that shall be set to 1 upon
194 completion of the RPC otherwise.
195 */
196 volatile uint64_t *volatile *null_rpc_global_sv;
197 /*
198 Local synchronization variable set to a >= 0 value by the server to
199 signal the completion of a RPC.
200 */
201 volatile uint64_t *null_rpc_local_sv;
202

203 /* ’Lock acquisitions’ mode synchronization variables =================== */
204 /*
205 Global lock repeatedly acquired by all clients.
206 */
207 volatile uint64_t *lock_acquisitions_global_sv;
208

209 volatile uint64_t *context_variables_global_memory_area;
210 volatile uint64_t *shared_variables_memory_area;
211 } thread_arguments_block_t;
212

213 /* Mutexes and conditions used by non-blocking locks ======================== */
214 #ifdef USE_BLOCKING_LOCKS
215 pthread_mutex_t mutex_rpc_done_addr_not_null;
216 pthread_cond_t cond_rpc_done_addr_not_null;
217 pthread_mutex_t mutex_rpc_done_positive;
218 pthread_cond_t cond_rpc_done_positive;
219 pthread_mutex_t mutex_rpc_done_addr_null;
220 pthread_cond_t cond_rpc_done_addr_null;
221 #endif
222
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223

224 /* ########################################################################## */
225 /* Prototypes */
226 /* ########################################################################## */
227 void *client_main(void *thread_arguments_block);
228 void *server_main(void *thread_arguments_block);
229

230 void *alloc(int size);
231 void get_cpu_info();
232

233 void error(char *reason);
234 void wrong_parameters_error(char *application_name);
235

236 /* ########################################################################## */
237 /* Functions */
238 /* ########################################################################## */
239 /* Main function */
240 int main(int argc, char **argv)
241 {
242 int i, j;
243 int command;
244 int result;
245 double *results;
246 double *average, *variance;
247 int end_output_with_a_newline = 1;
248 int compute_standard_deviation_and_variance = 0;
249 int number_of_samples = 0;
250

251 /* We use both a server and number_of_clients clients. The clients call
252 remote procedures from the server. */
253 pthread_t server;
254 pthread_t *clients;
255

256 /* This array contains the argument blocks passed to the clients. */
257 thread_arguments_block_t *svs_memory_area,
258 *thread_argument_blocks,
259 *context_variables_global_memory_area,
260 *shared_variables_memory_area;
261

262 /* We get the clock speed and the core ordering. */
263 get_cpu_info();
264

265 /*
266 Command-line arguments
267

268 Critical sections
269 =================
270

271 -R
272 Perform null RPCs. This is the default behavior.
273

274 -L
275 Perform lock acquisitions instead of null RPCs. In this mode, there is
276 no server.
277

278 If both -R and -L are specified, the last one wins.
279

280 Execution mode
281 ==============
282

283 -A number_of_runs
284 Return the average number of cycles, with variance and standard
285 deviation, over the given number of runs. This is the default mode.
286

287 -S number_of_iterations_per_sample
288 Return sampled results over a single run, using the given number of
289 iterations per sample.
290

291 -O
292 In this mode, each client enters its critical section only once, and the
293 order in which the clients were serviced is returned. Only one run is
294 performed and the results are not averaged.
295

296 If several execution modes are specified, the last one wins.
297

298 Execution settings
299 ==================
300

301 -s core
302 Core on which the server thread runs if the critical section consists of
303 performing null RPCs, or core of the first client if the critical section
304 consists of lock acquisitions.
305

306 -c number_of_clients
307 Number of clients.
308

309 -n number_of_iterations_per_client
310 Number of RPCs/lock acquisitions per client.
311

312 -d delay
313 Number of cycles wasted (busy waiting) by clients after a RPC is
314 serviced. If 0, no cycles are wasted (apart from the execution time of a
315 comparison), otherwise the accuracy of the delay is within 50~150 cycles.
316

317 -r
318 Read-only wait mode : wait using comparisons, and only perform a CAS
319 after a successful comparison (test-and-test-and-set).
320

321 -C number_of_context_variables
322

323 Number of context (local) variables.
324

325 -S number_of_shared_variables
326

327 Number of shared (global) variables.
328

329 Measurements
330 ============
331

332 -e event_type
333 Count events of type event_type instead of cycles. Event_type is the type
334 of a PAPI event.
335

336 -m
337 Count cycles (or events) on the clients instead of the server. This is

338 always the case if -L is on.
339

340 -y
341 Returns results in cycles per iterations instead of the number of
342 iterations per second.
343

344 -t
345 Returns results in total cycles instead of the number of iterations per
346 second. Only the maximum value is returned.
347

348 Output
349 ==========
350

351 -v
352 Return the standard deviation and variance if applicable.
353

354 -i
355 End the results with a newline. This is left as an option, to allow for
356 more flexibility with the CSV results.
357 */
358

359 opterr = 0;
360

361 /* Default values */
362 critical_sections_type = NULL_RPCS;
363

364 execution_mode = MULTIPLE_RUNS_AVERAGED;
365 number_of_runs = DEFAULT_NUMBER_OF_RUNS;
366 number_of_iterations_per_sample = DEFAULT_NUMBER_OF_ITERATIONS_PER_SAMPLE;
367

368 server_core = DEFAULT_SERVER_CORE;
369 number_of_clients = - 1;
370 number_of_iterations_per_client = DEFAULT_NUMBER_OF_ITERATIONS_PER_CLIENT;
371 delay = 0;
372 read_only_wait = 0;
373

374 number_of_context_variables = DEFAULT_NUMBER_OF_CONTEXT_VARIABLES;
375 number_of_shared_variables = DEFAULT_NUMBER_OF_SHARED_VARIABLES;
376

377 measurement_type = NUMBER_OF_CYCLES;
378 measurement_location = SERVER;
379 measurement_unit = THROUGHPUT;
380

