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The scalability of multithreaded applications on current multicore systems is hampered by the performance
of lock algorithms, due to the costs of access contention and cache misses. The main contribution presented
in this article is a new locking technique, Remote Core Locking (RCL), that aims to accelerate the execu-
tion of critical sections in legacy applications on multicore architectures. The idea of RCL is to replace lock
acquisitions by optimized remote procedure calls to a dedicated server hardware thread. RCL limits the per-
formance collapse observed with other lock algorithms when many threads try to acquire a lock concurrently
and removes the need to transfer lock-protected shared data to the hardware thread acquiring the lock,
because such data can typically remain in the server’s cache. Other contributions presented in this article
include a profiler that identifies the locks that are the bottlenecks in multithreaded applications and that
can thus benefit from RCL, and a reengineering tool that transforms POSIX lock acquisitions into RCL locks.

Eighteen applications were used to evaluate RCL: the nine applications of the SPLASH-2 benchmark suite,
the seven applications of the Phoenix 2 benchmark suite, Memcached, and Berkeley DB with a TPC-C client.
Eight of these applications are unable to scale because of locks and benefit from RCL on an x86 machine
with four AMD Opteron processors and 48 hardware threads. By using RCL instead of Linux POSIX locks,
performance is improved by up to 2.5 times on Memcached, and up to 11.6 times on Berkeley DB with the
TPC-C client. On a SPARC machine with two Sun Ultrasparc T2+ processors and 128 hardware threads,
three applications benefit from RCL. In particular, performance is improved by up to 1.3 times with respect
to Solaris POSIX locks on Memcached, and up to 7.9 times on Berkeley DB with the TPC-C client.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management—Mutual exclusion

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Multicore, synchronization, locks, RPC, locality, busy-waiting, memory
contention, profiling, reengineering

ACM Reference Format:
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1. INTRODUCTION

Over the past decades up to the early 2000s, the performance of Central Processing
Units (CPUs) was steadily improving thanks to rising hardware clock frequencies and
improved superscalar, pipelined designs. However, due to physical limitations, CPU
manufacturers have now found it impossible to keep increasing clock frequencies, and
the performance improvements obtained by pipelining and superscalar designs has
peaked. Consequently, manufacturers now mainly focus on embedding many execution
units into the same CPU instead to improve performance: the number of hardware
threads in consumer CPUs keeps increasing in all computing devices, from servers to
mobile phones. It is not uncommon for multiprocessor servers to include more than 100
hardware threads nowadays.

In order to take advantage of these available hardware threads, programs have to
be parallelized, that is, they have to define multiple threads to perform the processing
concurrently. However, most programs cannot be fully parallelized because accesses to
shared data structures have to be synchronized in order to ensure that they remain
consistent [Herlihy and Shavit 2008]. One of the most commonly used techniques to
synchronize accesses to shared data structures consists of defining critical sections, that
is, sections of code that are executed in mutual exclusion. Current mechanisms used to
implement critical sections [Mellor-Crummey and Scott 1991a; He et al. 2005a; Hendler
et al. 2010a; Fatourou and Kallimanis 2012], however, use many costly operations that
access remote data on the critical path of the execution. These operations include atomic
instructions or read and write operations on shared variables, and they involve costly
communication schemes that are handled by the cache-coherency protocol, such as
cache line invalidations or cache misses. As stated by Amdahl’s Law [Amdahl 1967], the
critical path ends up being the limiting factor for performance as the number of threads
increases, because the time spent in the parallel portion of the code decreases until it
becomes negligible as compared to the critical path. As a result, costly communication
schemes end up consuming a large part of the execution time of the application as the
number of hardware threads increases. We have observed that the costly operations
that access remote data on the critical path by current mechanisms used to implement
critical sections can be classified in two categories:

—Lock management. Mutual exclusion is implemented with locks, that is, objects that
can only be held by a single thread at any given time: a thread needs to hold a lock
in order to execute a critical section. Locks are implemented with shared data struc-
tures, such as queues or Boolean variables. Acquiring or releasing a lock typically
requires intercore communication to write to these shared data structures in order
to change the state of the lock and to maintain their consistency.

—Accessing shared variables. A critical section is typically used to ensure mutual
exclusion on a resource, which is often represented by a shared data structure.
When different threads that are scheduled on different hardware threads execute the
critical section, the cache lines that hold the shared data structure bounce between
the hardware threads, causing cache misses.

In this article, we propose a new locking mechanism, Remote Core Locking (RCL),
that aims to improve the performance of legacy multithreaded applications on multicore
hardware by decreasing the amount of intercore communication on the critical path
triggered by the execution of critical sections.1 The principle of RCL is to reserve a
hardware thread, called the server, to execute all the critical sections associated with

1RCL was initially presented in the paper “Remote Core Locking: Migrating Critical-Section Execution to
Improve the Performance of Multithreaded Applications,” which was published at USENIX ATC 2012 [Lozi
et al. 2012]. Beyond the contents of the USENIX ATC paper, this article includes extended evaluation results,
including results on two different architectures instead of one, more evaluated lock algorithms (including
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a lock. When an application thread, called a client, has to execute a critical section,
it posts a message to the server, which subsequently executes the critical section and
signals the client when the critical section has been executed. RCL naturally ensures
mutual exclusion, since the execution of critical sections is serialized on the server.
RCL reduces the cost of lock management because its message-based communication
between the client and server uses less intercore communication on the critical path
than existing lock implementations. RCL also optimizes data locality because shared
data structures protected by the lock remain in the caches of the hardware thread of
the server, which reduces the amount of cache misses on the critical path.

Replacing locks of legacy C applications by RCL, however, raises two issues. First,
RCL artificially serializes the critical sections associated with different locks managed
by the same server hardware thread: transforming many locks into RCLs on a smaller
number of servers can induce false serialization, which decreases parallelism. There-
fore, the programmer must first decide which locks should be transformed into RCLs
and on which hardware thread(s) to run the server(s). For this, we have designed a
profiler to identify which locks are frequently used by the application and how much
time is spent on locking. Based on this information, we propose a set of simple heuris-
tics to help the programmer decide which locks should be transformed into RCLs, and
a methodology to identify on which hardware thread to run each such lock’s server.
Second, in legacy C applications, the code of the critical sections, lock acquisitions in-
cluded, is often embedded inside a longer function. As the control flow has to migrate
to a server and then return to the client during the execution of the critical section,
the code of each critical section that is associated with a lock transformed into a RCL
has to be extracted as a function. To facilitate this transformation, we have designed
an automated reengineering tool for C programs to transform the code of each critical
section so that it can be executed as a remote procedure call on the server hardware
thread: the code within the critical section is extracted as a function and any variables
referenced or updated by the critical section that are declared by the function contain-
ing the critical section code are sent as arguments, amounting to a context, to the server
hardware thread.

We have developed a runtime for both Linux and Solaris that is compatible with
POSIX threads, and that supports a mixture of RCL and POSIX locks in a sin-
gle application. Based on this runtime, we have evaluated RCL on two machines:
(i) Magnycours-48, an x86 machine with four AMD Opteron CPUs and 48 hardware
threads running Linux 3.9.7, and (ii) Niagara2-128, a SPARC machine with two Ul-
trasparc T2 CPUs and 128 hardware threads running Solaris 10. We compare the
performance of RCL to that of other locks using a custom microbenchmark that mea-
sures the execution time of critical sections that access a varying number of shared
memory locations. Furthermore, based on the results of our profiler, three applications
from the SPLASH-2 suite [University of Delaware 2007; Singh et al. 1992], three appli-
cations in the Phoenix 2 suite [Stanford University 2011; Talbot et al. 2011; Yoo et al.
2009; Ranger et al. 2007], Memcached [Danga Interactive 2003; Fitzpatrick 2004], and
Berkeley DB [Oracle Corporation 2004; Olson et al. 1999] with a TPC-C benchmark
developed at Simon Fraser University were identified as applications that could ben-
efit from RCL. For each of these applications, we compare RCL against the standard
system implementation of the POSIX lock, MCS [Mellor-Crummey and Scott 1991a],
Flat Combining [Hendler et al. 2010a], CC-Synch [Fatourou and Kallimanis 2012],
and DSM-Synch [Fatourou and Kallimanis 2012]. Comparisons are made for a same
number of hardware threads, which means that there are fewer application threads in
the RCL case, since one or more hardware threads are dedicated to RCL servers.

the recently proposed CC-Synch and DSM-Synch lock algorithms [Fatourou and Kallimanis 2012]), and
additional experiments.
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The key highlights of our results are as follows:

—On our custom microbenchmark, under high contention, RCL is faster than all other
evaluated lock algorithms: on Magnycours-48 (Niagara2-128, respectively), RCL is
3.2 (1.8, respectively) times faster than the second best approach, CC-Synch, and 5.0
(7.2, respectively) times faster than the operating system’s POSIX lock.

—On application benchmarks, contexts are small, and thus the need to pass a context
to the server has only a marginal performance impact.

—On most benchmarks, only one lock is frequently used, and therefore only one RCL
server is needed. The only exception is Berkeley DB with the TPC-C client, which
requires two or three RCL servers to reach optimal performance by reducing false
serialization.

—On Magnycours-48 (Niagara2-128, respectively), RCL performs better on five (one,
respectively) application(s) from the SPLASH-2 and Phoenix 2 benchmark than all
other evaluated locks.

—For Memcached with Set requests, on Magnycours-48 (Niagara2-128, respectively),
RCL yields a speedup of 2.5 (1.3, respectively) times over the operating system’s
POSIX lock, 1.9 (1.2, respectively) times over the basic spinlock, and 2.0 (1.2, respec-
tively) times over MCS. The number of cache misses in critical sections is divided
by 2.9 (2.3, respectively) by RCL, which shows that it can greatly improve locality.
Flat Combining, CC-Synch, and DSM-Synch were not evaluated in this experiment
because they do not implement condition variables, which are used by Memcached.

—For Berkeley DB with the TPC-C client, when using Stock Level transactions, on
Magnycours-48 (Niagara2-128, respectively), RCL yields a speedup of up to 11.6
(7.6, respectively) times over the original Berkeley DB locks for 48 (384, respec-
tively) simultaneous clients. RCL resists better than other locks when the number
of simultaneous clients increases. In particular, RCL performs much better than
other locks when the application uses more client threads than there are available
hardware threads on the machine, even when other locks are modified to yield the
processor in their busy-wait loops.

The article is structured as follows. Section 2 describes existing lock algorithms.
Section 3 presents our main contribution, RCL. Section 4 presents the profiler and the
reengineering tool that are provided with RCL to facilitate its use in legacy applications.
Section 5 evaluates the performance of RCL and compares its performance to that of
existing lock algorithms. Finally, Section 6 concludes.

2. RELATED WORK

The lock, one of the oldest synchronization mechanisms [Dijkstra 1965; Hoare 1974],
is still extensively used in modern applications. A lock makes it possible for multiple
threads to execute sections of code in mutual exclusion in order to ensure exclusive
access to shared resources. In this section, we study several lock algorithms, focusing
on the following five criteria:

—Cost of lock management. The cost of acquiring and releasing the lock on the crit-
ical path, that is, lock management operations that are serialized with the critical
sections protected by the lock.

—Data locality. The cost, in terms of number of cache misses, of accessing the shared
data protected by the lock.

—Performance with many threads. How well the lock algorithm performs when more
threads use the lock than there are hardware threads on the machine. The perfor-
mance of some lock algorithms collapses in this scenario.

—Support for condition variables. Not all lock algorithms provide support for condition
variables, and supporting them is not always trivial (notably with combining locks, as
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will be explained in Section 2.3). Supporting condition variables is crucial for legacy
support, since they are very commonly used in existing applications. For instance,
roughly half of the multithreaded applications that use POSIX locks in Debian 6.0.3
also use them.

—Fairness. The ability of a lock algorithm to ensure that all threads make progress.

In the rest of this section, we provide an in-depth analysis of the families of locks
used in most of our evaluation in Section 5, with examples. We then present other
notable lock algorithms that will be evaluated in Section 5.6.

2.1. Centralized Locks

With centralized locks, the ownership of a lock is determined by a single Boolean
variable that we refer to as the lock variable. The thread that is able to change the lock
variable from false to true with a compare-and-swap instruction becomes the owner
of the lock. The compare-and-swap instruction ensures that a variable is atomically set
to a new value if and only if it was equal to a given value. The lock is released by setting
the lock variable to false using a regular assignment instruction. We now describe
and analyze the properties of two widely used variants of centralized locks: spinlocks
and blocking locks.

2.1.1. Spinlocks. With spinlocks [Herlihy and Shavit 2008], a thread continuously tries
to set the lock variable to true in a busy-wait loop, until it manages to acquire the lock.
Some variants use various policies to yield the processor in the busy-wait loop in order
to improve resistance to contention and save energy, as will be seen in Section 2.4. In
this article, we refer to the spinlock algorithm that never yields the processor as the
basic spinlock.

2.1.2. Blocking Locks. With blocking locks, when a thread fails to acquire a lock, it sleeps
via a system call, such as futex_wait() on Linux. When the lock holder releases the
lock, it not only sets the lock variable to false, but also wakes up the threads waiting
for the lock. On mainstream POSIX operating systems, such as Linux or Solaris, the
POSIX lock is implemented with a blocking lock.

2.1.3. Analysis. We now analyze the properties of centralized locks.

Cost of Lock Management. With basic spinlocks, when many threads try to acquire
the lock concurrently by repeatedly applying compare-and-swap instructions to the
lock variable, the processor interconnect gets saturated by messages from the cache-
coherence protocol. As will be shown in Section 5.1, the result is that even executing
a single one of these compare-and-swap instructions takes a lot of time. Consequently,
the critical path, which includes setting the lock variable to true at the beginning of a
critical section and setting the lock variable to false at the end, becomes very long.

Blocking locks are also relatively inefficient under high contention, because threads
sleep while they are waiting for the lock. Consequently, two lengthy lock management
operations take place on the critical path before a thread can reacquire the lock: (i) a
system call to unblock the thread, and (ii) a context switch to schedule that thread.

Data Locality. As stated in the Introduction, when a thread executes a critical section
that was last executed on another hardware thread, the shared data protected by the
critical section has to be loaded when it is accessed, which results in cache misses.

Performance with Many Threads. If the lock holder is preempted, none of the threads
that are waiting for the lock can acquire it, consequently, no progress is made on the
critical path. This is a major issue with the basic spinlock when there are more threads
that use the lock than there are hardware threads on the machine: if all threads
are busy (either busy-waiting or executing a critical section), the operating system’s
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scheduler will have to preempt some of these threads without knowing which thread
is executing a critical section and therefore progressing on the critical path.

Blocking locks, however, can perform much better than spinlocks when there are
more threads that use the lock than there are hardware threads on the machine. This
is due to the fact that threads sleep while they are waiting for the lock, which reduces
the need for the scheduler to preempt threads in applications where many threads
are waiting on locks: the scheduler never preempts the lock holder in order to run a
busy-waiting thread on the same hardware thread.

Support for Condition Variables. Blocking locks are provided by all mainstream
operating systems through standard lock implementations, such as the POSIX lock
implementations on Linux and Solaris. These implementations also provide primitives
to handle condition variables. Support for condition variables for spinlocks can trivially
be implemented using the aforementioned primitives.

Fairness. None of the centralized locks presented in this section guarantee progress.
A thread that tries to enter a critical section can indefinitely be delayed by other threads
that succeed in acquiring the lock.

2.2. Queue Locks

Queue locks define the lock variable as a pointer to the tail of a queue of nodes, with one
node for each thread that is either waiting for the lock or executing a critical section.
Each node contains a synchronization variable named wait and a pointer to another
node. A thread that waits for the lock busy-waits on one of the wait variables, and enters
the critical section when the wait variable is set to false. Two variants of queue locks
exist: CLH [Craig 2003; Magnusson et al. 1994] and MCS [Mellor-Crummey and Scott
1991b]. In both algorithms, each thread initially owns a preallocated node.2

2.2.1. CLH. In CLH, each node contains a pointer to its predecessor. The queue is
never empty: it initially contains a dummy node whose wait variable is set to false.
In order to acquire the lock, a thread sets the wait variable of its node to true and
atomically enqueues its node at the end of the list. It then waits for the lock variable of
its predecessor to be equal to false to enter the critical section. A lock owner sets the
wait variable of its node to false to pass lock ownership to its successor in the list. It
then takes ownership of its predecessor’s node as its new node.

2.2.2. MCS. In MCS, a node contains a pointer to its successor. The queue does not
contain a dummy node. When the queue is empty, the lock is free, and a thread acquires
the lock by enqueueing its node at the head of the list. Otherwise, the lock is not free. In
that case, the thread sets its node’s wait variable to false and enqueues it at the end
of the list. It then busy-waits on the wait variable of its newly enqueued node, instead
of the previous node as is the case with CLH. To release the lock, the lock holder
sets the wait variable of its successor, if it exists, to true. If no successor exists, the
lock holder sets the tail pointer to null. As compared to CLH, MCS may have better
memory locality on NUMA and non-cache-coherent architectures because a thread
always busy-waits on the same node, and that node is allocated locally.

2.2.3. Analysis. We now analyze the properties of queue locks.

Lock Management. If a waiting thread does not get preempted, the node on which it
busy-waits remains in the local cache until its predecessor releases the lock. No other
thread busy-waits on the same variable. Consequently, queue locks are not subject to

2In practice, in order to allow for nested critical sections, each thread needs to own one node per lock. To
simplify the presentation, we do not consider this case in this section.
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the processor interconnect saturation issue that centralized locks suffer from. At high
contention, on the critical path, between each critical section, the only overhead is the
cost of the previous lock holder writing to the corresponding wait variable (invalida-
tion), and the new lock holder fetching the new value of that variable (cache miss).