381 while ((command = getopt(argc, argv, "RLA:S:Os:c:n:d:rl:g:tTe:myvi")) != -1)
382 {
383 switch (command)
384 {
385 /*
386 Critical sections
387 */
388 case ’R’:
389 /* Actually useless (default value). */
390 critical_sections_type = NULL_RPCS;
391 break;
392 case ’L’ :
393 critical_sections_type = LOCK_ACQUISITIONS;
394 break;
395

396 /*
397 Execution mode
398 */
399 case ’A’:
400 execution_mode = MULTIPLE_RUNS_AVERAGED;
401 number_of_runs = atoi(optarg);
402 break;
403

404 case ’S’:
405 execution_mode = SINGLE_RUN_SAMPLED;
406 number_of_iterations_per_sample = atoi(optarg);
407 break;
408

409 case ’O’:
410 execution_mode = SINGLE_RUN_ORDERED;
411 break;
412

413 /*
414 Execution settings
415 */
416 case ’s’:
417 server_core = atoi(optarg);
418 break;
419

420 case ’c’:
421 number_of_clients = atoi(optarg);
422 break;
423

424 case ’n’:
425 number_of_iterations_per_client = atoi(optarg);
426 break;
427

428 case ’d’:
429 delay = atoi(optarg);
430 break;
431

432 case ’r’:
433 read_only_wait = 1;
434 break;
435

436 case ’l’:
437 number_of_context_variables = atoi(optarg);
438 break;
439

440 case ’g’:
441 number_of_shared_variables = atoi(optarg);
442 break;
443

444 /*
445 Measurements
446 */
447 case ’e’:
448 measurement_type = NUMBER_OF_EVENTS;
449 monitored_event_id = strtol(optarg, NULL, 16);
450 break;
451

452 case ’m’:
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453 measurement_location = CLIENTS;
454 break;
455

456 case ’y’:
457 measurement_unit = CYCLES_PER_ITERATION;
458 break;
459

460 case ’t’:
461 measurement_unit = TOTAL_CYCLES_MAX;
462 break;
463

464 /*
465 Output
466 */
467 case ’v’:
468 compute_standard_deviation_and_variance = 1;
469 break;
470

471 case ’i’:
472 end_output_with_a_newline = 0;
473 break;
474

475 /*
476 Other
477 */
478 case ’?’: wrong_parameters_error(argv[0]);
479 default : error("getopt");
480 }
481 }
482

483 /* Default values for the number of clients */
484 if (number_of_clients <= 0)
485 {
486 number_of_clients = number_of_cores;
487

488 if (critical_sections_type == NULL_RPCS)
489 {
490 number_of_clients--;
491 }
492 }
493

494 if (critical_sections_type == LOCK_ACQUISITIONS)
495 {
496 /* Lock acquisitions are only compatible with the MULTIPLE_RUNS_AVERAGED
497 execution mode. */
498 if (execution_mode != MULTIPLE_RUNS_AVERAGED)
499 error("configuration not supported");
500

501 /* In this mode, measurements take place on the clients. */
502 measurement_location = CLIENTS;
503 }
504

505 if (execution_mode == SINGLE_RUN_SAMPLED)
506 {
507 /* For now, the SINGLE_RUN_SAMPLED execution mode in incompatible with
508 blocking locks. */
509 #ifdef USE_BLOCKING_LOCKS
510 error("configuration not supported");
511 #endif
512

513 /* For now, in the SINGLE_RUN_SAMPLED mode, events can’t be monitored.
514 Also, all measurements must take place on the server. */
515 if (measurement_type != NUMBER_OF_CYCLES
516 && measurement_location != SERVER)
517 error("configuration not supported");
518

519 /* Single run */
520 number_of_runs = 1;
521

522 if (number_of_iterations_per_sample >
523 number_of_iterations_per_client * number_of_clients)
524 error("too many iterations per sample");
525 }
526

527 /* In the SINGLE_RUN_ORDERED execution mode... */
528 if (execution_mode == SINGLE_RUN_ORDERED)
529 {
530 /* ...there’s just one iteration per client... */
531 number_of_iterations_per_client = 1;
532

533 /* ...and a single run. */
534 number_of_runs = 1;
535 }
536

537 /* We need the maximum priority (for performance measurements). */
538 if (setpriority(PRIO_PROCESS, 0, -20) < 0)
539 error("setpriority");
540

541 /* ====================================================================== */
542 /* [v] Memory allocations */
543 /* ====================================================================== */
544 /* The following arrays’ sizes depend on the parameters, we need to allocate
545 them dynamically. */
546 clients = alloc(number_of_clients * sizeof(pthread_t));
547 thread_argument_blocks = alloc((number_of_clients + 1) *
548 sizeof(thread_arguments_block_t));
549 ready = alloc((number_of_clients + 1) * sizeof(int));
550 iteration_result = alloc((number_of_clients + 1) * sizeof(double));
551 results = alloc((number_of_clients + 1) *
552 (number_of_runs * sizeof(double)));
553 average = alloc((number_of_clients + 1) * sizeof(double));
554 variance = alloc((number_of_clients + 1) * sizeof(double));
555

556 /* If we need to return the number in which RPCs are serviced... */
557 if (execution_mode == SINGLE_RUN_ORDERED)
558 {
559 /* ...we allocate the ’order’ array dynamically. */
560 order = alloc(number_of_clients * sizeof(double));
561 }
562

563 /* We always allocate the sampling-related arrays. */
564 rpc_done_addresses = alloc((number_of_clients + 1) * sizeof(void *));
565

566 number_of_samples = number_of_iterations_per_client * number_of_clients
567 / number_of_iterations_per_sample;

568

569 multiple_samples_results = alloc(number_of_samples * sizeof(double));
570

571 multiple_samples_rpc_done_addrs =
572 alloc(number_of_samples * sizeof(void *));
573

574 /* Memory area containing the synchronization variables. Each synchronisa-
575 tion variable is allocated on its own pair of cache lines. */
576 result = posix_memalign((void **)&svs_memory_area,
577 128,
578 (number_of_clients + 1) * 2 * sizeof(cache_line_t));
579