Data Locality. Like with centralized locks, shared variables protected by the lock
have to be loaded in the cache of the lock holder.

Performance with Many Threads. Like with centralized locks, when there are more
threads that use the lock than there are hardware threads on the machine, the sched-
uler is likely to preempt the lock holder. Consequently, threads waiting for the lock
waste resources while no progress is made on the critical path because no critical
section can be executed.

Another reason why queue locks perform poorly when more threads try to acquire
a lock than there are hardware threads on the machine is the convoy effect [Koufaty
et al. 2010]: the FIFO (First-In-First-Out) ordering of lock acquisitions and the FIFO
scheduling policy of the operating system interact in such a way that critical sections
take one or several of the scheduler’s time quanta to be executed. To illustrate the
problem, suppose we have a machine with two hardware threads and three threads,
T1, T2, and T3. We also suppose that both the queue of the lock and the queue of
the system scheduler are T1 ← T2 ← T3. During the first quantum, T1 and T2 are
scheduled. T1 acquires the lock since it is the first element of the lock queue. At the
end of its critical section, it releases the lock and likewise enqueues itself at the end
of the lock queue to execute a new critical section. T2 then acquires the lock, executes
the critical section, and enqueues itself at the end of the lock queue. At this point,
T1 and T2 are still scheduled, but are unable to progress because T1 waits for T3 to
release the lock and T2 waits for T1 to release the lock. At the end of the quantum,
both the lock queue and the scheduling queue are T3 ← T1 ← T2. In the same manner,
during the next quantum, only T3 and T1 are able to execute a critical section: after
the execution of their critical sections, they have to wait for T2 to release the lock.
As a result, during each quantum, only two critical sections are executed, leading to
extremely low performance in the very likely case where executing two critical sections
is orders of magnitude faster than a time quantum.

Time-published locks [He et al. 2005a] (MCS-TP) are modified versions of the MCS
and CLH locks that aim to prevent the issues caused by preemption. They use a
timestamp-based heuristic to solve the problems caused by interactions with the system
scheduler. Each thread periodically writes the current system time (a high-resolution
timestamp) in its node. If a thread fails to acquire the lock for a long amount of time,
it checks the timestamp of the lock holder, and if that timestamp has not been recently
updated, it assumes that the lock holder has been preempted. In this case, it yields
the processor in order to increase the probability for the lock holder to be scheduled
again: this technique helps solve the problem of a preempted lock owner. Moreover, if
a thread waiting for the lock observes that the timestamp counter of its successor has
not been recently updated, the thread assumes that its successor has been preempted;
consequently, it removes it from the queue. This technique removes convoys, because
it deschedules threads that needlessly busy-wait for the lock, leaving a chance for
the lock holder to be scheduled again. However, time-published locks have a significant
overhead relative to standard queue locks when fewer threads try to acquire a lock than
there are hardware threads, due to the additional timestamp management operations
on the critical path.

Support for Condition Variables. Like with spinlocks, support for condition variables
for queue locks can trivially be implemented using the primitives that the operating
system provides to manage condition variables in blocking locks.
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Fairness. Queue locks are naturally fair: when a thread fails to acquire a lock, it
enqueues itself in a FIFO queue, which also ensures that critical sections are executed
in FIFO order. Time-publishing locks may be slightly less fair because a thread can be
removed from the lock queue in order to avoid convoys.

2.3. Combining Locks

A combining lock [Oyama et al. 1999; Hendler et al. 2010a; Fatourou and Kallimanis
2012] is a lock algorithm that sometimes also aims to merge operations on a shared
object in a way that decreases algorithmic complexity. Conceptually, each thread owns
a node that contains a pointer to a function that encapsulates a critical section that
can be executed remotely by another thread. A thread adds its node in a linked list
(stack, queue, or unordered list) to request the execution of a critical section. One of the
threads is designed as the combiner thread and will execute some of these operations,
if possible merging them using an algorithm that is able to execute several critical
sections together faster than if they were executed individually (such an algorithm does
not always exist). A combining lock can also be used as a traditional lock algorithm if
operations are not merged, but simply executed sequentially by the combiner: this is
the only use of combining locks we consider in this article.

We describe three variants of combining locks: the Oyama lock [Oyama et al. 1999]
(the oldest of the combining locks; its authors did not propose to merge operations),
Flat Combining [Hendler et al. 2010a], and CC-Synch along with its variant for non-
cache-coherent architectures, DSM-Synch [Fatourou and Kallimanis 2012].

2.3.1. The Oyama Lock. The Oyama lock [Oyama et al. 1999] (simply referred to as
“Oyama” in the rest of this article) uses a synchronization variable that can take three
values: (i) FREE, which means that the lock is free, (ii) LOCKED, which means that a
critical section is being executed, but no other critical section needs to be executed
after that, or (iii) a pointer to a stack, that is, a linked list that ensures LIFO (Last-
In-First-Out) order. When a thread t needs to execute a critical section, it tries to
atomically switch the value of the synchronization variable from FREE to LOCKED. In
case of failure, another thread is executing a critical section. Consequently, t writes the
address of the function that encapsulates it into its node, and pushes its node atomically
onto the stack. Otherwise, if t succeeds in switching the value of the synchronization
variable from FREE to LOCKED, it owns the lock and executes its critical section. It then
tries to release the lock using a compare-and-swap instruction to switch its value from
LOCKED to FREE. This operation can fail if other threads have pushed their nodes on the
stack during the execution of the critical section. In this case, t becomes a combiner: it
atomically detaches the stack, sets the value of the synchronization variable to LOCKED,
and executes all critical sections from the stack. Thread t then tries to release the lock
atomically again, and in case of failure, continues to act as a combiner.

2.3.2. Flat Combining. Flat Combining [Hendler et al. 2010a] uses a basic spinlock and
an unordered linked list. Nodes can either be active or inactive. To execute a critical
section, a node writes the address of the function that encapsulates it into its node and
checks whether the node is active. If the node is inactive, it activates it and inserts it
into the linked list, otherwise, no insertion is needed because the node was placed in the
linked list for the execution of a previous critical section and has not yet been removed.

The thread then busy-waits until either (i) a combiner has executed its request, or
(ii) the spinlock is free. In the latter case, the thread acquires the spinlock, becomes
a combiner, and executes all critical sections in the linked list before releasing the
spinlock. After having executed a critical section, the combiner sets the critical section’s
address to null in the node, which (i) indicates to the thread that owns the node that
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its critical section has been executed, and (ii) indicates to the next combiner that the
node does not contain a pending request to execute a critical section.

Flat Combining performs linked list cleanup operations, which incurs a significant
overhead: nodes that have not been used to execute critical sections in a long time
are removed from the linked list regularly in order to ensure that the combiner will
not traverse too many inactive nodes. Constants have to be tuned by the developer
to determine (i) how long a node is allowed to stay in the list without requesting
the execution of a critical section and (ii) how often the cleanup operation takes
place.

2.3.3. CC-Synch and DSM-Synch. CC-Synch and DSM-Synch [Fatourou and Kallimanis
2012] use a queue instead of an unordered list. Nodes contain the address of the
function that encapsulates the critical section, a completed Boolean variable that
indicates whether the critical section has been executed, and a wait Boolean variable
that indicates whether a thread should wait for the execution of its critical section.

The algorithm of CC-Synch is shown in Algorithm 1.3 The queue initially contains
a dummy node whose variables wait and completed are both set to false (line 2). To

3The memory fences in Algorithms 1, 2, and 4 are not required on architectures that ensure Total Store
Order (TSO), but may be needed for weaker memory models. The x86 and SPARC machines we used in the
evaluation (Section 5) ensure TSO.
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execute a critical section (lines 6–13), a thread sets its wait and completed variables
to true and false, respectively. The thread then exchanges its node with the dummy
node, which is always located at the end of the list: as a result, the thread’s old node
becomes the new dummy node. Finally, the thread writes the address of the function
that encapsulates the critical section into its new node and makes it point to its old
node (it may not be the dummy node anymore at that point), which ensures that its
node has been enqueued in the list. Note that because the first thread that enqueues
itself has both its completed and wait variables set to false, it will become a combiner
(its critical section is not completed, but it will not wait for another combiner, therefore,
it must become one).

Once a thread has enqueued its node in the list, it busy-waits while its wait variable
equals true (lines 14 and 15). After this step, it checks whether its completed variable
is set to true (lines 16 and 17): if so, the critical section has been executed by a combiner.
Otherwise, the thread becomes a combiner, and goes through the queue, executing each
critical section and setting the completed and wait flags of the corresponding node to
true and false, respectively, afterward (lines 19–25). When the thread reaches the
last element in the queue, or when it has executed a bounded number of critical sections,
it sets the wait variable of the current element in the queue to false, and leaves the
value of its completed variable as false (line 26). As the latter node will have both its
completed and wait variables set to false, (i) the corresponding thread becomes the
next combiner if the node belongs to a thread or (ii) the initial state of the dummy node
is restored as the list contains a single node.

DSM-Synch is a variant of CC-Synch that aims to improve its memory locality.
With CC-Synch, nodes are continuously exchanged between threads. Consequently, a
thread’s current node is allocated by another thread most of the time, and is therefore
likely to be located on a remote memory bank on NUMA or non-cache-coherent archi-
tectures. DSM-Synch adds some complexity to ensure that a thread always reuses the
same node. The result is that threads always busy-wait on variables from nodes that
can be allocated in a local memory bank, which may improve memory locality at the
price of a few more more atomic instructions on the critical path.

2.3.4. Analysis. We now analyze the properties of combining locks.

Lock Management. Combining locks have a shorter critical path than queue locks if
combiners manage to execute long enough sequence of critical sections: a combiner can
execute critical sections one after the other without synchronization between threads,
as long as the hardware prefetcher manages to bring nodes to the local caches before
they are accessed (otherwise cache misses may occur). Oyama, however, has signif-
icant additional overhead on the critical path, because all threads access the global
synchronization variable concurrently, often using costly atomic instructions. More-
over, the combiner has to detach the stack regularly to execute a long sequence of
critical sections if new threads keep enqueueing themselves while critical sections are
being executed. For Flat Combining, when the combiner reaches the head of the linked
list, it releases the lock, which is acquired again by a new thread that becomes the new
combiner when there are still threads waiting on the lock (the fact that the combiner
has reached the head of the linked list does not mean that there are no more pend-
ing critical sections because threads enqueue themselves at the tail). Releasing and
acquiring this lock also slows down the critical path. Moreover, the cleanup operations
also take place on the critical path because the combiner has to have exclusive access
to the linked list in order to clean it up. For CC-Synch and DSM-Synch, if nodes are
prefetched correctly, the only overhead on the critical path takes place when the role of
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combiner is handed over from one thread to the next, which results in an invalidation
and a cache miss.4

Data Locality. Combining locks improve data locality: critical sections that are pro-
tected by a given lock often perform operations on the same set of shared variables
and executing several of them consecutively on the same hardware thread makes it
possible for these variables to remain in that hardware thread’s caches. As a result,
fewer cache misses occur on the critical path and performance is improved.

Performance with Many Threads. While Oyama and Flat Combining perform well
when there are more threads that use the lock than there are hardware threads on
the machine, CC-Synch and DSM-Synch do not, because of a design flaw in their
algorithm that we illustrate with CC-Synch. Suppose that a thread t is preempted
between lines 10 and 12 of Algorithm 1. The current combiner will only be able to
execute critical sections up to that node and will hand over the role of combiner to the
preempted thread t, because the list is split into two parts until the next pointer of t’s
cur_node is set. No progress will be made on the critical path until t wakes up. This
issue occurs frequently when there are more threads that try to acquire the lock than
there are hardware threads. It causes performance to collapse, as will be shown in
Section 5.4.5.

Support for Condition Variables. Condition variables cannot easily be implemented
for combining locks because by making the combiner sleep, they prevent it from
executing the remaining critical sections in the queue. Moreover, since server threads
are normal application threads, waiting on condition variables of other threads
prevents them from making progress, which can cause undesirable unexpected effects
such as deadlocks.

Fairness. Oyama uses a stack (LIFO order), which makes it especially unfair
because a node’s request can always be delayed by a more recent node insertion.
Flat Combining uses an unordered linked list, which makes the algorithm more fair.
CC-Synch and DSM-Synch, like queue locks, use a queue (FIFO order), which makes
them perfectly fair.

2.4. Other Lock Algorithms

We have described the main families of locks and presented members of each family that
were either notable due to their widespread use (spinlocks, blocking locks), historical
reasons (CLH and Oyama were the first of their kind), or their efficiency (all other
presented lock algorithms). We now give an overview of other existing lock algorithms.

Backoff locks improve on the basic spinlock, with the objective of achieving better
performance when many threads perform concurrent lock acquisition attempts. The
main idea of backoff locks is to make threads sleep for a backoff delay in the busy-wait
loop. Doing so reduces contention and also has the advantage of saving power and CPU
time. The delay typically increases at each iteration, often linearly (linear backoff lock)
or exponentially (exponential backoff lock). According to Anderson [1990], increasing
the delay exponentially is the most efficient strategy. The ticket lock [Reed and Kanodia
1979] also aims to improve the performance of spinlocks under high contention. It uses
two shared counters: one containing the number of lock acquisition requests, and the
other one containing the number of times the lock has been released. In order to acquire

4We consider that when tmp_node→wait is set false, the corresponding cache line is invalidated and
the thread that is busy-waiting on that synchronization variable must fetch it again. The actual low-level
behavior may differ depending on the cache-coherency protocol used.
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the lock, a thread reads and increments the value of the first counter with an atomic
fetch-and-add instruction and busy-waits until the second counter is equal to the value
it has read from the first counter. The advantage the ticket lock has over the basic
spinlock or backoff locks is that threads busy-wait on the second counter using an
instruction that only reads the corresponding cache line instead of an instruction that
attempts to write to it (e.g., a compare-and-swap instruction). Mellor-Crummey and
Scott [1991b] show that both backoff locks and the ticket lock are slower than MCS
under high contention. However, David et al. [2013] show that the ticket lock performs
better than a wide range of other locks under low contention, and, given its small
memory footprint, they recommend its use over more complex lock algorithms unless
it is sure that a specific lock will be very highly contended.

Abellán et al. [2011] propose GLocks in order to provide fast, contention-resistant
locking for multicore and manycore architectures. The key idea of GLocks is to use a
token-based message passing protocol that uses a dedicated on-chip network imple-
mented in hardware instead of the cache hierarchy. Since the resources needed to build
this network grow with the number of supported GLocks, Abellán et al. recommend to
only use them for the most contended locks and to use spinlocks otherwise. The main
drawback of GLocks is that they require specific hardware support not provided by
current machines.

Finally, given the large number of proposed lock algorithms, choosing one is not
always a simple task. Smartlocks [Eastep et al. 2010] aims to solve this issue by
dynamically switching between existing lock algorithms in order to choose the most
appropriate one at runtime. They use heuristics and machine learning in order to opti-
mize toward a user-defined goal, which may relate to performance or problem-specific
criteria. In particular, on heterogeneous architectures, Smartlocks is able to optimize
which waiter will get the lock next for the best long-term effect when multiple threads
are busy-waiting for a lock. Since Smartlocks relies on a set of lock algorithms, however,
it does not remove the need for designing efficient lock algorithms in the first place.

Hierarchical locks trade fairness for throughput by executing several critical sec-
tions consecutively on the same cluster of hardware threads (core, die, CPU, or NUMA
bank). Doing so allows for better throughput, since synchronization local to a cluster is
faster than global synchronization, for two reasons: (i) critical sections executed on the
same cluster can reuse shared variables that are stored in their common caches, and
(ii) the synchronization variables used for busy-waiting are allocated on a local NUMA
node, which may reduce the overhead of busy-waiting, as will be shown in Section 5.1.
The Hierarchical Backoff Lock (HBO) [Radovic and Hagersten 2003] is a backoff lock
algorithm with an adaptive delay that favors hardware threads of the same cluster:
these threads are granted shorter backoff times, whereas remote hardware threads are
granted longer backoff times. The Hierarchical CLH lock (H-CLH) [Luchangco et al.
2006] creates a CLH-style queue for each cluster, and the thread at the head of each
local queue occasionally splices the local queue into a global queue. Critical sections are
executed following the global queue, as if it were a traditional CLH queue. However,
given the way the global queue is built, nodes from the same cluster are neighbors in
the global queue and their critical sections are executed consecutively.

Another example of a hierarchical lock has been proposed by Dice et al. [2011], using
a combination of Flat Combining and MCS. Each cluster uses one instance of Flat
Combining that efficiently creates local MCS queues of threads, and merges them into
a global MCS queue. The lock is handed over in the MCS queue exactly like with a MCS
lock, except the global queue created by the combiners is ordered by clusters, like with
H-CLH. However, the approach by Dice et al. is more efficient than H-CLH because
with H-CLH, all threads need to enqueue themselves by using an atomic instruction
that is applied to the global tail of the queue, which can cause bottlenecks. Moreover,
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with H-CLH, threads must know which thread is the master of their local cluster,
which complicates their busy-waiting semantics.