580 if (result < 0 || svs_memory_area == NULL)
581 error("memalign");
582

583 result = posix_memalign((void **)&context_variables_global_memory_area,
584 128,
585 (number_of_clients + 1) *
586 (number_of_context_variables + 1) *
587 2 * sizeof(cache_line_t));
588

589 if (result < 0 || svs_memory_area == NULL)
590 error("memalign");
591

592 result = posix_memalign((void **)&shared_variables_memory_area,
593 128,
594 (number_of_shared_variables) *
595 2 * sizeof(cache_line_t));
596

597 if (result < 0 || svs_memory_area == NULL)
598 error("memalign");
599

600 /* ====================================================================== */
601 /* [^] Memory allocations */
602 /* ====================================================================== */
603

604 /* We initialize PAPI. */
605 if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT)
606 error("PAPI_library_init");
607

608 /* If we use blocking locks, then some mutexes and conditions should be
609 initialized. */
610 #ifdef USE_BLOCKING_LOCKS
611 pthread_mutex_init(&mutex_rpc_done_addr_not_null, NULL);
612 pthread_mutex_init(&mutex_rpc_done_positive, NULL);
613 pthread_mutex_init(&mutex_rpc_done_addr_null, NULL);
614

615 if (pthread_cond_init(&cond_rpc_done_addr_not_null, NULL) < 0
616 || pthread_cond_init(&cond_rpc_done_positive, NULL) < 0
617 || pthread_cond_init(&cond_rpc_done_addr_null, NULL) < 0)
618 error("pthread_cond_init");
619 #endif
620

621 /* We iterate to average the results. */
622 for (i = 0; i < number_of_runs; i++)
623 {
624 /* No rpc started for now. */
625 *((uint64_t **)svs_memory_area) = 0;
626

627 /* None of the clients are ready. */
628 for (j = 0; j <= number_of_clients; j++)
629 ready[j] = 0;
630

631 /* Initialisations related to sampling. */
632 if (execution_mode == SINGLE_RUN_SAMPLED)
633 {
634 for (j = 0; j <= number_of_samples; j++)
635 multiple_samples_results[j] = 0;
636

637 for (j = 0; j <= number_of_samples; j++)
638 multiple_samples_rpc_done_addrs[j] = 0;
639 }
640

641 /* If we perform null RPCs in the critical sections... */
642 if (critical_sections_type == NULL_RPCS)
643 {
644 thread_argument_blocks[0].id = 0;
645 thread_argument_blocks[0].null_rpc_global_sv =
646 (volatile uint64_t * volatile *)(&svs_memory_area[0]);
647 thread_argument_blocks[0].null_rpc_local_sv = NULL;
648

649 /* FIXME: global variable? */
650 thread_argument_blocks[0].context_variables_global_memory_area =
651 (volatile uint64_t *)(context_variables_global_memory_area);
652 thread_argument_blocks[0].shared_variables_memory_area =
653 (volatile uint64_t *)(shared_variables_memory_area);
654

655 /* ...we create a server thread. */
656 if (pthread_create(&server, NULL, server_main,
657 &thread_argument_blocks[0]) < 0)
658 error("pthread_create");
659 }
660

661 /* We create the client threads. */
662 for (j = 0; j < number_of_clients; j++)
663 {
664 thread_argument_blocks[j + 1].id = j;
665 thread_argument_blocks[j + 1].null_rpc_global_sv =
666 (volatile uint64_t * volatile *)(&svs_memory_area[0]);
667 thread_argument_blocks[j + 1].null_rpc_local_sv =
668 (volatile uint64_t *)
669 ((uint64_t)context_variables_global_memory_area +
670 j * (number_of_context_variables + 1) *
671 2 * sizeof(cache_line_t));
672

673 thread_argument_blocks[j + 1].lock_acquisitions_global_sv =
674 (volatile uint64_t *)(&svs_memory_area[0]);
675

676 thread_argument_blocks[j + 1].context_variables_global_memory_area =
677 (volatile uint64_t *)
678 ((uint64_t)context_variables_global_memory_area);
679 thread_argument_blocks[j + 1].shared_variables_memory_area =
680 (volatile uint64_t *)(shared_variables_memory_area);
681

682 /* We send i directly instead of sending a pointer to avoid having
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683 to create a variable per thread containing the value. */
684 if (pthread_create(&clients[j], NULL, client_main,
685 &thread_argument_blocks[j + 1]) < 0)
686 error("pthread_create");
687 }
688

689 /* If there is a server thread... */
690 if (critical_sections_type == NULL_RPCS)
691 {
692 /* ...we wait for it to finish its work. */
693 if (pthread_join(server, NULL) < 0)
694 error("pthread_join");
695 }
696

697 /* We wait for the clients to finish their work. */
698 for (j = 0; j < number_of_clients; j++)
699 {
700 if (pthread_join(clients[j], NULL) < 0)
701 error("pthread_join");
702 }
703

704 /* We save the results. */
705 for (j = 0 ; j <= number_of_clients; j++)
706 {
707 if (measurement_unit == THROUGHPUT)
708 iteration_result[j] = TO_THROUGHPUT(iteration_result[j]);
709

710 results[j * number_of_runs + i] = iteration_result[j];
711 }
712 }
713

714 /* In the ordered mode, we print the order in which the RPCs were
715 serviced. */
716 if (execution_mode == SINGLE_RUN_ORDERED)
717 {
718 for (i = 0; i < number_of_clients; i++)
719 {
720 j = 0;
721

722 while (order[j] != i)
723 j++;
724

725 printf("%d", j);
726 }
727

728 printf(",");
729 }
730

731 /* If sampling is on, we print the result of each sample followed by the ID
732 of the last core whose RPC has been serviced. */
733 if (execution_mode == SINGLE_RUN_SAMPLED)
734 {
735 for (i = 0; i < number_of_samples; i++)
736 {
737 for (j = 0; j < number_of_clients + 1; j++)
738 {
739 if (multiple_samples_rpc_done_addrs[i] == rpc_done_addresses[j])
740 break;
741 }
742