Finally, Dice et al. [2012] propose Lock Cohorting, a general technique that makes
it possible to build hierarchical locks from any two nonhierarchical lock algorithms G
and S, as long as these lock algorithms satisfy certain (widespread) properties. The
general idea is to use one instance of S per cluster, and one global instance of G. The
first thread to acquire a lock acquires both G and S, and then releases only S if other
threads from the same cluster are waiting for the lock (these threads will only have to
acquire S to own the lock), otherwise, it releases both G and S to let threads from other
clusters acquire the lock. Dice et al. use Lock Cohorting to build new hierarchical locks
by choosing either a backoff lock, the ticket lock, MCS, or CLH for G and for S. They
show that some of the resulting combinations outperform both HBO and H-CLH.

While hierarchical locks offer good performance, they are generally based on tradi-
tional lock algorithms. Consequently, they are a powerful optimization for lock algo-
rithms, but do not replace them.

3. REMOTE CORE LOCKING

In order to improve the performance of applications on multicore architectures, we
present RCL, a lock mechanism whose main idea is to dedicate a server hardware
thread to the execution of critical sections. RCL has two main advantages. First, it
reduces synchronization overhead, because the client threads and the server commu-
nicate using a fast client/server cache-aligned messaging scheme that is similar to the
one used in Barrelfish [Baumann et al. 2009]. And second, RCL improves data locality,
because the shared variables that the critical sections protect are all accessed from
the same dedicated server hardware thread, where no application thread can be sched-
uled. Therefore, the shared variables are more likely to always remain in that hardware
thread’s cache hierarchy. RCL has additional advantages. In particular, the fact that the
server hardware thread is dedicated to the execution of critical sections ensures that
the server can never be preempted by application threads: it always makes progress
on a critical path. Furthermore, the fact that critical sections are not implemented by
application threads makes it possible for RCL to implement condition variables.

This section first gives an overview of RCL, by describing how it works in simple cases.
We then focus on the RCL runtime: we describe implementation details, including how
the runtime handles complex situations such as blocking in critical sections, nested
critical sections, and waiting on condition variables. We then describe statistics that
are gathered by the RCL runtime. Finally, we compare RCL with other locks.

3.1. Overview

With RCL, each critical section is replaced by a remote procedure call to a server that
executes the code of the critical section. Communication between the client and server
threads uses an array of mailboxes that store requests for the execution of critical
sections. The following paragraphs describe the request array and how it is used by
client and server threads to implement fast remote procedure calls.

Request Array. The request array is illustrated in Figure 1. It contains C elements
of size L. C is a large number, typically much higher than the number of hardware
threads.5 Each element of the array stores a mailbox req i that is used for the
communication of client ci with the server. In order to make communication as efficient

5To be more precise, in order to avoid the need to reallocate the request array when new client threads are
created, its size is fixed and chosen to be very large (256KB), and a client identifier allocator implements an
adaptive long-lived renaming algorithm [Brodsky et al. 2006] that keeps track of the highest client identifier
and tries to reallocate smaller ones.
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Fig. 1. The request array.

as possible, (i) C is cache aligned and L is chosen to be the hardware cache line
size in order to avoid false sharing (if the underlying hardware uses multiple cache
line sizes, the least common multiple is used), and (ii) on NUMA architectures, the
array of mailboxes is allocated on the NUMA bank of the server to avoid unnecessary
communication to an external node during client-server communication.

The first three machine words of each mailbox reqi contain, respectively, (i) the
address of the lock associated with the critical section, (ii) the address of a structure
encapsulating the context, that is, the variables referenced or updated by the critical
section that are declared by the function containing the critical section code, and (iii) the
address of a function that encapsulates the critical section for which the client ci has
requested the execution,6 or null if no critical section execution is requested.

Client Side. In order to execute a critical section, a client ci first writes the address of
the lock into the first word of its structure reqi, then writes the address of the context
structure into the second word, and finally writes the address of the function that
encapsulates the code of the critical section into the third word. The client then busy-
waits for the third word of reqi to be reset to null, which indicates that the server has
executed the critical section. Busy-waiting can be considered too energy demanding in
some contexts: to address this issue, on some architectures, it is possible to write an
energy-aware version of RCL where cores wait in power-saving mode instead of busy-
waiting, as will be explained in Section 5.5.3. Alternatively, the busy-wait loop of the
client may yield the processor at each iteration, as will be discussed in Section 5.4.5.

Server Side. A servicing thread iterates over the mailboxes, waiting for one of the
mailboxes to contain a non-null value in its third word. When such a value is found,
the servicing thread acquires the lock7 and executes the critical section using the
function pointer and the context. When the servicing thread is done executing the
critical section, it resets the third word to null, and resumes iterating over the request
array.

Issues Raised by RCL. If more than one lock is used by the application, the RCL
server can handle the critical sections of several locks, but doing may result in false
serialization, that is, the unnecessary serialization of independent critical sections. To
alleviate this issue, more servers can be used, each of them executing the critical sec-
tions of one or several locks. In practice, it is not necessary to use a lot of servers to
improve performance, because RCL is not meant to be used for all locks: since RCL’s
strongest point is its high performance under high contention, and the lock algorithms

6Since RCL relies on function pointers to ship the code of critical sections from client to server threads, it
cannot be used for interprocess mutual exclusion in its current form.
7Since a server executes all critical sections for a given lock, the lock is always free when it tries to acquire
it, except in the case of nested critical sections.
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used for uncontended locks have negligible impact on performance, RCL should only be
used for heavily contended locks. As shown in Section 5.4.1, the number of contended
locks in the applications used in the evaluation is low enough that less than three
servers are needed to reach optimal performance. Since modern multicore architec-
tures provide dozens of hardware threads whose processing power cannot always be
harvested efficiently because applications lack scalability, many hardware threads are
often left unused by applications: these hardware threads can be used for RCL servers
in order to improve performance.

3.2. Implementation of the RCL Runtime

The core algorithm, described in Section 3.1, only refers to a single servicing thread,
and thus requires that this thread is never blocked at the operating system level and
never busy-waits. We want to ensure that RCL works seamlessly and efficiently (i) with
legacy applications, which may use blocking or busy-waiting inside critical sections, and
(ii) on existing operating systems, which were not designed with exotic synchronization
schemes in mind. Because of these two constraints, the RCL implementation has to rely
on some low-level tricks, such as using POSIX FIFO scheduling in a nonstandard way.

In this section, we describe how the RCL runtime extends the core algorithm to
always ensure liveness and responsiveness in legacy applications on mainstream op-
erating systems, and we present the pseudocode of key parts of the RCL runtime. We
later describe statistics that are gathered by the RCL runtime and that can be used to
help optimize the placement of locks on servers.

3.2.1. Ensuring Liveness and Responsiveness. Three kinds of situations may induce live-
ness or responsiveness issues if the server uses a single servicing thread. First, the
servicing thread may be blocked at the operating system level. This can happen when
a critical section tries to acquire a blocking lock (e.g., a POSIX lock on Linux or Solaris)
that is already held, performs I/O, or waits on a condition variable, for instance. Second,
the servicing thread may enter a busy-wait loop if a critical section tries to acquire a
nested RCL or a lock that uses busy-waiting, or if it uses some other form of ad hoc
synchronization [Xiong et al. 2010]. Finally, the servicing thread may be preempted
at the operating system level, either because its timeslice expires [Ousterhout 1982]
or because of a page fault. Blocking and waiting within a critical section may cause a
deadlock, because the servicing thread is unable to execute critical sections associated
with other locks, even when doing so may be necessary to allow the blocked critical
section to unblock. Additionally, blocking, of any form, including waiting and preemp-
tion, degrades the responsiveness of the server because a blocked thread is unable to
serve other locks managed by the same server. In order to solve these issues, RCL uses
a pool of servicing threads on each server to ensure liveness and responsiveness, as is
described next.

Ensuring Liveness. Blocking and waiting within a critical section raise a problem of
liveness, because a blocked servicing thread cannot execute critical sections associated
with other locks, even when doing so may be necessary to allow the blocked critical
section to unblock. A pathological case happens when the servicing thread busy-waits
in a critical section while waiting for a variable to be set by another critical section
that is handled by the same server but is protected by a different lock: this situation is
illustrated by clients c2 and c3 in Figure 2. To ensure liveness, a pool of servicing threads
is maintained on each server to ensure that when a servicing thread blocks or waits,
there is always at least one other free servicing thread that is not currently executing a
critical section, and that this servicing thread will eventually be scheduled. To ensure
the existence of a free servicing thread, the RCL runtime provides a management
thread, which is activated regularly at each expiration of a timeout (set to the operating
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Fig. 2. Ad hoc synchronization example.

system’s timeslice value) and runs at highest priority. When activated, the management
thread checks that at least one of the servicing threads has made progress since the
last activation of the management thread, using a server-global flag is_alive. The
management thread clears this flag just before sleeping, and any servicing thread that
enters a critical section sets it. If the management thread observes that is_alive is
cleared when it wakes up, it suspects that all servicing threads are either blocked or
waiting. In this case, it checks that no free thread indeed exists in the pool of servicing
threads and if so, it adds a new one.

Ensuring Responsiveness. Blocking, of any form, including waiting and preemption,
degrades the responsiveness of the server because a blocked servicing thread is unable
to serve other locks managed by the same server. The RCL runtime implements a
number of strategies to improve responsiveness issues introduced by the underlying
operating system and by RCL design decisions.

As was explained in Section 2, a well-known problem in the use of locks is the risk
that the operating system will preempt a thread at the expiration of a timeslice while
it is executing a critical section, thereby extending the duration of the critical section
and increasing contention [Ousterhout 1982]. RCL dedicates a pool of threads on each
dedicated server hardware thread to the execution of critical sections, which makes
it possible to manage these threads according to a scheduling policy that does not use
preemption. The POSIX FIFO scheduling policy is used, because it both respects prior-
ities, as is needed to ensure liveness, and allows threads to remain scheduled until they
are blocked or manually yield the processor. The use of the FIFO policy, however, raises
a liveness issue: if a servicing thread is executing a busy-wait loop, it will never be
preempted by the operating system, and a free thread will never be scheduled. To solve
this, when the manager thread detects no progress, it makes sure a servicing thread
is scheduled by first decrementing and then incrementing the priorities of the other
threads, effectively moving them to the end of the FIFO queue. The use of the FIFO
policy also implies that when a servicing thread unblocks after blocking in a critical
section, it is placed at the end of the FIFO queue. If there are many servicing threads,
there may be a long delay before the unblocked thread is rescheduled. To minimize
this delay, the RCL runtime tries to always minimize the number of servicing threads:
each servicing thread regularly checks that there are no other free servicing threads,
and if there are, it leaves the pool, since another thread will be able to handle requests.

The RCL management thread ensures the liveness of the server but only reacts
after a timeout. When all servicing threads are blocked in the operating system, the
operating system’s scheduler is exploited to schedule a new free thread immediately.
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Concretely, the RCL runtime maintains a backup thread that runs at a lower priority
than all servicing threads. The FIFO scheduling policy never schedules a lower
priority thread when a higher priority thread that is not blocked exists, and thus the
backup thread is only scheduled when all servicing threads are blocked. When the
backup thread is scheduled, it adds a new servicing thread, which immediately
preempts the backup thread and can service the next request.

Finally, when a critical section needs to execute a nested RCL managed by the
same hardware thread and the lock is already owned by another servicing thread, the
servicing thread yields the processor in order to allow the lock owner to release it.

Example. Figure 2 presents a complete example of ad hoc synchronization in a critical
section that illustrates liveness and responsiveness issues. Initially, thread t1 is the
only servicing thread, and it handles a critical section of client c1. That critical section
tries to acquire a condition variable (cond_wait() function call), causing t1 to block at
the operating system level. At that point, there is no more runnable servicing thread.
Therefore, the operating system’s scheduler immediately schedules the backup thread,
which adds a new free servicing thread t2 that immediately preempts the backup
thread. Thread t2 executes c2’s request. Client c2’s critical section causes t2 to busy-wait
on the variable var. At some point, the management thread awakens, and clears the
server-global is_alive flag. Then, at the management thread’s next activation, since
t1 is blocked in the operating system and t2 is busy-waiting, no servicing thread has
been able to set is_alive. Since there is no free servicing thread at that point, the
management thread creates a new servicing thread, t3, and schedules it, as it is now
the only servicing thread that has not recently been scheduled. Therefore, at that point,
the server has three servicing threads, t1, t2, and t3, one of which, t3, is free. When t3
executes the request from c3, it modifies the value of var.

After executing client c3’s request, thread t3 detects that it is not the only free ser-
vicing thread in the pool: while t1 is blocked at the operating system level, t2 is free,
therefore, t3 yields the processor in order to let t2 be scheduled and make progress.
Since the critical section executed by t3 has set var, thread t2 can exit its busy-wait loop
and unblock the condition variable, causing t1 to awaken. Client c2’s critical section
ends, and t2 detects that the server has two free servicing threads: itself and t3. Conse-
quently, thread t2 leaves the servicing pool. Thread t3 is then scheduled, but it notices
that there is no pending critical section. Furthermore, since it notices that another ser-
vicing thread is in the servicing pool and that thread is not free, it yields the processor
to let it make progress. Thread t1 is therefore scheduled, and it completes client c1’s
request, before noticing that two servicing threads are free, itself and t3. Consequently,
it leaves the pool of servicing threads: the server is back to its initial state, except its
only servicing thread is now t3.

3.2.2. Detailed Implementation. We now present the pseudocode of key parts of the RCL
runtime. Algorithms 2 and 3 show the functions that can be used by clients to execute
critical sections with RCL. Algorithm 4 show the pseudocode of the servicing threads,
and Algorithm 5 shows the pseudocode of the manager and backup threads.

Executing a Critical Section. We provide a function named execute_cs_lock() that
executes a critical section using RCL. When a client thread runs the execute_cs_lock()
function, it submits its request by filling the lock, context, and function fields of
its request structure (the mailbox) in the requests array, as seen in lines 14–20 of
Algorithm 2. On a RCL server, it is possible that during the execution of a critical
section on a servicing thread, the execution of a nested critical section is requested,
either (i) on the local RCL server if the lock of the nested critical section is han-
dled by the same RCL server as the lock of the outer critical section, or (ii) on a
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remote RCL server, if the two locks are handled by distinct RCL servers. Servicing
threads use the same method as clients to request the execution of a critical section
that is managed by a remote RCL server. However, in order to request the execution
of a critical section that is managed by the local RCL server, a servicing thread must
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ensure that the lock is free, and if not, wait until it is free. In order to give a chance
to the servicing thread that owns the lock to finish executing its critical section, the
thread repetitively yields the processor (lines 22 and 23) while it busy-waits for the
lock.

“Trylock” Mode. While the execute_cs_lock() function can be used instead of
traditional lock() and unlock() operations to execute a critical section using RCL,
the execute_cs_trylock() function can be used instead of a traditional trylock()
operation, such as pthread_mutex_trylock() on POSIX systems. The pseudocode
of execute_cs_trylock() is shown in Algorithm 3. Like execute_cs_lock(), exe-
cute_cs_trylock() takes three parameters: a lock, a function, and a context object.
The first byte of the context object must be reserved since it will store a Boolean value
that is equivalent to the return value of a traditional trylock() operation.

The execute_cs_trylock() function first checks whether the lock is taken; if so, it
stores the value false into the first byte of the context object to signal the client
thread that the lock was not acquired (line 15), and it runs the function locally
(line 16). If the lock was free, however, execute_cs_trylock() stores true into the
first byte of the context object (line 18) and executes the critical section using RCL
through a call to execute_cs_lock() (line 19). The execute_cs_trylock() function
also handles recursive locks, in a similar way to pthread_mutex_trylock() used with
a PTHREAD_MUTEX_RECURSIVE POSIX lock: if the lock’s is_recursive field is set to
true and the lock has already be acquired previously in a parent critical section,
execute_cs_trylock() will store true in the first byte of the context object and run
the new critical section locally (line 16).

Note that while execute_cs_trylock() is useful to support legacy applications that
use calls to pthread_mutex_trylock(), its behavior differs from a traditional trylock: a
client c that calls execute_cs_trylock() may have to wait for a significant amount of
time before its critical section is executed, since the server may execute other critical
sections before c’s.

Servicing Threads. Algorithm 4 shows the pseudocode of servicing threads. Only the
fast path (lines 12–25) is executed when the pool of servicing threads contains a single
thread. A slow path (lines 26–33) is executed when the pool contains several servicing
threads.

Lines 12–23 of the fast path implement the RCL server loop described in Section 3.1.
Note that even though a large memory block is allocated for the request array
(256KB), we only poll its first elements as was explained in Section 3.1 (the last
element we poll corresponds t the client thread with the highest identifier, and
identifiers are reused to remain low). The servicing thread indicates that it is not
free while it is executing the server loop by decrementing (line 14) and incrementing
(line 25) number_of_free_threads. Because the thread may be preempted due to
a page fault, all operations on variables shared between the threads, including
number_of_free_threads, must be atomic. However, since servicing threads of a
RCL server are all bound to that server’s dedicated hardware thread, the atomic
instructions that only use server-local data only need to be executed atomically in
the context of the threads running on the local hardware thread. Therefore, we use
hardware-thread-local versions of the atomic operations that do not request machine-
wide ownership of the cache lines they are working on (local_fetch_and_add() and
local_compare_and_swap() in the pseudocode). In x86 assembly, this is done by issuing
atomic instructions without the LOCK prefix. These local atomic operations are never
contended and they are much less costly than regular atomic instructions because
they do not require additional synchronization between hardware threads.
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In the fast path, a servicing thread executes the following operations for each client.
It first retrieves its mailbox (line 16), and checks if the execution of a critical section has
been requested by this client (line 17). If this is the case, the server tries to acquire the
corresponding lock (line 19). In lines 20 and 21, the server makes sure that no other
servicing thread has executed the critical section before the lock acquisition, which
should never occur with FIFO scheduling (no preemption during the fast path), but
may occur in the degraded version of RCL that we will describe later in this section.
Once the server holds the lock and knows which function to execute, it executes the
critical section, then signals to the client that its critical section has been executed by
resetting function to null.

The slow path is executed if the active servicing thread detects the existence of other
servicing threads (line 26). If the other servicing threads are all executing critical
sections (line 27), the servicing thread yields the processor (line 28) so that they can
be scheduled and make progress. Otherwise, it makes itself inactive (line 30), updates
number_of_servicing_threads accordingly (line 31), removes itself from the pool (line
32), and sleeps (line 33). We make sure that if a manager thread sets is_servicing
to true at the last moment, the thread will not sleep, by using a Futex on Linux, for
instance. This is needed to avoid a race condition: a lost update of the is_servicing
variable could, in this case, render number_of_servicing_threads invalid.

Management and Backup Threads. As explained in Section 3.2.1, each RCL server
runs one management thread and one backup thread, whose pseudocodes are shown
in Algorithm 5. If, on wake up, the management thread notices, based on the value of
is_alive, that none of the servicing threads has made progress since the previous time-
out, it ensures that at least one free thread will eventually exist. This is done in lines 8–
19, by first incrementing number_of_servicing_thread and number_of_free_threads
(a new, free servicing thread will eventually be available), and then by either creating
a new servicing thread (lines 13–16), or by waking up a thread that is not currently
servicing (lines 18 and 19).

Following this, the management thread elects a servicing thread that has not been
scheduled recently (lines 20–26). To this end, the management thread and servicing
threads all possess a timestamp counter. The server uses a timestamp counter that
is increased every time it went through all threads without being able to find a
servicing thread that has not been scheduled recently. Threads that are not blocked or
busy-waiting in a critical section will eventually store this new value from the server’s
timeout into their own timeout since that is what they do every time they enter
their fast path (line 10 of Algorithm 4). Servicing threads that are blocked will all be
woken up by the server thread, one after the other, until a new cycle begins (i.e., the
server’s timestamp variable is incremented on line 26). This technique ensures that
all servicing threads that are blocked or busy-waiting are eventually given a chance
to make progress.

The backup thread (lines 30–33) simply sets is_alive to false and wakes up the
management thread. Due to its low priority, the backup thread is scheduled when
all other threads are sleeping, ensuring that a new servicing thread will quickly be
available.

Degraded Version. Using FIFO scheduling may require special privileges, such as
processes being launched using CAP_SYS_NICE on Linux or the proc_priocntl privilege
on Solaris 10. We propose a degraded version that does not use backup or management
threads on RCL servers, and servicing threads can preempt each other when they are
scheduled on the same server hardware thread. While this degraded version of RCL
performs worse when several locks are handled by the same RCL server and when
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threads busy-wait or block in critical sections, it still makes it possible to benefit from
the full performance of RCL otherwise.

3.2.3. Statistics. The RCL runtime gathers a number of statistics described in the
following. These statistics can be used to help optimize the placement of locks on
servers, as will be shown in Section 5.4.5.a.

—Cache misses. The RCL server measures the average number of cache misses per
critical section, optionally including cache misses caused by the RCL algorithm itself.

—Use rate. The use rate measures the server workload. It is defined as the total
number of executed critical sections in iterations where at least one critical section is
executed, divided by the number of client threads. Therefore, a use rate of 1.0 means
that all elements of the array contain pending critical section requests, whereas a
low use rate means that the server spends most of its time waiting for critical section
execution requests.

—False serialization rate. The false serialization rate is defined as the average number
of different locks that critical sections use during one active iteration of the server
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loop, divided by the number of client threads. It measures the amount of false se-
rialization, that is, the needless serialization of independent critical sections that
happens when one server handles several locks.

Other statistics are provided by the RCL runtime, such as the slow path rate that
measures how often the server uses the slow path, as defined in Section 3.2.2; the num-
ber of times the manager thread gets woken up; the number of times the is_alive flag
was not set (see Algorithm 5); and the total number of critical sections. These statistics
can be useful for debugging and optimization, but are not used in the evaluation.

3.3. Comparison with Other Locks

We now discuss and compare the behavior of RCL and all lock algorithms presented in
the previous section, with the exception of: (i) GLocks, because they cannot be run on
existing architectures, (ii) Smartlocks, because they are not an actual lock algorithm,
but a technique that makes it possible to switch between lock algorithms instead, and
(iii) hierarchical locks, for the sake of simplicity, since a large number of hierarchical
locks have been designed, often by extending a nonhierarchical lock algorithm or by
combining several of them through Lock Cohorting [Dice et al. 2012].8

Reactivity/Performance under high contention. Locks that use busy-waiting are very
reactive under high contention because they do not require context switches between
the execution of critical sections, as is the case with blocking locks. The only exception
to this is backoff locks since the waiting time before a thread tries to acquire a lock
can be long under high contention. The basic spinlock performs very poorly under high
contention due to the fact that it busy-waits using atomic instructions on a single
synchronization variable. Backoff locks and ticket locks use two techniques to improve
performance under high contention, namely, waiting before trying to acquire the lock
or making sure that busy-wait loops are read only. Queue locks (CLH, MCS, and MCS-
TP) also perform better than the basic spinlock because they use one synchronization
variable per thread. Oyama and Flat Combining perform even better because they
execute a series of critical sections without needing synchronization between them
other than signaling each thread when its critical section has been executed. However,
Oyama and Flat Combining still use a global lock. CC-Synch, RCL, and DSM-Synch
remove the global lock completely. RCL has the added advantage that it never hands
over the role of the server, which shortens the critical path even more.

Reactivity/Performance Under Low Contention. Most lock algorithms are able to
acquire the lock instantly under low contention. Flat Combining sometimes has a
nonnegligible overhead when contention is low because it occasionally goes through
the whole list of threads after the execution of a critical section to disable inactive
nodes. RCL needs to execute more operations than other lock algorithms under low
contention: context variables have to be copied to a specific structure and back to their
original addresses, a transfer of control is always needed, and a servicing threads has
to poll as many mailboxes as there are threads before the critical section is executed.
However, we will show in Section 5.3 that this overhead remains reasonable, especially
considering that it is not located on a contended critical path.

Contended Atomic Instructions Issued on the Critical Path. The basic spinlock issues a
lot of contended atomic instructions on the critical path when many threads busy-wait
on the same synchronization variable. Backoff locks issue fewer atomic instructions

8Hierarchical locks will, however, be evaluated empirically, in relation to RCL, in Section 5.6.
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because they wait in their busy-wait loop, and ticket locks even fewer because they only
use an atomic instruction to exit the critical section. In all queue locks (CLH, MCS,
MCS-TP), Oyama, and combining locks, threads use atomic instructions to insert their
nodes into the global queue, but these atomic instructions are not located on the critical
path. Oyama and Flat Combining use an internal global spinlock, which makes them
use a significant amount of potentially contended atomic instructions on the critical
path. RCL uses neither a global synchronization variable nor global queue: while it
uses critical sections on the critical path, they are local to a single hardware thread
and therefore never suffer from contention.

Ordering and Starvation. Most lock algorithms execute critical sections in FIFO or-
der with the exception of (i) the basic spinlock and backoff locks, in which the fastest
thread to request the lock acquires it, and (ii) Oyama, since it uses a LIFO queue. For
this reason, basic spinlocks can lead to starvation (one thread that is faster than the oth-
ers may always obtain the lock first). Oyama can also cause starvation if critical sections
are added to the queue at a very high rate, that is, too fast for the thread that executes
them to ever reach the end of the queue. Starvation is impossible for Flat Combining,
because threads enqueue themselves at the head of the queue, that is, behind the com-
biner. CC-Synch and DSM-Synch use the parameter MAX_COMBINER_OPERATIONS to pre-
vent starvation. With RCL, critical sections are not served in FIFO order: at each itera-
tion of a servicing thread, critical sections are served following the ordering of threads
in the request array. However, starvation is impossible, since the fact that a servicing
thread loops over the request array ensures that when a thread t1 asks for the execution
of its critical section, at most one critical section from the same lock by another thread t2
may be executed before the execution of t1’s critical section (at most one iteration of the
server loop can be executed before reaching t1’s mailbox). According to the definitions
of fairness and unfairness given in Chabbi et al. [2015], FIFO algorithms are fully fair,
while RCL has an unfairness that is equal to the number of application threads minus
one: this is the maximum number of critical sections that can be executed by threads
ti that posted their request after t1, before t1’s critical section is finally executed.

Resistance to Preemption. All locks that use busy-waiting and a global queue are
prone to convoys, as will be seen in Section 5.4.5.b. Therefore, their resistance to
preemption is very low. The resistance to preemption of other locks is moderate, except
for MCS-TP, which was specifically designed to be resistant to preemption and convoys.
RCL is immune to the issue of preemption inside of a critical section since its server
threads are always scheduled on a dedicated hardware thread and therefore cannot be
preempted by an application thread: the server always makes progress.

Parameters. Locks that do not use parameters always run at optimal performance,
while locks that use parameters may require fine-tuning to perform well. In particular,
MCS-TP is hard to configure because it uses five parameters, and some of them, such as
the upper bound on the length of critical sections, depend both on the architecture and
the application used: such values can only be determined precisely through complex
profiling. The parameters used by Flat Combining make it possible to choose between a
lenient or aggressive cleanup policy for the queue, but both policies can be detrimental,
therefore, choosing efficient parameters requires empirical evaluation. CC-Synch and
DSM-Synch use a single parameter for which a large value can safely be chosen for
good performance, even if too large a value may be detrimental to fairness. While
RCL does not use any parameters, deciding how many servers to use and where to
place each lock is sometimes needed to reach optimal performance. This process can be
time-consuming, as will be shown in Section 5.4.5.
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Data Locality of Internal Structures. The basic spinlock and the backoff locks have
very poor data locality on their shared synchronization variable because all threads con-
currently apply compare-and-swap operations on it: the shared variable “ping-pongs”
between the caches of all cores. This effect is reduced in the case of the ticket lock since
most threads only read the synchronization variable in their busy-wait loop. CLH has
better locality because different threads busy-wait on different synchronization vari-
ables. MCS and MCS-TP have the advantage of only busy-waiting on local condition
variables, even though this should not improve performance on modern cache-coherent
architectures, where synchronization variables are brought to local caches during busy-
wait loops. Oyama and Flat Combining use both a global lock and a local synchroniza-
tion variable for each node in the global queue, therefore, their data locality is moderate
for internal structures. CC-Synch uses one synchronization variable per thread, like
CLH. DSM-Synch, like MCS, also ensures that each thread always busy-waits on its
own queue node, therefore, it should waste less bandwidth and be more reactive on
non-cache-coherent architectures.

Like MCS, MCS-TP, CLH, CC-Synch, and DSM-Synch, RCL uses one synchronization
variable per client: the locality of mailboxes is similar to that of the thread nodes in
other algorithms, with the advantage that mailboxes are cache-aligned and stored
in an array, which avoids unnecessary cache misses, removes the possibility of false
sharing, and facilitates prefetching. The fact that RCL servers are bound to dedicated
hardware threads has additional advantages: all data and synchronization structures
are allocated on the local NUMA bank, and no application thread can be allocated on
the dedicated hardware thread, which reduces the possibility of application threads
polluting the caches of the thread that executes critical sections.

Data Locality in Critical Sections. Oyama, Flat Combining, CC-Synch, and DSM-
Synch all improve data locality by making threads execute sequences of critical sec-
tions: since critical sections of a given lock often protect a set of shared variables, these
variables are likely to remain in a local cache during the execution of several critical
sections. Similarly to combining locks, RCL improves data locality by making some
threads execute sequences of critical sections. Since critical sections of a given lock of-
ten protect a set of shared variables, these variables may remain in a local cache during
the execution of at least part of a sequence. However, RCL takes one step further by
ensuring that these threads are bound to a specific server hardware thread. Therefore,
the data they handle never has to be migrated between hardware threads: the shared
data that is accessed by critical sections is likely to remain in the server’s caches dur-
ing the whole execution. Moreover, the fact that no client thread may be scheduled on
server hardware threads removes the risk of application threads polluting the caches
with their data.

Usability in Legacy Applications. Legacy applications typically use blocking locks,
such as the POSIX locks on Linux or Solaris, because in contrast with other lock
algorithms, blocking locks work properly on architectures with a single hardware
thread. Legacy applications can easily switch to the basic spinlock to backoff locks
or to ticket locks, because they use the same interface as standard operating system
locks (POSIX locks, for instance): their functions that acquire and release the lock take
only one argument that represents the lock. In the case of queue locks, the functions
that acquire and release the lock typically take two arguments: the list of requests
for that particular lock (which can be seen as representing the lock itself), and the
thread’s current node for that particular lock. While global thread-local variables can
solve this issue, they are not available in all environments. Alternatively, the K42 lock
[Auslander et al. 2003], a variant of MCS that takes a single argument that represents
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the lock, can be used. Implementing condition variables for the basic spinlock or queue
locks using system primitives (POSIX primitives, for instance) is trivial. Finally, using
Oyama or combining locks in legacy applications is difficult for two reasons. First, like
RCL, these locks need critical sections to be encapsulated into functions, which re-
quires a lot of code refactoring. We solved this problem, however, with our reenginering
tool (presented in Section 4.2), which can be directly used for these lock algorithms.
A more important problem, however, is that since server/combiner threads are normal
application threads, any application thread could unpredictably block when it executes
a critical section from another thread that blocks on a condition variable, which could
cause undesirable unexpected effects such as deadlocks. On the other hand, RCL is
able to handle condition variables thanks to a pool of threads on the servers, without
risking putting the combiner to sleep as is the case with combining locks.

4. TOOLS

In this section, we describe two tools that were written to facilitate the use of
RCL for application developers: a profiler that makes it possible to predict with
reasonable accuracy which locks from which applications may benefit from RCL, and
a reengineering tool that automatically transforms the code of legacy applications to
allow them to use RCL.

4.1. Profiler

In order to help the user decide which locks to transform into RCLs, a profiler was
implemented as a dynamically loaded library that intercepts calls involving POSIX
locks, condition variables, and threads. An application that may benefit from RCL either
suffers from high lock contention or its critical sections suffer from poor data locality.
The profiler measures two metrics: (i) the overall percentage of time spent in critical
sections including lock acquisitions and releases, which helps detect applications that
suffer from high lock contention, and (ii) the average number of cache misses in critical
sections, which helps detect applications whose critical sections suffer from poor data
locality. As shown in the evaluation (Section 5), these metrics make it possible to
reliably predict if an application can benefit from RCL. The profiler can also measure
the two metrics for a specific lock, identified by its allocation point,9 and thus provide
per-lock information. Measuring the global time spent in critical sections and the
global number of cache misses in critical sections make it possible to identify which
applications may benefit from RCL, and per-lock information helps decide which locks
to transform into RCLs in such an application.

4.2. Reengineering Legacy Applications

If the profiling results show that some locks used by the application can benefit from
RCL, the developer must reengineer all critical sections that may be protected by the
selected locks as a separate function that can be passed to the RCL server. This reengi-
neering amounts to an “Extract Method” refactoring [Fowler 1999]. It was implemented
with the program transformation tool Coccinelle [Padioleau et al. 2008], in 2,115 lines
of code.

The main problem in extracting a critical section into a separate function is to bind
the variables used by the critical section code. The extracted function must receive the
values of variables that are initialized prior to the critical section and read within

9The profiler identifies locks with the file name and line number where they were allocated, and returns
a list of the backtraces taken at the allocation points of each lock. Each lock is identified by a hash of the
backtrace taken at its allocation point, and the profiler can be run again with the identifier of a lock in order
to measure more precisely the two metrics for a particular lock.
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the critical section, and return the values of variables that are updated in the critical
section and read afterward. Only variables local to the function are concerned; alias
analysis is not required because aliases involve addresses that can be referenced from
the server. Listing 1 shows a critical section from the Raytrace benchmark from the
SPLASH-2 suite that will be presented in Section 5.1, and Listing 2 shows how it is
transformed by the reengineering. The critical section of lines 4–14 of Listing 1 is pro-
tected by the ALOCK() and AULOCK() macros that are transformed by the C preprocessor
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into calls to the POSIX library functions pthread_mutex_lock() (lock acquisition) and
pthread_mutex_unlock() (lock release), respectively. After transformation, the code of
this critical section is encapsulated into the cs() function declared at line 6 of Listing 2,
and a union named context whose instances will be able to hold the variables used
by the critical section is defined at line 1 of Listing 2. To run the critical section, an
instance of the context union is declared and filled with the values of the variables
that are read by the critical section. The critical section is then run through a call
to the execute_cs_lock() function from the RCL runtime (line 35 of Listing 2): this
function takes three parameters: the lock, the address of the function that encapsu-
lates the critical section, and the address of the instance of the context union. Finally,
results are read from the context union (line 36 of Listing 2), since this union contains
either the input (variables that are read) or the output (variables that are written) of
the critical section, before and after the call to execute_cs_lock(), respectively. As an
optimization, the context can be stored in the empty space at the end of the client’s
cache line (hatched space in Figure 1). The reengineering also addresses a common
pattern in critical sections, illustrated in lines 7–11 of Listing 1, where a conditional
statement in the critical section releases the lock and returns from the function. In
this case, the code is transformed such that the critical section returns a flag value
indicating which lock release operation ends the critical section, and the code following
the call to execute_cs_lock() executes the code following the lock release operation
that is indicated by the corresponding flag value (line 37 of Listing 2).