743 /* We convert the result to the right unit if needed. */
744 if (measurement_unit == THROUGHPUT)
745 multiple_samples_results[i] =
746 TO_THROUGHPUT(multiple_samples_results[i]);
747

748 /* We return the result. */
749 printf("%f,%d,\n", multiple_samples_results[i], j);
750 }
751 }
752

753 if (measurement_unit==TOTAL_CYCLES_MAX)
754 {
755

756 for (i = 0; i < number_of_runs; i++)
757 {
758 double max = 0;
759

760 for (j = 1; j <= number_of_clients; j++)
761 {
762 if (max < results[j * number_of_runs + i])
763 max = results[j * number_of_runs + i];
764 }
765

766 results[i] = TO_THROUGHPUT(max / (number_of_iterations_per_client *
767 number_of_clients));
768 }
769 }
770

771 /* We compute the average and the variance (if needed). */
772 for (j = 0; j <= number_of_clients; j++)
773 {
774 /* Initialization */
775 for (i = 0; i < number_of_runs; i++)
776 {
777 average[j] = 0;
778 variance[j] = 0;
779 }
780

781 /* We compute the average. */
782 for (i = 0; i < number_of_runs; i++)
783 {
784 average[j] += results[j * number_of_runs + i];
785 }
786

787 average[j] /= number_of_runs;
788

789 /* We compute the variance (only if needed). */
790 if (compute_standard_deviation_and_variance)
791 {
792 for (i = 0; i < number_of_runs; i++)
793 {
794 variance[j] +=
795 (results[j * number_of_runs + i] - average[j]) *
796 (results[j * number_of_runs + i] - average[j]);
797 }

798

799 variance[j] /= number_of_runs;
800 }
801 }
802

803 /* We print the result. If the measurements took place on the server... */
804 if (measurement_location == SERVER || measurement_unit == TOTAL_CYCLES_MAX)
805 {
806 /* ...we return the average... */
807 printf("%f,", average[0]);
808

809 if (compute_standard_deviation_and_variance)
810 /* ...and, if needed, the variance and standard deviation. */
811 printf("%f,%f,", variance[0], sqrt(variance[0]));
812 }
813 /* Otherwise... */
814 else
815 {
816 /* ...it’s the same, but for each client. */
817 for (j = 1; j <= number_of_clients; j++)
818 {
819 printf("%f,", average[j]);
820

821 if (compute_standard_deviation_and_variance)
822 /* ...and, if needed, the variance and standard deviation. */
823 printf("%f,%f,", variance[j], sqrt(variance[j]));
824 }
825 }
826

827 /* If sampling is enabled, we need to specify a value for the core ID of the
828 average. We choose -1. */
829 if (execution_mode == SINGLE_RUN_SAMPLED)
830 printf("%d,", -1);
831

832 /* Should we end the input with a newline? */
833 if (end_output_with_a_newline)
834 printf("\n");
835 else
836 /* If we don’t, we make sure to flush the standard output. */
837 fflush(NULL);
838

839 /* ====================================================================== */
840 /* [v] Cleanup (unnecessary) */
841 /* ====================================================================== */
842 free((int *)physical_to_virtual_core_id);
843 free(clients);
844 free(thread_argument_blocks);
845 free((int *)ready);
846 free((double *)iteration_result);
847 free(results);
848 free(average);
849 free(variance);
850 if (execution_mode == SINGLE_RUN_ORDERED) free((int *)order);
851 if (execution_mode == SINGLE_RUN_SAMPLED)
852 {
853 free(rpc_done_addresses);
854 free((float *)multiple_samples_results);
855 free((void **)multiple_samples_rpc_done_addrs);
856 }
857

858 #ifdef USE_BLOCKING_LOCKS
859 if (pthread_mutex_destroy(&mutex_rpc_done_addr_not_null) < 0
860 || pthread_mutex_destroy(&mutex_rpc_done_positive) < 0
861 || pthread_mutex_destroy(&mutex_rpc_done_addr_null) < 0)
862 ERROR("pthread_mutex_destroy");
863

864 if (pthread_cond_destroy(&cond_rpc_done_addr_not_null) < 0
865 || pthread_cond_destroy(&cond_rpc_done_positive) < 0
866 || pthread_cond_destroy(&cond_rpc_done_addr_null) < 0)
867 ERROR("pthread_cond_destroy");
868 #endif
869 /* ====================================================================== */
870 /* [^] Cleanup (unnecessary) */
871 /* ====================================================================== */
872

873 /* Everything went as expected. */
874 return EXIT_SUCCESS;
875 }
876

877 /* Function executed by the clients */
878 void *client_main(void *thread_arguments_block_pointer)
879 {
880 int i, k;
881

882 /* This is needed because the CAS function requires an address. */
883 const int one = 1;
884

885 /* We avoid using global variables in (and around) the critical section
886 to limit data cache misses. */
887 const int local_number_of_iterations_per_client =
888 number_of_iterations_per_client;
889 const int local_delay = delay;
890

891 const int local_number_of_context_variables = number_of_context_variables;
892 const int local_number_of_shared_variables = number_of_shared_variables;
893

894 /* Argument block */
895 thread_arguments_block_t thread_arguments_block;
896

897 /* We copy the contents of the argument block into these variables to
898 improve the readability of the code. */
899 volatile uint64_t *volatile *null_rpc_global_sv;
900 volatile uint64_t *null_rpc_local_sv;
901 volatile uint64_t *lock_acquisitions_global_sv;
902

903 volatile uint64_t *context_variables_local_memory_area,
904 *shared_variables_memory_area;
905

906 cpu_set_t cpuset;
907 int client_id, client_core;
908

909 /* PAPI variables */
910 int event_set = PAPI_NULL;
911 int events[1];
912 long long values[1];
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913 long long start_cycles = 0, end_cycles;
914 long long cycles;
915

916 /* We get the client id. */
917 thread_arguments_block =
918 *((thread_arguments_block_t *)thread_arguments_block_pointer);
919