The reengineering tool also modifies various other POSIX functions to use the RCL
runtime. In particular, the function for initializing a lock receives additional arguments
indicating whether the lock should be implemented as an RCL. Finally, the reengineer-
ing tool also generates a header file, incorporating the profiling information, that the
developer can edit to indicate which lock initializations should create POSIX locks and
which ones should use RCLs. The header also makes it possible to choose which RCL
server is used for each lock.

5. EVALUATION

This section describes how developers can use RCL to improve the performance of their
applications, and evaluates the performance of RCL relative to other lock algorithms.
All graphs and tables present data points and values that are averaged over five runs.
Section 5.1 describes the machines used in the evaluation, and performs a comparative
analysis of their sequential and parallel performance. Section 5.2 presents Liblock, a
library that makes it possible to easily switch between lock algorithms in legacy appli-
cations. Liblock is used for all performance experiments in this evaluation. Section 5.3
describes a microbenchmark that is used to compare the performance of RCL with that
of other lock algorithms. Section 5.4 presents a methodology to help developers detect
which applications may benefit from RCL. This methodology is then applied to a set of
legacy applications, and RCL as well as other lock algorithms are evaluated on the sub-
set of applications that were identified as being good candidates for RCL. Section 5.5
presents additional, specialized experiments that evaluate some overheads of RCL and
briefly discusses an energy-aware version of RCL. Finally, Section 5.6 compares RCL
with additional lock algorithms.

5.1. Analysis of the Machines Used in the Evaluation

We perform a comparative analysis of the two machines used in the evaluation, in order
to better understand the impact of their different architectures on the performance of
RCL and other lock algorithms.

The first machine used in the evaluation is Magnycours-48, an x86 machine with
four 2.1GHz AMD Opteron 6172 CPUs (the Opteron 6100 series is code named
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“Magny-cours,” hence the name of the machine). It runs Ubuntu 11.10 (Oneiric Ocelot)
with a 3.9.7 Linux kernel, Glibc 2.13, Libnuma 2.0.5, and GCC 4.6.1. Each of the four
CPUs comes with 12 cores split across two dies: Magnycours-48 has 48 cores in total,
that is, 48 hardware threads, since Opterons do not use hardware multithreading.
Each die is a NUMA node, therefore, Magnycours-48 has eight NUMA banks. The in-
terconnect links between the eight dies do not form a complete graph: each die is only
connected to the other die on the same CPU and to three remote dies. Therefore, the
diameter of the interconnect graph is two: intercore communications (fetching cache
lines from remote caches, or NUMA accesses, for instance) require at most two hops.

The second machine used in the evaluation is Niagara2-128, a SPARC machine with
two 1.165GHz Sun UltraSPARC T2+ CPUs (code named Niagara 2). It runs Solaris 10
(SunOS 5.10) with GCC 4.7.1. Each CPU comes with eight cores on a single die, and
each core runs eight hardware threads thanks to fine-grained multithreading [Shah
et al. 2007]: Niagara2-128 has 128 hardware threads in total. The main memory is
interleaved (NUMA is disabled) and the two CPUs are connected with a single inter-
connect link.

Cache Access Latencies. We used the Memal benchmark [Boyd-Wickizer et al. 2008]
to measure cache access latencies on Magnycours-48 and Niagara2-128. Figure 3(a)
summarizes the results, with latencies converted from cycles (c) to nanoseconds (ns)
to ease comparison between the two machines. On Niagara2-128, hardware threads
access data from the local core up to 25.8 times slower than on Magnycours-48, and
they access data from a different core on the local die up to 2.9 times slower than on
Magnycours-48. However, Niagara2-128 can almost be twice as fast as Magnycours-48
when it comes to accessing data that is located on a remote die because it has a faster
interconnect and its two CPUs are directly connected (at most one hop is needed).
These results show that Magnycours-48 is slower when it comes to uncontended inter-
die communication, but Niagara2-128 has slower uncontended communication inside
its dies. Since Magnycours-48 has eight dies with six hardware threads on each, instead
of only two dies with 64 hardware threads on each for Niagara2-128, Magnycours-48
uses more interdie communication, which is its weak point, and Niagara2-128 uses
more communication that is local to its dies, which is also its weak point. To conclude,
it is difficult to determine which of the two machines has the best performance when
it comes to cache access latencies.

Contention Overhead. We wrote a custom microbenchmark to assess the overhead of
contention on regular and atomic instructions on Magnycours-48 and Niagara2-128.
This benchmark runs a monitored thread that executes an instruction 1,000,000 times
on a shared variable, and measures the execution time of every 1,000th instruction:
not all of the instructions are monitored in order to prevent the performance mea-
surements from causing too much overhead. The measurements are then averaged in
order to produce an estimate of the execution time of the monitored instruction, which
can either be an assignment (store) or an atomic Compare-And-Swap (CAS) instruc-
tion. Concurrently, the benchmark runs nonmonitored threads that repeatedly write
random values to the shared variable used by the monitored instruction, in order to
simulate contention. The more hardware threads are added, the more contended the
shared variable becomes. All threads (monitored or nonmonitored) are bound to sep-
arate hardware threads. Threads are bound in such a way that they are first spread
on the first hardware thread of each core of the first die, then CPU, and so on until
they are bound to the first hardware thread of every core in the machine. After this,
the same process continues with the second hardware thread of each core, until all
hardware threads are used. For Magnycours-48, since each core runs a single hard-
ware thread, this amounts to a compact binding policy. For Niagara2-128, however, the
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Fig. 3. Cost of cache accesses and instructions.

binding policy populates all cores with a single thread at first, in order to see the effects
of write-access contention on the cache and memory hierarchy independently from the
contention between write operations of different hardware threads on the same core.
On Magnycours-48, the shared variable can either be allocated on the NUMA bank of
the monitored hardware thread, or on a remote NUMA bank.

Figure 3(b) summarizes the results of the experiment. On Magnycours-48, when
only one thread (the monitored thread) is used, the cost of a store (CAS, respectively)
instruction is 63.4ns (84.1ns, respectively). In this case, the shared variable is always
stored in the L1 cache. When two threads are used, they are located on two cores of
the same die, and the nonmonitored thread often brings the shared variable to its local
L1 cache, invalidating it from the monitored thread’s L1 and L2 caches. However, even
though the difference in latency between accessing a variable that resides in a local
L1 cache and a remote L1 cache is only 16.7ns (see Figure 3(a)), using two threads
instead of one increases the costs of store and CAS instructions by at least 94.3ns.
Therefore, the overhead of adding another thread is not only caused by the additional
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cache misses: the synchronization mechanisms from the cache-coherence protocol in-
duce an overhead when two threads try to write to the same cache line concurrently.
Adding more threads keeps increasing the cost of store and CAS instructions to sev-
eral thousand nanoseconds: using a store (CAS, respectively) instruction under high
contention is up to 124.6 (107.2, respectively) times costlier than executing it locally
under low contention. Accessing a shared variable that belongs to a local NUMA bank
has a lower latency than accessing data that belongs to a remote NUMA bank (−28.1%
for store instructions, −52.7% for CAS instructions), even though the shared variable
is usually directly transferred between caches during the benchmark and no RAM ac-
cess is needed. This is due to the HT (HyperTransport) Assist technology: when the
monitored thread repeatedly accesses a variable that was allocated on a remote NUMA
bank, all messages have to transit by the die whose memory controller is connected to
that NUMA node, because the L3 cache of that die contains the NUMA node’s cache
directory. On the contrary, when the monitored thread accesses data that belongs to
its own NUMA node, this indirection is not needed, because the monitored thread can
directly access the corresponding cache directory on its local die. Finally, store and
CAS instructions have similar costs on Magnycours-48. CAS instructions are more
expensive than store instructions under low contention (+55.0% with 24 threads) and
under high contention when accessing data from a remote NUMA bank (+27.6% with
48 threads), however, they scale better than store instructions when they are performed
on a local NUMA bank (−15.9% with 48 threads).

On Niagara2-128, executing store and CAS instructions is faster than on
Magnycours-48 under low contention (24.1% faster for store instructions and 23.5%
faster for CAS instructions with one thread). Moreover, Niagara2-128 also scales bet-
ter than Magnycours-48 on this benchmark: Niagara2-128 is up to 48.2% faster for
store instructions and 59.6% faster for CAS instructions than Magnycours-48 when
using 48 hardware threads. Increasing the number of threads beyond 48 threads keeps
increasing the overhead of store and CAS instructions. In fact, the overhead increases
linearly with the number of threads from 24 threads onwards, and with 128 threads,
executing a single store (CAS, respectively) instruction takes 263.8 (198.7, respectively)
times longer than executing it locally under low contention. Finally, even though CAS
instructions are 34.0% slower than store instructions under low contention, they per-
form similarly under moderate to high contention.

To conclude, Niagara2-128 is able to perform more write accesses to a cache line than
Magnycours-48: its architecture resists better when contention is high for concurrent
accesses to a cache line.

Sequential vs. Parallel Performance. The second version of the Stanford ParalleL Ap-
plications for SHared memory (SPLASH-2) is a benchmark suite that consists of par-
allel scientific applications for cache-coherent architectures [University of Delaware
2007; Singh et al. 1992; Woo et al. 1995]. We run the applications from the SPLASH-2
suite on both Magnycours-48 and Niagara2-128, for 1, 48, and 128 threads; the results
are shown in Figure 3(c). In the single-threaded version, Magnycours-48 clearly outper-
forms Niagara2-128, with performance improvements ranging between 6.1 times and
12.0 times. On average, Magnycours-48 is 8.9 times faster than Niagara2-128. With
48 threads, Magnycours-48 still outperforms Niagara2-128 most of the time, however,
the performance gap is reduced, and on one benchmark (Raytrace/Car), Niagara2-128
manages to outperform Magnycours-48. Niagara2-128 is able to run 64 threads on the
same die and can therefore benefit from faster communications than Magnycours-48 (no
need to go through the interconnect), which helps compensate for its very low sequen-
tial performance. Niagara2-128 outperforms Magnycours-48 on Raytrace/Car because
this benchmark spends most of its time performing synchronization (lock acquisitions)
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instead of sequential computations, as will be seen later in this section. When we use
128 threads, Magnycours-48 is still much faster than Niagara2-128 for most bench-
marks, even though it only has 48 hardware threads. Niagara2-128 manages, however,
to outperform Magnycours-48 on three benchmarks (Radiosity, Ocean Contiguous, and
Ocean Noncontiguous) thanks to its larger amount of hardware threads.

In conclusion, Niagara2-128 has much worse sequential performance than
Magnycours-48. Its faster communication between hardware threads and larger
number of hardware threads make it possible to reduce the performance gap with
Magnycours-48 when a lot of threads are used. Still, it is clearly outperformed by
Magnycours-48 on most applications of the SPLASH-2 suite.10

Summary. Magnycours-48 is a machine that has much faster sequential performance
and faster intradie communication, while Niagara2-128 is a slower machine that some-
times exhibits better performance when it comes to communication between hardware
threads, especially under high contention. However, the faster communication and
larger amount of hardware threads of Niagara2-128 is not sufficient to make it per-
form better than Magnycours-48 on a parallel benchmark suite. Since Magnycours-48
has better sequential performance relative to its communication performance than
Niagara2-128, it can be expected that synchronization will be more of a bottleneck
on Magnycours-48 than on Niagara2-128. The rest of this section will confirm this
intuition.

5.2. Liblock

In this evaluation, we compare the performance of RCL with that of other lock al-
gorithms on a microbenchmark and on other applications. For clarity, in all sections
other than 5.6, we only compare the performance of RCL with that of a subset of the
lock algorithms that were mentioned in this article. This subset of lock algorithms is
the following: the basic spinlock, a blocking lock (we use the POSIX implementation
provided by Linux or Solaris and simply refer to it as the “POSIX lock,” for short, in this
evaluation), MCS, MCS-TP, Flat Combining, CC-Synch, and DSM-Synch, all of which
were presented in Section 2. These lock algorithms are (i) a very basic lock algorithm
(the basic spinlock), (ii) a very common lock algorithm (a blocking lock), (iii) queue
locks (MCS and MCS-TP), and (iv) combining locks (Flat Combining, CC-Synch, and
DSM-Synch). Two of these algorithms (CC-Synch and DSM-Synch) are state-of-the-art
lock algorithms that were designed at the same time as RCL. CLH is not part of the
chosen lock algorithms since it is similar to MCS. Oyama was also not chosen, because
other combining locks use the same basic idea as Oyama, with clear improvements,
as also explained in Section 2.2. Since MCS-TP is a lock algorithm that only aims to
improve the performance of MCS when threads often get preempted, it is only evalu-
ated in experiments that sometimes use more application threads simultaneously than
there are hardware threads on the machine, that is, more threads use the contended
locks than there are hardware threads on the machine, since in our experiments, all
contended locks are used by all application threads. Finally, hierarchical locks (includ-
ing Cohort Locks) are not part of the subset of chosen lock algorithms because they
focus on improving performance on architectures that have a strong cache and memory
hierarchy, which is not the main focus of RCL: a hierarchical version of RCL could be
designed, possibly using the Lock Cohorting [Dice et al. 2012] technique described in

10Interestingly, it can be seen in Figure 3(c) that adding more threads when executing the SPLASH-2
applications often worsens performance instead of improving it: the SPLASH-2 suite was released in the
1990s, when multi-CPU systems only featured a few CPUs with low sequential performance. Such legacy
applications are often unable to scale on newer systems, and increasing the number of threads increases
contention on shared resources such as locks and more generally, cache lines, which decreases performance.
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Section 2.4. Most of the algorithms that were left out will still be evaluated against
RCL on a microbenchmark in Section 5.6.

In order to ease the comparison of lock algorithms, we wrote a library named Liblock.
This library makes it possible to easily switch between lock implementations in an
application. To use Liblock, the application must use critical sections that are encapsu-
lated into functions, since Liblock supports combining locks and RCL. Critical sections
are already encapsulated into functions in our microbenchmark (see Section 5.3), and
the legacy applications used in Section 5.4 are all transformed using our reengineer-
ing tool described in Section 4.2. Using transformed applications instead of replacing
the functions that acquire and release the locks has negligible performance impact for
noncombining locks.

Liblock’s extensible design makes it possible for developers to make it support any
lock algorithm. It comes with an implementation of each of the lock algorithms used in
this evaluation. In the next paragraphs, we give more information on these implemen-
tations.

Lock Implementations in the Liblock. For other lock algorithms than RCL, we use
official implementations when they are available. Special attention is given to pre-
serve memory barriers, prefetcher hints, and on Solaris, hints to prevent threads from
being preempted (schedctl_start()/schedctl_stop() function calls); we occasionally
add some of these elements to the official implementations when we find they improve
performance. RCL aligns its mailbox structure on cache lines and allocates server data
structures on the server’s NUMA bank. In order to be as fair as possible, the nodes in
the lists of the queue locks (MCS and MCS-TP) and combining locks (Flat Combining,
CC-Synch, and DSM-Synch) are cache aligned and allocated on their thread’s local
NUMA bank (threads are bound in most experiments, as explained in Section 5.4.2).
Recommended parameter values are used when available. Moreover, we partially ex-
plore the parameter space when needed in order to ensure that lock algorithms use
satisfactory values for their parameters.

The implementation of MCS is straightforward and does not use any parameters.
For MCS-TP, we use the implementation provided by the authors [He et al. 2005b].
MCS-TP uses three parameters: (i) an upper bound on the length of critical sections,
for which we choose a value of 10ms: this value is chosen by measuring the length of
the critical sections of all applications used in the evaluation and by picking the lowest
possible upper bound with a safety margin in order to account for variance; (ii) the
approximate length of time it takes a thread to see a timestamp published on another
thread: we choose a value of 10μs since this value is sufficient to prevent all deadlocks;
and (iii) the maximum amount of time spent waiting in the queue: we choose a value
of 50μs, which is the value used in the original paper proposing MCS-TP [He et al.
2005a]. Exploring the parameter space locally shows that these values constitute a
local optimum. For Flat Combining, we use the original authors’ code [Hendler et al.
2010b], as well as the parameter values they use. The cleanup frequency is set to 100,
and the cleanup threshold is set to 10. Again, local exploration of the parameter space
shows that Flat Combining performs well with these parameter values.

CC-Synch and DSM-Synch use a single parameter, MAX_COMBINER_CS, which specifies
the maximum number of critical sections a combiner services before handing over the
role of combiner to another thread (see Section 2.3.3). The original paper [Fatourou
and Kallimanis 2012] recommends using a value of n × h with n being a small integer.
The implementation proposed by the authors [Fatourou and Kallimanis 2011] uses a
value of n = 3. It corresponds to a value of MAX COMBINER CS = 3 × hm48 = 144 for
Magnycours-48, and MAX COMBINER CS = 3 × hn128 = 384 for Niagara2-128. Figure 4
shows the results of the microbenchmark at highest contention (delay of 100) when

ACM Transactions on Computer Systems, Vol. 33, No. 4, Article 13, Publication date: January 2016.



13:34 J.-P. Lozi et al.

Fig. 4. Influence of MAX_COMBINER_CS on CC-Synch and DSM-Synch.