920 client_id = thread_arguments_block.id;
921 null_rpc_local_sv = thread_arguments_block.null_rpc_local_sv;
922 null_rpc_global_sv = thread_arguments_block.null_rpc_global_sv;
923 lock_acquisitions_global_sv =
924 thread_arguments_block.lock_acquisitions_global_sv;
925

926 context_variables_local_memory_area =
927 (volatile uint64_t *)
928 ((uint64_t)thread_arguments_block.context_variables_global_memory_area +
929 2 * sizeof(cache_line_t) * (local_number_of_context_variables + 1) *
930 client_id + 2 * sizeof(cache_line_t));
931 shared_variables_memory_area =
932 thread_arguments_block.shared_variables_memory_area;
933

934 /* We compute a proper core for the client to execute on. */
935 if (critical_sections_type == NULL_RPCS)
936 {
937 client_core = (server_core + 1 + (client_id % (number_of_cores - 1))) %
938 number_of_cores;
939 }
940 else
941 {
942 client_core = (server_core + client_id) % number_of_cores;
943 }
944

945 /* We pin this thread to the right core. */
946 CPU_ZERO(&cpuset);
947 CPU_SET(physical_to_virtual_core_id[client_core], &cpuset);
948

949 /* We set the thread’s affinity. */
950 if (pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset) < 0)
951 error("pthread_setaffinity_np");
952

953 /* If sampling is on... */
954 if (execution_mode == SINGLE_RUN_SAMPLED)
955 {
956 /* ...we register the address of our rpc_done local variable. */
957 rpc_done_addresses[client_core] = null_rpc_local_sv;
958 }
959

960 if (measurement_location == CLIENTS)
961 {
962 /* We will use PAPI in this thread. */
963 PAPI_thread_init((unsigned long (*)(void))pthread_self);
964

965 /* Additional initialization is needed if we are counting events. */
966 if (measurement_type == NUMBER_OF_EVENTS)
967 {
968 events[0] = monitored_event_id;
969

970 if (PAPI_create_eventset(&event_set) != PAPI_OK)
971 error("PAPI_create_eventset");
972 if (PAPI_add_events(event_set, events, 1) != PAPI_OK)
973 error("PAPI_add_events");
974

975 /* This seemingly helps increasing PAPI’s accuracy. */
976 if (PAPI_start(event_set) != PAPI_OK)
977 error("PAPI_start");
978 if (PAPI_stop(event_set, values) != PAPI_OK)
979 error("PAPI_stop");
980 }
981 }
982

983 /* We’re ready. */
984 ready[client_id + 1] = 1;
985

986 /* Synchronization barriers */
987 if (critical_sections_type == LOCK_ACQUISITIONS)
988 {
989 for (i = 1; i <= number_of_clients; i++)
990 while (!ready[i])
991 PAUSE;
992 }
993 if (critical_sections_type == NULL_RPCS && measurement_location == CLIENTS)
994 {
995 for (i = 0; i <= number_of_clients; i++)
996 while (!ready[i])
997 PAUSE;
998 }
999

1000 if (measurement_location == CLIENTS)
1001 {
1002 /* Does the user wish to measure the number of elapsed cycles? */
1003 if (measurement_type == NUMBER_OF_CYCLES)
1004 {
1005 /* If so, get the current cycle count. */
1006 start_cycles = PAPI_get_real_cyc();
1007 }
1008 else
1009 {
1010 /* Otherwise we start counting events. */
1011 if (PAPI_start(event_set) != PAPI_OK)
1012 error("PAPI_start");
1013 }
1014 }
1015

1016 /* ########################################################################## */
1017 /* # Main loop (client) # */
1018 /* ########################################################################## */
1019 /* First implementation : using spinlocks. */
1020 #ifndef USE_BLOCKING_LOCKS
1021 /* NULL RPCs */
1022 if (critical_sections_type == NULL_RPCS)
1023 {
1024 /* We execute number_of_iterations_per_client RPCs. */
1025 for (i = 0; i < local_number_of_iterations_per_client; i++)
1026 {
1027 *null_rpc_local_sv = -1;

1028

1029 /* We access context variables */
1030 for (k = 0; k < local_number_of_context_variables; k++)
1031 (*((volatile uint64_t *)
1032 ((uint64_t)context_variables_local_memory_area +
1033 k * 2 * sizeof(cache_line_t))))++;
1034

1035 if (!read_only_wait)
1036 {
1037 /* We use a compare and swap to avoid mutexes. */
1038 while (!__sync_bool_compare_and_swap(null_rpc_global_sv,
1039 0,
1040 null_rpc_local_sv))
1041 PAUSE;
1042 }
1043 else
1044 {
1045 for (;;)
1046 {
1047 if (!(*null_rpc_global_sv))
1048 {
1049 if (!__sync_bool_compare_and_swap(null_rpc_global_sv,
1050 0,
1051 null_rpc_local_sv))
1052 continue;
1053 else break;
1054 }
1055

1056 PAUSE;
1057 }
1058 }
1059

1060 while (*null_rpc_local_sv < 0)
1061 PAUSE;
1062

1063 /* We could avoid the delay introduced by the test by moving the
1064 if outside of the loop, however, tests show that no delay or
1065 a small delay doesn’t alter the results significantly. */
1066 if (local_delay > 0)
1067 {
1068 /* Delay */
1069 cycles = PAPI_get_real_cyc();
1070 while ((PAPI_get_real_cyc() - cycles) < local_delay)
1071 ;
1072 }
1073 }
1074 }
1075 /* Lock acquisitions */
1076 else
1077 {
1078 if (execution_mode != SINGLE_RUN_SAMPLED)
1079 {
1080 for (i = 0; i < local_number_of_iterations_per_client; i++)
1081 {
1082 /* We access context variables */
1083 for (k = 0; k < local_number_of_context_variables; k++)
1084 (*((volatile uint64_t *)
1085 ((uint64_t)context_variables_local_memory_area +
1086 k * 2 * sizeof(cache_line_t))))++;
1087

1088 if (!read_only_wait)
1089 {
1090 while (!__sync_bool_compare_and_swap
1091 (lock_acquisitions_global_sv, 0, &one))
1092 PAUSE;
1093 }
1094 else
1095 {
1096 for (;;)
1097 {
1098 if (!*null_rpc_global_sv)
1099 {
1100 if (!__sync_bool_compare_and_swap
1101 (lock_acquisitions_global_sv, 0, &one))
1102 continue;
1103

1104 else break;
1105 }
1106

1107 PAUSE;
1108 }
1109 }
1110

1111 /* We access context variables */
1112 for (k = 0; k < local_number_of_context_variables; k++)
1113 (*((volatile uint64_t *)
1114 ((uint64_t)context_variables_local_memory_area +
1115 k * 2 * sizeof(cache_line_t))))++;
1116

1117 /* We access shared variables */
1118 for (k = 0; k < local_number_of_shared_variables; k++)
1119 (*((volatile uint64_t *)
1120 ((uint64_t)shared_variables_memory_area +
1121 k * 2 * sizeof(cache_line_t))))++;
1122

1123 *lock_acquisitions_global_sv = 0;
1124

1125 if (local_delay > 0)
1126 {
1127 /* Delay */
1128 cycles = PAPI_get_real_cyc();
1129 while ((PAPI_get_real_cyc() - cycles) < local_delay)
1130 ;
1131 }
1132 }
1133 }
1134 }
1135 /* Second implementation : using blocking locks. */
1136 #else
1137 /* We execute number_of_iterations_per_client RPCs. */
1138 for (i = 0; i < local_number_of_iterations_per_client; i++)
1139 {
1140 *null_rpc_local_sv = -1;
1141

1142 /* This lock corresponds to the CAS from the previous implementation. */
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1143 pthread_mutex_lock(&mutex_rpc_done_addr_null);
1144

1145 /* We wait for the server to be ready. */
1146 while(global->rpc_done_addr != 0)
1147 pthread_cond_wait(&cond_rpc_done_addr_null,
1148 &mutex_rpc_done_addr_null);
1149

1150 /* The server is ready, let’s execute a RPC. */
1151 pthread_mutex_lock(&mutex_rpc_done_addr_not_null);
1152 *null_rpc_global_sv = null_rpc_local_sv;
1153 pthread_cond_signal(&cond_rpc_done_addr_not_null);
1154 pthread_mutex_unlock(&mutex_rpc_done_addr_not_null);
1155

1156 pthread_mutex_unlock(&mutex_rpc_done_addr_null);
1157

1158 /* We wait until the server is done with our RPC. */
1159 pthread_mutex_lock(&mutex_rpc_done_positive);
1160 while (*null_rpc_local_sv < 0)
1161 pthread_cond_wait(&cond_rpc_done_positive,
1162 &mutex_rpc_done_positive);
1163 pthread_mutex_unlock(&mutex_rpc_done_positive);
1164 }
1165 #endif
1166 /* ########################################################################## */
1167 /* # End # */
1168 /* ########################################################################## */
1169

1170 if (measurement_location == CLIENTS)
1171 {
1172 /* Are we counting cycles? */
1173 if (measurement_type == NUMBER_OF_CYCLES)
1174 {
1175 /* If so, get the current cycle count. */
1176 end_cycles = PAPI_get_real_cyc();
1177

1178 if (measurement_unit != TOTAL_CYCLES_MAX)
1179 {
1180 /* We return the number of cycles per RPC. */
1181 iteration_result[client_id + 1] =
1182 (double)(end_cycles - start_cycles) /
1183 number_of_iterations_per_client;
1184 }
1185 else
1186 {
1187 iteration_result[client_id + 1] =
1188 (double)(end_cycles - start_cycles);
1189 }
1190 }
1191 else
1192 {
1193 /* Otherwise, we were counting events. We read the number of
1194 events. */
1195 if (PAPI_stop(event_set, values) != PAPI_OK)
1196 error("PAPI_stop");
1197

1198 /* We return the number of events. */
1199 iteration_result[client_id + 1] =
1200 (double)values[0] / number_of_iterations_per_client;
1201 }
1202 }
1203

1204 /* In the ordered mode, we save the order in which RPCs are serviced. */
1205 if (execution_mode == SINGLE_RUN_ORDERED)
1206 {
1207 order[client_id] = *null_rpc_local_sv;
1208 }
1209

1210 for (k = 1; k <= local_number_of_context_variables; k++)
1211 printf("", (*((volatile uint64_t *)
1212 ((uint64_t)context_variables_local_memory_area +
1213 k * 2 * sizeof(cache_line_t)))));
1214

1215 PAPI_unregister_thread();
1216

1217 return NULL;
1218 }
1219

1220 /* Function executed by the server */
1221 void *server_main(void *thread_arguments_block_pointer)
1222 {
1223 int i, j, k;
1224 /* We avoid using global variables in the main loop to limit data cache
1225 misses. */
1226 const int number_of_iterations =
1227 number_of_iterations_per_client * number_of_clients;
1228

1229 /* Sampling-related variables. */
1230 const int number_of_samples = number_of_iterations
1231 / number_of_iterations_per_sample;
1232 const int number_of_iterations_per_sample_m1 =
1233 number_of_iterations_per_sample - 1;
1234 int sample_start_cycles, sample_end_cycles;
1235

1236 const int local_number_of_context_variables = number_of_context_variables;
1237 const int local_number_of_shared_variables = number_of_shared_variables;
1238

1239 thread_arguments_block_t thread_arguments_block;
1240 volatile uint64_t * volatile *null_rpc_global_sv;
1241

1242 volatile uint64_t *context_variables_global_memory_area,
1243 *shared_variables_memory_area;
1244

1245 /* This variable is used to pin the thread to the right core. */
1246 cpu_set_t cpuset;
1247

1248 /* PAPI variables */
1249 int event_set = PAPI_NULL;
1250 int events[1];
1251 long long values[1];
1252 long long start_cycles = 0, end_cycles;
1253