MAX_COMBINER_CS varies between 1 and 500. Both 144 and 384 are located in an area of
the graph where the latency of CC-Synch and DSM-Synch is minimal; therefore, these
values are used for MAX_COMBINER_CS.

On Magnycours-48, the Liblock uses the optimized RCL runtime described in
Section 3.2. On Niagara2-128, however, we were not granted proc_priocntl privi-
leges and therefore, on that machine, the Liblock uses the degraded version of the RCL
runtime that was described in the same section.

5.3. Microbenchmark

We wrote a microbenchmark in order to measure the performance of RCL relative to
other lock algorithms. For other locks than RCL, the microbenchmark executes critical
sections repeatedly on all h hardware threads11 (one software thread per hardware
thread, bound), except one that manages the lifecycle of the threads. In the case of
RCL, critical sections are executed on only h−2 hardware threads, since one hardware
thread manages the lifecycle of threads and another one is dedicated to a RCL server.
Only one RCL server is needed, because all critical sections are protected by the same
lock. The microbenchmark varies the degree of contention on the lock by varying the
delay between the execution of the critical sections: the shorter the delay, the higher the
contention. The microbenchmark also varies the locality of critical sections by making
them read and write either one or five cache lines. To ensure that cache lines are not
prefetched, they are not contiguous (Magnycours-48’s prefetcher always fetches two
cache lines at a time), and the address of the next memory access is built from the
previously read value [Yotov et al. 2005] when accessing cache lines. This technique is
similar to the one used by our benchmark that was used to fine-tune the second version
of the profiler, as described in Section 4.1.

Magnycours-48. Figure 5(a) presents the average execution time of a critical section
(top) and the number of L2 cache misses (bottom) when each thread executes 10,000
critical sections that each access one shared cache line on Magnycours-48. This exper-
iment mainly measures the effect of lock access contention. Figure 5(b) presents the
increase in execution time when each critical section accesses five cache lines instead.
This experiment focuses more on the effect of data locality of shared cache lines. In
practice, as will be seen in Figure 8, in the evaluated applications, most critical sections
trigger between one and five cache misses; therefore, performing either one or five cache
line accesses is realistic. Highlights of the experiment are summarized in Figure 5(c).

On Magnycours-48, under high contention (left part of the graph), with five cache
line accesses, RCL is several times faster than all other lock algorithms. CC-Synch
and DSM-Synch are ∼323% slower than RCL, even though they are state-of-the-art

11In this section, the total number of hardware threads of a machine is always noted h. The total num-
ber of hardware threads of Magnycours-48 (Niagara2-128, respectively) is noted hm48 (=48) (hn128 (=128),
respectively).
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Fig. 5. Microbenchmark results on Magnycours-48.

algorithms that were published shortly before RCL. Both algorithms have compara-
ble performance, as expected on a cache-coherent architecture (see Section 2.3.3). Flat
Combining, on which these algorithms are based, performs 49% slower than they do:
the removal of the global lock of Flat Combining for handing over the role of combiner
is a very effective optimization. MCS is much slower than combining locks: it is ∼277%
slower than CC-Synch and DSM-Synch, and 153% slower than Flat Combining. This
overhead comes from the fact that with MCS and noncombining locks, synchroniza-
tion between two threads is necessary between the execution of two critical sections,
whereas combining locks execute dozens of critical sections consecutively without any
synchronization, as long as the list of requests is full. Let hm48 = 48 be the number
of hardware threads provided by Magnycours-48. Since, under high contention, all
hm48 − 1 = 47 threads are waiting for the execution of a critical section, on average,
threads have to wait for the execution of hm48 −2 = 46 other critical sections before they
can execute theirs. Therefore, the synchronization overhead between two threads in
the list is paid 46 times when waiting for the execution of each critical section. MCS-TP
makes MCS more resilient to preemption, as shown later in this section; however, this
optimization comes at a cost: MCS-TP has an overhead of 30% relative to MCS. The
performance of the POSIX lock is reasonably good at very high contention (between
that of Flat Combining and MCS), but its performance decreases when contention is
average, becoming worse than that of MCS and MCS-TP. This comes from the fact that
the POSIX lock directly tries to acquire the lock using the global lock variable before
blocking: when contention is very high, that is, the delay between two critical sections
is very low, a thread that just released the lock is able to reacquire it immediately if
doing so is faster than waking up the next blocked thread in the list that is waiting for
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the critical section (which is bad for fairness). When contention is less high, a context
switch is needed every time the lock is handed over from one thread to the next, which
slows down every lock acquisition (but improves fairness). Again, this overhead is paid
46 times since a thread typically has to wait for the execution of 46 other critical sec-
tions before it executes its own. Finally, the basic spinlock’s performance under high
contention is very poor because its repeated use of atomic compare-and-swap instruc-
tions saturates the processor interconnect with messages from the cache-coherence
protocol.

The performance of lock algorithms at low contention does not matter as much as
the performance under high contention, because when contention is low, locks are not
a bottleneck. On Magnycours-48, most lock algorithms have comparable performance
at low contention (right part of the graph). Flat Combining performs worse than other
lock algorithms at low contention because after the execution of each critical section,
the combiner thread cleans up the global list. To do so, the combiner thread accesses
all remote nodes in the list, which increases the number of cache misses (44.2) and de-
creases performance. RCL is as efficient as other lock algorithms under low contention
when the microbenchmark only accesses one shared cache line, but when it accesses
five cache lines, RCL becomes more efficient than the others, because the additional
cache line accesses do not incur an overhead in the case of RCL: all accessed variables
remain in the cache of the server hardware thread. This is not the case with combin-
ing locks because combiners only execute multiple consecutive requests under high
contention: when contention is low, a thread that needs to execute a critical section
becomes the combiner, executes its own critical section, sees that no other thread has
added a request for the execution of a critical section, and goes back to executing its
client code. This effect is visible on the bottom part of Figures 5(a) and 5(b): at low con-
tention, while the number of cache misses is higher for most lock algorithms when five
cache lines are accessed instead of one, it remains almost constant with RCL. Finally,
Figure 5(c) shows that most cache misses incurred by RCL are on the client side, and
not on the server side: they are therefore outside the critical path of the server and do
not slow down the execution of critical sections for all clients.

Niagara2-128. Figure 6 shows the microbenchmark results on Niagara2-128. Instead
of L2 cache misses, L1 cache misses are measured on Niagara2-128, since this machine
has one L2 cache per CPU and one L1 cache per core: measuring L2 caches would
only measure communication between the first sixty-four hardware threads and the
last sixty-four hardware threads, while L1 cache misses are a much better measure
of inter-core communication. Also note that, since Niagara2-128 provides hn128 = 128
hardware threads, hn128 − 1 = 127 threads execute critical sections are used instead of
h48 − 1 = 47 on Magnycours-48. Therefore, the results of the two experiments are not
directly comparable.

The microbenchmark results are qualitatively similar on Niagara2-128 and
Magnycours-48. However, the performance gap is lower due to the fact that Niagara2-
128 has better communication performance relative to its sequential performance, as
explained in Section 5.1: on Niagara2-128, synchronization is less of a bottleneck, and
thus, using efficient locks does not improve performance as much as on Magnycours-48.
Under high contention, CC-Synch and DSM-Synch are still 62% and 82% slower than
RCL, respectively. Flat Combining is 22% slower than CC-Synch and 8% slower than
DSM-Synch. Removing the global lock is not as effective in improving performance as
it is on Magnycours-48, because, as seen in Section 5.1, the compare-and-swap instruc-
tion scales better on Niagara2-128 than on Magnycours-48. MCS is between 55% and
132% slower than combining locks, and the basic spinlock performs even worse than on
Magnycours-48, because more hardware threads are used, which increases contention.
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Fig. 6. Microbenchmark results on Niagara2-128.

Highlights. On our microbenchmark, RCL is the most efficient algorithm under high
contention, followed by combining locks, then traditional lock algorithms. RCL is not
always the fastest algorithm under low contention. Accessing five shared cache lines
instead of one in critical sections has more overhead for other lock algorithms than
RCL, since with RCL, shared cache lines remain in the cache memory of the server
hardware thread.

5.4. Applications

We now turn to the performance of RCL in multithreaded applications. We first present
a methodology designed to help developers decide whether RCL may be beneficial for
their application using the custom profiler that we presented in Section 4.1. We then
evaluate the profiler on applications from the SPLASH-2 and Phoenix 2 benchmark
suites, as well as Memcached and Berkeley DB with a TPC-C client. Next, we compare
the performance of RCL and other lock algorithms on the subset of applications and
datasets that were selected thanks to the profiler data. Finally, we give more detailed
results for the experiments from SPLASH-2/Phoenix 2, Memcached, and Berkeley DB,
respectively.

5.4.1. Profiling. Our microbenchmark makes it possible to determine at which level of
contention lock algorithms collapse, but the metric it uses for measuring contention
is the delay between the execution of critical sections: this metric is not a very good
measure of contention in real-world applications because contention is also highly
dependent on other factors such as the length of critical sections. Instead, our profiler
presented in Section 4.1 measures the percentage of execution time spent in critical
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Fig. 7. Time spent in critical sections in the microbenchmark and thresholds.

sections, including lock acquisition and release time. This metric was found to be
simple to measure, and yet it is a good estimate of lock contention, because when lock
contention is high enough that locks are a bottleneck, lock acquisition and release
operations become very long and end up taking up most of the execution time. In order
to estimate at which point the performance of locks collapse in terms of this metric
instead of the delay, we run our microbenchmark through our profiler.

Figure 7(a) shows the result of applying our profiler to our microbenchmark with
POSIX locks12 and one cache line access, on Magnycours-48: the percentage of time
spent in critical sections is plotted as a function of the delay. As seen in Figure 5(a),
on Magnycours-48, the POSIX lock collapses when the delay is under 105,000 cycles,
and RCL is better than all other lock algorithms when the delay is under 60,000 cycles.
As shown in Figure 7(a), running the microbenchmark through the profiler makes it
possible to deduce that these two values correspond to 15% and 60% of the execution
time spent in critical sections, respectively. Therefore, it can be deduced that the POSIX
lock collapses when the microbenchmark spends 15% or more of its time in critical
sections (lower threshold), and RCL performs better than all other lock algorithms
when the microbenchmark spends 60% or more of its time in critical sections (upper
threshold). These results are preserved, or improved, as the number of accessed cache
lines increases, because the execution time increases at least as much, and usually
more, for other algorithms than for RCL, due to RCL’s improved data locality.

From our microbenchmark-based analysis, we deduce the following criteria to decide
whether RCL can be beneficial to an application that uses POSIX locks on Magnycours-
48: if the application spends more than 15% (lower threshold) of its time in critical
sections, then using RCL may be beneficial, but not necessarily more than using lock
algorithms other than POSIX, and if the application spends more than 60% (upper
threshold) of its time in critical sections, using RCL may be more beneficial than using
any of the other lock algorithms. A similar analysis on Niagara2-128 shows that an ap-
plication may benefit from RCL if it spends more than 15% of its time in critical sections
(lower threshold), and that it may benefit from RCL more than from any other lock
algorithm if it spends more than 85% of its time in critical sections (upper threshold).

12We assume that the targeted applications use the default operating system implementation of POSIX locks
since it is the most commonly used lock on POSIX systems. A similar analysis could be made for any other
lock algorithm.
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Fig. 8. Profiling results for the evaluated applications on Magnycours-48.

The preceding thresholds have been found by running the microbenchmark on all
hardware threads. However, as seen later in this section, Memcached is run with half
of the hardware threads dedicated to a client that sends requests to the Memcached
instance. Therefore, the same analysis was performed with half the hardware threads
in order to find suitable thresholds for this application. All obtained thresholds are
listed in Figure 7(b).

Applications. Figure 8 (9, respectively) shows the results of the profiler for 18 ap-
plications on Magnycours-48 (Niagara2-128, respectively). The evaluated applications
are the following:

—The nine applications of the SPLASH-2 benchmark suite (parallel scientific applica-
tions, see Section 5.1). Since Raytrace is provided with two datasets, Balls4 and Car,
the results for both are shown (a third data set, Teapot, is also provided but only for
debugging purposes).

—The seven applications of the Phoenix 2.0.0 benchmark suite [Stanford University
2011; Talbot et al. 2011; Yoo et al. 2009; Ranger et al. 2007] developed at Stan-
ford. These applications implement common uses of Google’s MapReduce [Dean and
Ghemawat 2008] programming model in the C programming language. Phoenix 2
provides a small, a medium, and a large dataset for each application. The medium
datasets were used for all applications.

—Memcached 1.4.6 [Danga Interactive 2003; Fitzpatrick 2004], a general-purpose
distributed memory caching system that is used by websites such as YouTube,
Wikipedia, and Reddit. Memcached is run on half of the hardware threads of each
machine, because the other half of the hardware threads are dedicated to the client
that generates the load. This can be done without impacting performance because
Memcached’s scalability is too low for it to benefit from more than half the hardware
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Fig. 9. Profiling results for the evaluated applications on Niagara2-128.

threads of Magnycours-48 or Niagara2-128. As shown in Section 5.4.4, this is true
even when Memcached is modified to use other lock algorithms, including RCL.

Memcached uses two threads that perform tasks other than executing requests:
one dispatches incoming packets to the worker threads, and another is responsible
for performing maintenance operations on the global hashtable that stores cached
data, such as resizing it when needed. Therefore, for Memcached to run n worker
threads, n+2 hardware threads are needed: this explains why the maximum number
of hardware threads used in the experiment is hm48/2 − 2 = 22 (hn128/2 − 2 = 62,
respectively) for Magnycours-48 (Niagara2-128, respectively) instead of hm48/2 = 24
(hn128/2 = 64, respectively). The client used to generate the load is Memslap, from
Libmemcached 1.0.2 [Data Differential 2011]. Two experiments are performed: in
the first one, the client only executes Get requests (reads from the cache), and in the
second one, it only executes Set requests (writes to the cache).

—Berkeley DB 5.2.28 [Oracle Corporation 2004; Olson et al. 1999], a database engine
maintained by Oracle, with TpccOverBkDB, a TPC-C [Leutenegger and Dias 1993]
benchmark written by Alexandra Fedorova and Justin Fuston at Simon Fraser Uni-
versity. Five experiments are performed, one for each of the request types offered by
TPC-C. Berkeley DB takes the form of a library, and the client is an application that
creates one thread that uses Berkeley DB routines for each simulated client.

The left part of the tables in Figures 8 and 9 shows the time spent in critical sec-
tions for the selected applications, for different numbers of threads. The time spent in
critical sections increases when the number of threads increases, because increasing
the number of threads increases contention. A gray box in the tables indicates that the
application is not profiled for the corresponding number of threads, because even when
using one software thread per hardware thread, the time spent in critical sections is
very low (under the lower threshold), and therefore, locks are not a bottleneck. The
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right part of the tables shows the time spent in critical sections and the number of
cache misses for the most used locks.

In SPLASH-2/Radiosity, the most used lock is used to concurrently access a linked
list. In SPLASH-2/Raytrace, the most used lock protects a shared counter. In the
Phoenix benchmarks, the most used lock protect the task queue from the MapReduce
implementation. In Memcached, the most used lock protects the shared hashtable that
stores all of the cached data.13 For the contended SPLASH-2 and Phoenix 2 applica-
tions, as well as Memcached, the time spent in critical sections for the most used lock
is extremely close to the global time spent in critical sections: this shows that their
lock bottleneck comes from a single lock. Most benchmarks have a low number of cache
misses, except Memcached/Set (and, to some extent, Memcached/Get on Niagara2-128,
but 13.5 is not a very high number for L1 cache misses). For Berkeley DB, the profiler
identifies a group of eleven locks that are highly contended, because these locks are
all allocated at the same code location (same file and line number) in the Berkeley DB
library, and the profiler identifies locks by their allocation site. These locks protect the
accesses to a structure that is unique for each database, and 11 databases are used in
TPC-C. The time spent in critical sections by these 11 locks is equal to the global time
spent in critical sections, which shows that no other lock in the application is a bottle-
neck. The number of cache misses is always low in the experiments with Berkeley DB.

5.4.2. Performance Overview. The two metrics provided by the profiler, that is, the time
spent in critical sections and the number of cache misses, do not, of course, completely
determine whether an application will benefit from RCL. Many other factors (length of
critical sections, interactions between locks, etc.) affect the execution of critical sections.
However, as shown in this section, using the time spent in critical sections as the main
metric and the number of cache misses in critical sections as a secondary metric works
well: the former is a good indicator of contention, and the latter of data locality.

In order to evaluate the performance of RCL, the performance of applications listed
in Figures 8 and 9 is measured with the lock algorithms (including RCL) listed in
Figures 5(c) and 6(c). The following paragraphs describe the applications that were
selected for the evaluation based on the results of the profiler.