1254 /* We pin this thread to the right core. */
1255 CPU_ZERO(&cpuset);
1256 CPU_SET(physical_to_virtual_core_id[server_core], &cpuset);
1257

1258 thread_arguments_block =
1259 *((thread_arguments_block_t *)thread_arguments_block_pointer);
1260

1261 null_rpc_global_sv = thread_arguments_block.null_rpc_global_sv;
1262

1263 context_variables_global_memory_area =
1264 thread_arguments_block.context_variables_global_memory_area;
1265 shared_variables_memory_area =
1266 thread_arguments_block.shared_variables_memory_area;
1267

1268 /* We set the thread’s affinity. */
1269 if (pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cpuset) < 0)
1270 error("pthread_setaffinity_np");
1271

1272 /* Are we monitoring cycles/events on the server? */
1273 if (measurement_location == SERVER)
1274 {
1275 /* If so, we will use PAPI in this thread. */
1276 PAPI_thread_init((unsigned long (*)(void))pthread_self);
1277

1278 /* If we are counting events... */
1279 if (measurement_type == NUMBER_OF_EVENTS)
1280 {
1281 events[0] = monitored_event_id;
1282

1283 /* We initialize the even set. */
1284 if (PAPI_create_eventset(&event_set) != PAPI_OK)
1285 error("PAPI_create_eventset");
1286 if (PAPI_add_events(event_set, events, 1) != PAPI_OK)
1287 error("PAPI_add_events");
1288

1289 /* Starting and stopping PAPI once before measurements seems to
1290 improve accuracy. */
1291 if (PAPI_start(event_set) != PAPI_OK)
1292 error("PAPI_start");
1293 if (PAPI_stop(event_set, values) != PAPI_OK)
1294 error("PAPI_stop");
1295 }
1296 }
1297

1298 /* We are ready. */
1299 ready[0] = 1;
1300

1301 /* We want all the clients to be ready before we start servicing RPCs. */
1302 for (i = /*1*/0; i <= number_of_clients; i++)
1303 {
1304 while (!ready[i]);
1305 PAUSE;
1306 }
1307

1308 /* If the measurements take place on the server... */
1309 if (measurement_location == SERVER)
1310 {
1311 /* ...and if we’re county cycles... */
1312 if (measurement_type == NUMBER_OF_CYCLES)
1313 {
1314 /* ...we get the current cycle count. */
1315 start_cycles = PAPI_get_real_cyc();
1316 }
1317 /* Otherwise, we’re counting events. */
1318 else
1319 {
1320 /* We start the event counter. */
1321 if (PAPI_start(event_set) != PAPI_OK)
1322 error("PAPI_start");
1323 }
1324 }
1325

1326 /* ########################################################################## */
1327 /* # Main loop (server) # */
1328 /* ########################################################################## */
1329 /* First implementation : using spinlocks. */
1330 #ifndef USE_BLOCKING_LOCKS
1331 /* Sampling is off. */
1332 if (execution_mode != SINGLE_RUN_SAMPLED)
1333 {
1334 /* We start answering RPCs. */
1335 for (i = 0; i < number_of_iterations; i++)
1336 {
1337 /* No address received from a client? That means no RPC has been
1338 requested. */
1339 while (!(*null_rpc_global_sv))
1340 PAUSE;
1341

1342 if (local_number_of_context_variables > 0)
1343 {
1344 for (k = 1; k <= local_number_of_context_variables; k++)
1345 (*((volatile uint64_t *)
1346 ((uint64_t)(*null_rpc_global_sv) +
1347 k * 2 * sizeof(cache_line_t))))++;
1348 }
1349

1350 /* We access shared variables */
1351 for (k = 0; k < local_number_of_shared_variables; k++)
1352 (*((volatile uint64_t *)
1353 ((uint64_t)shared_variables_memory_area +
1354 k * 2 * sizeof(cache_line_t))))++;
1355

1356 /* We notify the client we are done with his RPC by setting the
1357 variable it provided to i. */
1358 **null_rpc_global_sv = i;
1359

1360 /* We are done with our RPC. */
1361 *null_rpc_global_sv = 0;
1362 }
1363 }
1364 /* Sampling is on. */
1365 else
1366 {
1367 /* Outer loop: one iteration per sample. */
1368 for (j = 0; j < number_of_samples; j++)
1369 {
1370 /* Same as before, except now we get cycle statistics for each
1371 sample. */
1372 sample_start_cycles = PAPI_get_real_cyc();
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1373

1374 for (i = 0; i < number_of_iterations_per_sample_m1; i++)
1375 {
1376 while (!(*null_rpc_global_sv))
1377 PAUSE;
1378

1379 **null_rpc_global_sv = i;
1380 *null_rpc_global_sv = 0;
1381 }
1382

1383 while (!(*null_rpc_global_sv))
1384 PAUSE;
1385

1386 **null_rpc_global_sv = i;
1387

1388 sample_end_cycles = PAPI_get_real_cyc();
1389

1390 /* We save the results. */
1391 multiple_samples_results[j] =
1392 (double)(sample_end_cycles - sample_start_cycles)
1393 / number_of_iterations_per_sample;
1394 /* We need to know which core was serviced last. */
1395 multiple_samples_rpc_done_addrs[j] = *null_rpc_global_sv;
1396

1397 *null_rpc_global_sv = 0;
1398 }
1399 }
1400 /* Second implementation : using blocking locks. */
1401 #else
1402 /* We start answering RPCs. */
1403 for (i = 0; i < number_of_iterations; i++)
1404 {
1405 /* No address received from a client? That means no RPC has been
1406 requested. */
1407 pthread_mutex_lock(&mutex_rpc_done_addr_not_null);
1408 while (!(*null_rpc_global_sv))
1409 pthread_cond_wait(&cond_rpc_done_addr_not_null,
1410 &mutex_rpc_done_addr_not_null);
1411 pthread_mutex_unlock(&mutex_rpc_done_addr_not_null);
1412

1413 /* We notify the client we are done with his RPC by setting the
1414 variable it provided to i. */
1415 pthread_mutex_lock(&mutex_rpc_done_positive);
1416 **null_rpc_global_sv = i;
1417 pthread_cond_signal(&cond_rpc_done_positive);
1418 pthread_mutex_unlock(&mutex_rpc_done_positive);
1419

1420 /* We are done with our RPC. */
1421 pthread_mutex_lock(&mutex_rpc_done_addr_null);
1422 *null_rpc_global_sv = 0;
1423 pthread_cond_signal(&cond_rpc_done_addr_null);
1424 pthread_mutex_unlock(&mutex_rpc_done_addr_null);
1425 }
1426 #endif
1427 /* ########################################################################## */
1428 /* # End # */
1429 /* ########################################################################## */
1430

1431 for (k = 0; k < local_number_of_shared_variables; k++)
1432 printf("", (*((volatile uint64_t *)
1433 ((uint64_t)shared_variables_memory_area +
1434 k * 2 * sizeof(cache_line_t)))));
1435

1436 /* We gather statistics if measurements are to take place on the server. */
1437 if (measurement_location == SERVER)
1438 {
1439 /* Are we counting cycles? */
1440 if (measurement_type == NUMBER_OF_CYCLES)
1441 {
1442 /* If so, get the current cycle count. */
1443 end_cycles = PAPI_get_real_cyc();
1444

1445 if (measurement_unit != TOTAL_CYCLES_MAX)
1446 {
1447 /* We return the number of cycles per RPC. */
1448 iteration_result[0] =
1449 (double)(end_cycles - start_cycles) / number_of_iterations;
1450 }
1451 else
1452 {
1453 iteration_result[0] = (double)(end_cycles - start_cycles);
1454 }
1455 }
1456 /* We’re counting events. */
1457 else
1458 {
1459 /* Otherwise, we were counting events, therefore, we read the number
1460 of events. */
1461 if (PAPI_stop(event_set, values) != PAPI_OK)
1462 error("PAPI_stop");
1463

1464 /* We return the number of events. */
1465 iteration_result[0] = (double)values[0] / number_of_iterations;
1466 }
1467 }
1468

1469 PAPI_unregister_thread();
1470

1471 return NULL;
1472 }
1473

1474 /* Wrapper for malloc that checks for errors. */
1475 void *alloc(int size)
1476 {
1477 void *result;
1478

1479 /* We just call malloc and check for errors. */
1480 if ((result = malloc(size)) == NULL)
1481 error("malloc");
1482

1483 /* We return the result. */
1484 return result;
1485 }
1486

1487 /* This function gets the CPU speed then allocates and fills the

1488 virtual_to_physical_core_id array. */
1489 void get_cpu_info()
1490 {
1491 int i = 0;
1492 FILE *file;
1493 char text[32];
1494 float previous_core_frequency = 0, core_frequency = 0;
1495 int cpu_id, local_core_id, local_number_of_cores;
1496 int virtual_to_physical_core_id[MAX_NUMBER_OF_CORES];
1497

1498 /* We use UNIX commands to parse the /proc/cpuinfo file. */
1499 file = popen("/bin/cat /proc/cpuinfo | "
1500 "/bin/egrep \"physical id|core id|cpu cores|cpu MHz\" | "
1501 "/bin/sed s/\"core id\t\t: \\|physical id\t: \\|"
1502 "cpu cores\t: \\|cpu MHz\t\t: \"//", "r");
1503

1504 if (file == NULL)
1505 error("popen");
1506

1507 /* For each core... */
1508 while (fgets(text, 32, file) != NULL)
1509 {
1510 /* We get the CPU speed. */
1511 core_frequency = atof(text);
1512

1513 /* We ensure all cores use the same clock frequency.*/
1514 if (i > 0 && previous_core_frequency != core_frequency)
1515 error("all processing cores must use the same clock frequency");
1516

1517 previous_core_frequency = core_frequency;
1518

1519 /* We get the CPU ID... */
1520 fgets(text, 32, file);
1521 cpu_id = atoi(text);
1522

1523 /* ...the physical core id on this CPU... */
1524 fgets(text, 32, file);
1525 local_core_id = atoi(text);
1526

1527 /* ...the number of cores on this CPU... */
1528 fgets(text, 32, file);
1529 local_number_of_cores = atoi(text);
1530

1531 /* ...and we use this info to compute the physical core ID (global). */
1532 virtual_to_physical_core_id[i] = local_core_id +
1533 cpu_id * local_number_of_cores;
1534

1535 i++;
1536 }
1537

1538 /* We update the global cpu_frequency variable. */
1539 cpu_frequency = core_frequency;
1540

1541 /* We update the global number_of_cores variable. */
1542 number_of_cores = i;
1543

1544 /* We allocate the physical_to_virtual_core_id array. */
1545 physical_to_virtual_core_id = alloc(number_of_cores * sizeof(int));
1546

1547 /* We fill the physical_to_virtual_core_id array. */
1548 for (i = 0; i < number_of_cores; i++)
1549 physical_to_virtual_core_id[virtual_to_physical_core_id[i]] = i;
1550

1551 /* We’re done with the results of the UNIX commands. */
1552 if (pclose(file) < 0)
1553 error("pclose");
1554 }
1555

1556 /* This function writes the usage string to stderr and exits the application. */
1557 void wrong_parameters_error(char *application_name)
1558 {
1559 const char *usage =
1560 "usage : %s [-R] [-L] \n"
1561 " [-A number_of_runs] [-S #_iterations_per_sample] [-O]\n"
1562 " [-s core] [-c #_clients] [-n #_iterations_per_client] "
1563 "[-d delay] [-r]\n"
1564 " [-e event_type] [-m] [-y] [-i]\n";
1565

1566 /* TODO: print detailed usage. */
1567

1568 fprintf(stderr, usage, application_name);
1569 exit(EXIT_FAILURE);
1570 }
1571

1572 /* Error function */
1573 void error(char *reason)
1574 {
1575 fprintf(stderr, "An error has occured. Cause: %s.\n", reason);
1576 exit(EXIT_FAILURE);
1577 }
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