SPLASH-2 and Phoenix. For the SPLASH-2 and Phoenix benchmark suites, we
present results for the experiments whose time spent in critical sections is higher
than one of the thresholds identified in Section 5.3. As explained in Section 5.4.1,
since the time spent in critical sections grows with lock contention, when one of the
thresholds is reached, using RCL may be beneficial thanks to RCL’s good performance
under high contention. Since all SPLASH-2 and Phoenix applications always exhibit
a low number of cache misses in critical sections (fewer than five) in Figures 8 and 9,
data locality is disregarded as a criterion to select experiments. Based on the results
shown in Figures 8 and 9, for Magnycours-48, the results of String Match (Phoenix 2),
Raytrace/Balls4 (SPLASH-2), Linear Regression (Phoenix 2), Radiosity (SPLASH-2),
Raytrace/Car (SPLASH-2), and Matrix Multiply (Phoenix 2) are presented, since these
experiments all spend more time in critical sections than the upper threshold. On
Magnycours-48, there is no experiment whose time spent in critical sections is between
the lower and the upper thresholds. On Niagara2-128, none of the experiments from
SPLASH-2 or Phoenix 2 spends more time in critical sections than the upper threshold.
On that machine, the results of Radiosity (Phoenix 2) and Raytrace/Car (SPLASH-2)
are presented, since the time they spend in critical sections is between the lower

13Memcached 1.4.6 was the most recent version available when we were working on the initial RCL pa-
per [Lozi et al. 2012]. Since then, the multithreaded implementation of Memcached has improved, with
finer-grained locking being used to protect access to the hashtable.
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threshold and the upper threshold. Finally, the results of Raytrace/Balls4 are shown
even though the time spent in critical sections for this experiment is below the lower
threshold: here, we illustrate a case where lock contention is low enough that using
more efficient lock algorithms, including RCL, should not improve performance.

Memcached. For Memcached, on Magnycours-48, the experiment with Get requests
spends more time in critical sections than the upper threshold. Even though the exper-
iment with Set requests spends an amount of time in critical sections that is between
the two thresholds, it also exhibits a large number of cache misses in critical sections
(16.5 L2 cache misses). Therefore, a significant performance improvement can be ex-
pected in that experiment. Similarly, on Niagara2-128, both experiments (with Get and
Set requests) spend an amount of time in critical sections that is between the lower
and the upper threshold. On that machine, Memcached/Set exhibits a large number of
cache misses in critical sections (72.4 L1 cache misses), which indicates that RCL could
be beneficial for locality in this experiment. The performance of combining locks was
not evaluated with Memcached, because Memcached periodically blocks on condition
variables, and as explained in Section 2, implementing condition variables for combin-
ing locks is not trivial. Condition variables were, however, implemented for other lock
algorithms, using POSIX primitives.

Berkeley DB with TpccOverBkDb. For Berkeley DB with TpccOverBkDb, we present
results for Order Status and Stock Level requests on both machines. On Magnycours-
48, the time spent in critical sections for these two experiments, albeit high, is lower
than the upper threshold. However, the profiler underestimates the actual time spent
in critical sections for Berkeley DB, because Berkeley DB uses hybrid locks that busy-
wait for a moment before going to sleep with a POSIX lock: the busy-waiting time is
not included in the percentage of time spent in critical sections because the profiler
is written for POSIX locks. The performance of Berkeley DB with TpccOverBkDb is
not evaluated for the three other types of requests, namely, Payment, New Order, and
Delivery, because the time they spend in critical sections is extremely low (lower than
both thresholds). On Niagara2-128, the results of the profiler are similar, except for
the fact that on that machine, the experiment with Stock Level requests spends more
time in critical sections than the upper threshold.

Figure 10 presents an overview of the performance results of all the selected experi-
ments for all lock algorithms. As a reminder, some of the profiling data is shown again
in this figure, and the amount of time spent in critical sections is compared to the
lower and upper thresholds (noted tl and tu) that are suitable for each experiment. The
experiments are run with the parameters shown in Figure 10(c). Custom parameters
were used for Radiosity (SPLASH-2) in order to make the benchmark perform more
work: since SPLASH-2 applications were designed in the 1990s, some of them execute
too fast on modern architectures with default parameters to give usable results. As
explained in Section 5.4.1, Phoenix 2 uses the medium datasets for its benchmarks,
which corresponds to 100MB input files for Linear Regression and String Match, and a
500×500 matrix for Matrix Multiply. For Memcached, the hashtable is preloaded with
30,000 entries when Get requests (reads) are used, whereas it is preloaded with only
10,000 requests for Set requests, since in that experiment, the client fills the hashtable.
On Magnycours-48, each hardware thread runs 10 clients (--concurrency=480), while
on Niagara2-128, each hardware thread runs a single client (--concurrency=128). For
Berkeley DB with TpccOverBkDb, each client uses a separate thread, and each of these
threads executes 300 requests.

In the applications from Figures 10(a), 10(b), 10(d), and 10(e), that is, SPLASH-2 and
Phoenix 2 applications as well as Memcached, only one lock is replaced, as indicated
in Figures 5(c) and 6(c). Therefore, for RCL, these applications only use one server
hardware thread. In the figures of this section, when an application is run with n
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Fig. 10. Application performance overview.

hardware threads, it either means that (i) n − s application threads and s servers are
run when RCL is used, or (ii) n application threads are used for other applications. All
software threads are bound to hardware threads in all applications, except for Berkeley
DB, since in that case, when more software threads can be used than the number of
hardware threads, dynamic scheduling can make better use of the hardware threads
than static scheduling.

The numbers above the histograms (×α : η/μ) report the improvement α over the
execution time of the original application on one hardware thread, the number η of
hardware threads that gives the shortest execution time (i.e., the scalability peak), and
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the minimal number μ of hardware threads for which RCL is faster than all other lock
algorithms. The histograms show the ratio of the execution time with each of the lock
algorithms relative to the execution time with POSIX locks.

The following general trends can be observed in Figure 10: RCL is generally faster
than other lock algorithms, and when the percentage of time spent in critical sections
increases or when the number of cache misses increases, the performance improvement
offered by RCL also increases. On Magnycours-48, the percentage of time spent in
critical sections is generally higher than on Niagara2-128 for applications that use
POSIX locks (i.e., all applications other than Berkeley DB). Again, this is due to the
fact that on Niagara2-128, as was explained in Section 5.1, the cost of communication
is lower relative to its sequential performance. Therefore, synchronization is less of
a bottleneck. On Berkeley DB with TpccOverBkDb, the percentage of time spent in
critical sections is higher for Niagara2-128, but since Berkeley DB uses non-POSIX
locks, measurements of this metric by the profiler are not reliable: the performance
gains offered by RCL on Niagara2 for Berkeley DB are lower than on Magnycours-
48, which seems to indicate that Berkeley DB with TpccOverBkDb actually suffers
from more lock contention on Magnycours-48 than on Niagara2-128. We were able to
confirm this intuition with profiling tools (Oprofile and Dtrace): Berkeley DB spends a
significantly larger proportion of its execution time in busy-wait loops on Magnycours-
48 than on Niagara2-128 (at least 15% more).

5.4.3. Performance Analysis of SPLASH-2 and Phoenix Applications. As shown in Fig-
ure 10(a), on Magnycours-48, where all of the selected experiments from SPLASH-
2 and Phoenix 2 spend more time in critical sections than the upper threshold, the
performance gain for efficient lock algorithms, RCL in particular, increases with the
time spent in critical sections: the time spent in critical sections is a good indicator
of contention, and consequently, it is a good indicator of how efficient using lock algo-
rithms that resist better to contention will be. However, even though Matrix Multiply
(Phoenix 2) spends 92.2% of its time in critical sections when using POSIX locks, its per-
formance improvement with RCL is similar to that of Linear Regression (Phoenix 2)
which only spends 81.6% of its time in critical sections. This comes from the fact
that Matrix Multiply suffers from another bottleneck that we were able to identify
using Oprofile: with the standard “medium” dataset, Matrix Multiply spends a ma-
jority of its time creating threads for the Map operations. When many threads are
created simultaneously, we observe major contention on the page table lock in the
try_preserve_large_page() function. This seems to be the same bug that was found
with Metis in Boyd-Wickizer et al. [2010].

On average, the basic spinlock performs similarly to the POSIX lock. MCS and Flat
Combining improve performance significantly, with Flat Combining being slightly more
efficient than MCS most of the time. CC-Synch and DSM-Synch consistently perform
better than POSIX, the basic spinlock, MCS, and Flat Combining, and they both provide
similar results as expected on a cache-coherent machine. RCL performs significantly
better than all other lock algorithms, and the performance gain increases as the time
in critical sections increases, except for Matrix Multiply. The performance of lock algo-
rithms in these applications is consistent with the results from the microbenchmark,
except for the basic spinlock, which sometimes performs better than the POSIX lock
even though it always performs much worse in the microbenchmark.

Detailed Results on Magnycours-48. Figure 11 shows detailed results for the selected
SPLASH-2 and Phoenix 2 experiments on Magnycours-48: for each lock algorithm on
each benchmark, the speedup relative to the single-threaded version is plotted as a
function of the number of threads used. Since RCL uses one hardware thread for the
server, its performance is worse when only a few application threads are used, but it
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Fig. 11. SPLASH-2 and Phoenix 2 speedup on Magnycours-48.

catches up with other lock algorithms quickly (after 3 to 10 threads). The more time
experiments spend in critical sections, the earlier the unmodified version of the applica-
tion with POSIX locks collapses: String Match (Phoenix 2) spends 63.9% of its execution
time in critical sections and starts collapsing at 39 hardware threads, Raytrace/Balls4
(SPLASH-2) spends 65.7% of its execution time in critical sections and starts collaps-
ing at 32 hardware threads, Linear Regression (Phoenix 2) spends 81.6% of its time
in critical sections and starts collapsing at 20 hardware threads, Radiosity (SPLASH-
2) spends 87.7% of its time in critical sections and starts collapsing at 15 hardware
threads, and Raytrace/Car spends 90.2% of its time in critical sections and starts col-
lapsing at eight hardware threads. An early collapse indicates high contention, which
shows that the profiler efficiently identifies highly contended locks. The higher the
contention, the more using more efficient lock algorithms, RCL in particular, improves
performance (better speedup) and scalability (later collapse). Again, the only outlier is
Matrix Multiply (Phoenix 2), which spends 92.2% of its time in critical sections and
yet starts collapsing for all lock algorithms at around 20 hardware threads, because of
the bottleneck described previously, which prevents all lock algorithms from improving
performance beyond that point. Even though the basic spinlock usually collapses be-
fore the POSIX lock, its performance peak is sometimes higher than the POSIX lock’s.
This shows that the basic spinlock can exhibit good performance when the number of
hardware threads is low because it has not saturated the bus yet, which explains the
performance gap of the basic spinlock with the microbenchmark: in Figure 5, the basic
spinlock always performs poorly because the maximum number of hardware threads
is always used.

Detailed Results on Niagara2-128. As seen in Figure 10(d), on Niagara2-128, the
performance of Raytrace/Balls4 (SPLASH-2) does not improve when using more effi-
cient lock algorithms, and Figure 12(a) shows that the performance of Raytrace/Balls4
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Fig. 12. SPLASH-2 speedup on Niagara2-128.

never collapses. This is the expected behavior, because Raytrace/Balls4 spends less
time in critical sections than both thresholds: the profiler correctly estimates that
the experiment does not suffer from a level of lock contention that is high enough for
performance to be improved by using better lock algorithms. The fact that replacing
POSIX locks by other lock algorithms does not worsen performance indicates that even
if a developer mistakenly replaces a POSIX lock by a more efficient one, such as RCL,
due to a false positive from the profiler, no negative consequences are to be expected
when it comes to performance. Moreover, the profiler does not return any false nega-
tives on the 18 experiments that were profiled: although we do not show these results
in this article, we did evaluate the performance of other experiments whose time spent
in critical sections was below both thresholds with all lock algorithms, and the result
was always the same: changing lock algorithms does not alter performance in these
cases.

Note that even though the performance of Raytrace/Balls4 in Figure 12(a) never
collapses, the slope of the curve decreases as the number of threads increases. This
may indicate that the application simply does not reach the point where adding more
threads increases lock contention enough that its performance collapses and using
other lock algorithms improves performance: on similar yet newer architectures with
more hardware threads, one might expect that the application would reach that point
and that using more efficient lock algorithms would improve performance.

Radiosity (SPLASH-2) and Raytrace/Car (SPLASH-2) spend an amount of time in
critical sections that is between the two thresholds; therefore, using other lock al-
gorithms than POSIX should improve performance, but RCL may not improve perfor-
mance more than the other lock algorithms. This effect can be seen for Radiosity in Fig-
ure 12(b): any lock algorithm other than POSIX improves performance, but MCS, Flat
Combining, CC-Synch, DSM-Synch, and RCL all give similar results. With Raytrace/
Car, however, the POSIX lock is more efficient than all other lock algorithms even
though according to the profiler, the other lock algorithms should improve performance.
As seen in Figure12(c), in that experiment, even though the POSIX lock collapses first,
the other lock algorithms do not perform better because the application always col-
lapses when it reaches a speedup of 16 times, which seems to indicate that a bottleneck
other than locks prevents the application from scaling beyond that speedup.

Highlights. On Magnycours-48, in most cases, the more time SPLASH-2 and
Phoenix 2 benchmarks spend in critical sections, the more using lock algorithms that
perform well under high contention improves performance. Again, RCL is generally
the most efficient algorithm, followed by combining locks, then traditional locks. The
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more efficient a lock algorithm is, the more it improves performance and the later
it collapses (improved scalability). On Niagara-2, RCL does not improve performance
more than some other lock algorithms, as expected, since our profiler did not detect
very high contention on SPLASH-2 and Phoenix 2 benchmarks on this machine.

5.4.4. Performance Analysis of Memcached. As seen in Figure 8, on Magnycours-48,
Memcached/Get spends 79% of its time in critical sections and improves performance
by 1.80 times, which is consistent with the performance improvements observed on
SPLASH-2 and Phoenix in Figure 10(b): Memcached/Get spends more time in critical
sections than Raytrace/Balls4 but less than Linear Regression, and in these two ex-
periments, RCL improves performance by 1.51 times and 1.86 times, respectively. For
Memcached/Set, RCL drastically improves performance, by 2.53 times, even though it
only spends 44.7% of its time in critical sections: this discrepancy is caused by the fact
that in that case, RCL not only performs better because lock contention is high, it also
increases locality.

To quantify the locality increase, we measure the number of cache misses inside
critical sections (i.e., not counting lock acquisition) and on the RCL server after
transformation. Our objective here is to quantify the locality increase when the code of
critical sections is being executed, since we already evaluated the locality overhead of
lock acquisitions in Figures 5(c) and 6(c). The results are shown in Figure 14(a), with
h/2 − 2 threads for Memcached. The base Memcached/Set application triggers a lot of
cache misses (16.5) which slow down the execution of the critical path, and RCL is able
to improve locality, roughly dividing the number of L2 cache misses by 3: with RCL,
critical sections only trigger 5.7 cache misses on the server. The contended critical
sections in Memcached/Set protect writes to the hashtable. With RCL, large parts of
the hashtable remain stored in the cache hierarchy of the server hardware thread,
therefore, the number of cache misses drops and performance is vastly improved.
However, as seen in Figure 14(a), RCL does not always decrease the number of L2
cache misses significantly in applications whose critical sections only trigger a few
(<5) cache misses, because even though it improves locality, RCL also adds cache
misses for accessing context variables: a significant amount of cache misses in critical
sections seems to be needed for RCL to ensure better locality.

Detailed Results on Magnycours-48. As seen in Figures 13(a) and 13(c), with both Get
and Set requests, RCL not only improves performance, it also improves scalability. In
Memcached/Get, both the POSIX lock and the basic spinlock start collapsing at around
11 hardware threads, MCS starts collapsing at around 16 hardware threads, while RCL
reaches a plateau from 18 hardware threads onwards. RCL is initially slower than other
lock algorithms due to the fact that it loses one hardware thread for the server, but it
then reaches the performance of the POSIX lock, the basic spinlock, and MCS at 6, 11,
and 12 hardware threads, respectively. In Memcached/Set, the POSIX lock, the basic
spinlock, and MCS start collapsing at 4, 8, and 11 hardware threads, respectively, while
RCL reaches a plateau at around 14 hardware threads. RCL surpasses the performance
of all other lock algorithms at only five hardware threads.

Detailed Results on Niagara2-128. As seen in Figure 9, on Niagara2-128, Memcached/
Get spends an amount of time in critical sections that is between the lower and the
upper threshold, which means that using RCL should improve performance, but not
necessarily more than other lock algorithms. This is indeed what can be observed
in Figure 10(e): both the basic spinlock and RCL improve performance, with a small
advantage for RCL that might not be significant. However, as seen in Figure 13(b), even
though RCL and the basic spinlock have similar peak performance, RCL performs
better when a large number of hardware threads is used: at 62 hardware threads,
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Fig. 13. Memcached speedup.

the speedup of the application collapses to 3.3 times when the basic spinlock is used,
whereas using RCL makes it possible to maintain a speedup of 8.1 times.

Similarly to what was observed on Magnycours-48, for Memcached/Set, RCL im-
proves performance more than it should (1.3 times, better than other lock algorithms)
given the relatively low amount of time it spends in critical sections (20.2%). Again
this is due to the large number of cache misses per critical section for that experiment:
73.4 L1 cache misses.14 This number is more than halved when RCL is used: as seen in
Figure 14(b), with RCL, critical sections only trigger 32.3 L1 cache misses because large
parts of the hashtable remain in the server’s cache hierarchy. Again, detailed results
(see Figure 13(d)) show that using RCL improves scalability as well as performance.
As a side note, Figure 14(b) also shows that on Niagara2-128, locality is improved for
all applications, even when the number of cache misses per critical section is low.

Highlights. On Magnycours-48, RCL improves perfomance and scalability for Mem-
cached/Get, as expected from the profiler results. On both Magnycours-48 and
Niagara2-128, RCL improves performance more than expected from the profiler re-
sults for Memcached/Set, because critical sections access a lot of shared data, and RCL
benefits from improved locality over other lock algorithms.

5.4.5. Berkeley DB with TpccOverBkDb. As can be seen in Figures 8 and 9, using RCL in
Berkeley DB with TpccOverBkDb is more complex than using it in other applications
because in this case, multiple locks are contended. Therefore, in order to reach optimal
performance with RCL, a preliminary analysis is needed to decide how many servers

14This number is higher than the number of cache misses for Memcached/Set on Magnycours-48 because
on Niagara2-128, L2 cache misses are measured instead of L1 cache misses. L1 cache misses are triggered
more often than L2 cache misses because L1 caches are smaller than L2 caches, and on Niagara2-128,
eight hardware threads share each L1 cache, which leads to frequent cache line evictions.
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Fig. 14. Number of cache misses per critical section on the RCL server.

to use and which server should handle which locks. In Section 5.4.5.a, we first perform
this analysis in order to find an optimal configuration for RCL, and in Section 5.4.5.b
we discuss the results of running Berkeley DB with TpccOverBkDb using all lock
algorithms, including RCL with the optimal configuration we found. Since Berkeley
DB with TpccOverBkDb can use more client threads than there are hardware threads
on the machine, repeatedly yielding the processor in busy-wait loops can be beneficial
when it does: in Section 5.4.5.c, we implement this optimization for most of the lock
algorithms, including RCL. We then discuss the influence of this optimization on the
performance of Berkeley DB with TpccOverBkDb.

5.4.5.a. Experimental Setup. A difficulty in transforming Berkeley DB for use with
RCL is that the function call in the source code that allocates the most used locks
allocates 11 locks in total in a loop, and not all of them suffer from high contention.
A limitation of our transformation tool is that if several locks are created at the same
position in the code in a loop, all allocated locks must be implemented in the same
way, since the transformation tool uses line numbers (and file names) to identify locks.
Consequently, all 11 locks are implemented as RCLs.

Using a single server to handle these locks would cause critical sections to be need-
lessly serialized, and using 11 servers would waste computing power that could be
used for client threads. To prevent this, as explained in Section 3, the RCL runtime
makes it possible to choose the server where each lock will be dispatched. However, in
order to choose the number of servers used and to decide which locks will be handled
by which server, the experiments must be run once in order to gather statistics about
the execution, which reveals which locks are the most used. This analysis can either
be performed with the profiler or with the statistics gathered by the RCL runtime that
were presented in Section 3.2.3. We choose the second option in order to provide an
illustration of how these statistics can be used.

In order to find which locks are the most used in Berkeley DB with TpccOverBkDb,
after transformation, the experiment is run once with 11 RCL servers, with each server
handling one of the locks that were found by the profiler. We run the experiment for
both Order Status and Stock Level requests on Magnycours-48 and Niagara2-128. The
results are shown in Figure 15(a). For Order Status, on Magnycours-48, the four most
used locks are L10, L3, L4, and L6, in that order. On Niagara2-128, the four most used
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Fig. 15. Server configurations for Berkeley DB with TpccOverBkDB.

locks are L4, L3, L10, and L6. For Stock Level, the two most used locks are L10 and L8
on Magnycours-48 and L8 and L10 on Niagara2-128, with all other locks being used
much less.15 Using this information, we construct the five server configurations listed in
Figure 15(b). The first and the last configurations put all locks on one server or use one
lock for each server, respectively. The three other configurations place the two, three,
and four most used locks of the Order Status experiment on different servers in such a
way that the same configurations exhibit this characteristic on both machines. Other
locks are distributed so that all servers handle a similar number of locks. Additionally,
Configuration 2 places the two most used locks of the Stock Level experiment on two
different servers for both machines, with other locks being evenly distributed on both
machines. Since, with Stock Level, two locks are used much more than all others, and
these other locks are all equally used, there is no need to use a configuration for three
or four servers for that type of request.

The experiments are run again for each configuration on Magnycours-48 and
Niagara2-128, with one client thread per hardware thread. Figure 16 shows the re-
sults. The configuration that gives the maximum number of transactions per second
is considered optimal and is used for the performance evaluation in Sections 5.4.5.b
and 5.4.5.c.

Figure 16(a) shows the results for Magnycours-48. For Order Status, when using
only one server, the false serialization rate is high (66.3%), which indicates that many
independent critical sections are needlessly executed in mutual exclusion. Adding more
servers decreases the false serialization rate: with two, three, four, and 11 servers, the
false serialization rate drops to 34.1%, 10.6%, 2.5%, and 0.0%, respectively. Similarly,
the use rate drops from 22.7% to 7.9%, 4.0%, 3.2%, and 1.9%. This decrease is not
only due to the load being shared between servers. Going from one server to two
servers divides the use rate by more than 2 (2.87) because the execution is faster
with two servers (+21%) than with one server due to the decreased amount of false
serialization. With one server, false serialization makes the server busier, which leads
to more clients waiting for their requests to be executed. Adding more servers reduces
false serialization but also wastes hardware threads that could be used for clients,

15While the use rates differ slightly between Magnycours-48 and Niagara2-128, the lists of most used locks
are globally the same on both machines: only their order differs. The fact that the profiling results are
quantitatively similar on two machines with very different architectures could indicate that this profiling
phase may not be needed for every new machine the application is run on.
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Fig. 16. Impact of false serialization with RCL (Berkeley DB with TpccOverBkDb).

which is why the peak performance is reached for two servers only. Using three or four
servers provides similar performance, which indicates that even if a developer does not
perform a precise contention analysis and mistakenly uses a few more servers than
needed, the resulting overhead should be low.

For Stock Level, with only one server, both the false serialization rate and the use
rate are high (46.4% and 58.5%, respectively). Using two servers is sufficient to make
the false serialization rate drop to almost zero (0.4%). The use rate is divided by 6 which
shows that with two servers much fewer clients are waiting for their critical sections
to be executed. Unsurprisingly, the peak performance is obtained for two servers, but
interestingly, using 11 servers is only slightly slower than using two servers (<3%
performance drop), which shows again that using more servers than needed does not
seem to decrease performance significantly: using trial and error to try to decrease the
false serialization rate should be sufficient for developers to obtain good results.

Figure 16(b) shows the results for Niagara2-128. Again, increasing the number
of servers decreases the false serialization rate and the use rate. However, since
Niagara2-128 has more hardware threads than Magnycours-48, using more servers
wastes relatively less CPU resources for the client threads, and the fact that a degraded
version of the RCL runtime is used for Niagara2-128 makes false serialization costlier.
Because of these two factors, more servers may be needed to reach peak performance:
for Order Status, peak performance is reached for three servers instead of two, with a
much lower use rate (13.1%) than for the peak configuration of Magnycours-48 (34.1%).
Similarly to what was observed on Magnycours-48, for Stock Level, using two servers
is enough to remove almost all false serialization. Moreover, adding more servers than
needed only slightly decreases performance: using 11 servers instead of the best con-
figuration leads to an overhead of only 6.0% for Order Status, and 0.7% for Stock Level.

5.4.5.b. Performance Analysis. Figure 17 shows the performance of Berkeley DB with
TpccOverBkDb, using the server configurations chosen earlier. In these experiments,
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Fig. 17. Berkeley DB with TpccOverBkDb speedup.

each client uses its own thread, and up to 384 clients are run concurrently, which is
more than the number of hardware threads for both machines.

Detailed results for Magnycours-48. Figures 17(a) and 17(c) show the results for
Magnycours-48. For both Order Status and Stock Level requests, MCS collapses when
more client threads are used than hardware threads because of the convoy effect. MCS-
TP, which was designed to prevent convoys, does not suffer from this issue but its peak
performance is much lower than that of MCS. CC-Synch and DSM-Synch exhibit good
peak performance, but these lock algorithms also collapse rapidly after hm48 = 48 client
threads, that is, when there are more client threads than hardware threads because of
the design flaw presented in Section 2.3.4 that makes a combiner hand over its role to
a preempted thread. The basic spinlock performs very poorly except when the number
of client threads is low. At 384 client threads, only RCL, the POSIX lock, Berkeley DB’s
custom lock algorithm (noted “Original” in the figures), Flat Combining, and MCS-TP
have not collapsed. Interestingly, the POSIX lock is faster than Berkeley DB’s custom
lock, which may be due to the fact that the lock implementation of Berkeley DB is
old: it has been designed on machines with much less than 48 hardware threads. RCL
always performs better than all other lock algorithms: it has the best peak performance
(24.1K transactions per seconds for Order Status and 2.4K for Stock Level), and at 384
client threads, for Order Status (Stock Level, respectively), using RCL makes the ex-
periment’s throughput 89.6% (460.7%, respectively) higher than with the next best lock
algorithm (POSIX), and 207.3% (783.4%, respectively) higher than the base application.

Detailed Results for Niagara2-128. Figures 17(c) and 17(d) show the results for
Niagara2-128. For Order Status requests, RCL has a lower peak performance (39.7K
transactions per second) than CC-Synch (50.2K t/s), DSM-Synch (47.4K t/s), MCS
(45.4K t/s), and Flat Combining (41.7K t/s). For Stock Level requests, RCL’s peak
throughput is similar to CC-Synch’s, DSM-Synch’s, and MCS-TP’s. However, MCS,
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CC-Synch, and DSM-Synch collapse rapidly after hn128 = 128 client threads, that is,
when there are more client threads than hardware threads, which may be due to the
convoy effect. The basic spinlock performs poorly except when the number of client
threads is low. Moreover, when there are more client threads than hardware threads,
RCL performs better than all other lock algorithms: at 384 client threads, for Order
Status (Stock Level, respectively), using RCL makes the throughput of the experiment
95.3% (48.3%, respectively) higher than with the next best lock algorithm (POSIX),
and 557.3% higher (761.4%, respectively) than the base application.

Highlights. MCS, CC-Synch, and DSM-Synch collapse when there are more client
threads than there are hardware threads on the machine. On Magnycours-48, RCL
always outperforms all other lock algorithms. On Niagara2-128, RCL does not always
outperform all other lock algorithms when there are less client threads than hardware
threads on the machine, but it always does otherwise. To conclude, RCL performs espe-
cially well when there are more client threads than hardware threads on the machine.

5.4.5.c. Yielding the Processor in Busy-Wait Loops. As was explained in Section 2,
when there are more application threads than there are hardware threads on the
machine, lock algorithms that use busy-waiting other than RCL can get preempted
while they execute critical sections, with application threads waking up and wasting
their time quantum busy-waiting: this can lead to slowdowns and convoys. RCL, on
the other hand, always makes progress because its server threads run undisturbed on
dedicated hardware threads. However, one could suspect that the experiments from
Section 5.4.5 are unfair for lock algorithms other than RCL, because a lot of these
lock algorithms could simply repeatedly yield the processor in their busy-wait loops.
This technique (i) prevents waiting threads from needlessly wasting CPU resources
that could be used by a thread that can actually make progress on the critical path,
and (ii) allows for faster progress outside the critical path: by reducing the load of the
machine, yielding the processor also makes it possible for clients to perform other work
than busy-waiting. Consequently, the transformation can also be applied to RCL, which
will only benefit from that second advantage. In order to investigate the consequences
of this optimization, we run the experiment again with modified versions of the lock
algorithms (including RCL) that repeatedly yield the processor in busy-wait loops.

The lock algorithms are modified as follows. The POSIX lock and Berkeley DB’s cus-
tom lock are not altered because they use blocking, which already yields the processor.
The basic spinlock is also not altered since making it yield the processor in busy-wait
loops would make it behave like an inefficient blocking lock. For noncombining locks,
application threads repeatedly yield the processor instead of busy-waiting on their syn-
chronization variable. Finally, for combining locks and RCL, clients threads are made
to repeatedly yield the processor when they are waiting for the combiner or server to
execute their critical section.

Detailed Results for Magnycours-48. Figures 18(a) and 18(c) show the results for
Magnycours-48. Yielding the processor in busy-wait loops reduces the collapse of MCS,
CC-Synch, and DSM-Synch. It greatly improves the performance of Flat Combining.
With yielding, Flat Combining is much more efficient than CC-Synch and DSM-Synch
when there are more client threads than hardware threads because Flat Combining
always hands over the role of combiner to a thread that is scheduled, whereas CC-
Synch and DSM-Synch can hand over the role of combiner to a preempted thread,
which significantly slows down the critical path. With Stock Level, however, CC-Synch
and DSM-Synch have a better peak performance than Flat Combining. RCL is still
more efficient than all other lock algorithms for any number of clients. Yielding the
processor improves the throughput with RCL when a lot of clients are used (+57.3%
at 384 threads with Order Status, +5.0% at 384 threads for Stock Level), because
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Fig. 18. Berkeley DB with TpccOverBkDb speedup, using yielding.

clients are able to supply the server with more concurrent requests. This effect is
more visible with Order Status than for Stock Level because Order Status has a much
higher throughput. At 384 client threads, for Order Status (Stock Level, respectively),
using RCL makes the experiment’s throughput 3.4% (26.0%, respectively) higher than
with the next best lock algorithm (Flat Combining), and 383.6% (826.9%, respectively)
higher than the base application.

Detailed Results for Niagara2-128. On Niagara2-128, yielding the processor in busy-
wait loops alleviates the collapse of MCS, CC-Synch, and DSM-Synch, but it also sig-
nificantly reduces the peak performance of these lock algorithms. Yielding improves
throughput in Order Status when a lot of clients are used (+20.6% at 384 threads).
RCL has the best peak performance (equal to that of Flat Combining) and the best per-
formance of all of the lock algorithms at 384 threads, even when all the lock algorithms
yield the processor in busy-wait loops. At 384 client threads, for Order Status (Stock
Level, respectively), using RCL makes the experiment’s throughput 100.0% (562.6%,
respectively) higher than with the next altered lock algorithm (Flat Combining), and
692.7% higher (564.2%, respectively) than the base application.

Highlights. Even though yielding the processor in busy-wait loops can improve the
performance of some lock algorithms when applications use more software threads
than there are hardware threads, it also improves the performance of RCL at high
throughput, and RCL still performs better than other lock algorithms with this
optimization.

5.5. Specialized Benchmarks

This section presents specialized experiments that give a more complete picture of the
performance of RCL. We first focus on the overheads of (i) context variables in critical
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Fig. 19. Overhead of context variables and local pointers.

sections, and (ii) nested critical sections. Then, we briefly discuss the performance of
an energy-aware version of RCL.

5.5.1. Overhead of Context Variables and Local Pointers. We alter our microbenchmark (pre-
sented in Section 5.3) to make it access (increment) a varying number of 32-bit integer
context variables, stored on adjacent cache lines to emulate the behavior of our trans-
formation tool (which first copies the context variables to a structure before executing
the critical section). On Magnycours-48, we optimize the process by storing the first
eight context variables in the padding area at the end of the client’s mailbox (hatched
area in Figure 1); we do not use this optimization on Niagara2-128 because we find it
slightly worsens performance, due to a higher sensitivity to contention on the mailbox’s
cache line. The results are shown in Figures 19(a) and 19(b). On Magnycours-48, RCL is
faster than all other lock algorithms with eight context variables or less, while its per-
formance is similar to that of CC-Synch and DSM-Synch when more context variables
are used. Increasing the number of context variables has less overhead on traditional
lock algorithms than on combining locks and on RCL: this is to be expected, since con-
text variables do not worsen locality in the case of traditional lock algorithms. However,
barring the first eight context variables with RCL, this effect is very slight thanks to
efficient prefetching. On Niagara2-128, even though this effect is much more obvious,
it still takes more than 24 context variables before RCL falls to the performance of
other lock algorithms.

Another source of overhead for combining locks and RCL is accesses, in critical
sections, to data that is local to the thread acquiring the lock. These accesses are
generally made through context variables that are pointers. We evaluated the corre-
sponding overhead by accessing (incrementing) multiple cache lines in critical sections,
using dependent randomized accesses to ensure they could not be prefetched (using a
similar technique to the one used by Yotov et al. [2005]). This is a worst-case scenario
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Fig. 20. Overhead of nested critical sections.

for combining locks and RCL, since each access writes to a different cache line, with-
out prefetching: local accesses to variables that are close enough in memory to be on
the same cache line or to allow for prefetching would have much lower overhead. The
results are shown in Figures 19(c) and 19(d). The overhead of accessing nonprefetched
local variables is significant for combining locks and RCL: it takes about six accesses
for RCL to fall to the level of MCS. Consequently, combining locks and RCL should not
be used for critical sections that access a lot of local data.

Highlights. On Magnycours-48 (Niagara2-128, respectively), RCL outperforms other
lock algorithms when the number of context variables is low; if this number is above
eight (24, respectively), RCL performs the same as CC-Synch/DSM-Synch (MCS, re-
spectively). On both Magnycours-48 and Niagara2-128, RCL and combining locks have
an overhead when critical sections access pointers that are local to the client threads,
and when critical sections access more than six cache lines through local pointers, RCL
performs similarly or worse than traditional lock algorithms.

5.5.2. Overhead of Nested Critical Sections. We evaluate the overhead of nested critical
sections by altering the critical sections of our microbenchmark: this time, we acquire
a varying number of nested locks, always in the same order, before incrementing
one global variable. The results are shown in Figure 20. 1-RCL corresponds to RCL
using a single server, while n-RCL corresponds to RCL using one server per lock. As
shown on the graph, on Magnycours-48, the implementation of 1-RCL is very efficient:
adding nested critical sections does not have a higher overhead for RCL than for other
lock algorithms. On Niagara2-128, the performance of 1-RCL is not as good, because,
as explained before, we are running RCL in a degraded mode on this machine (no
FIFO scheduling because we do not have proc_priocntl Solaris 10 privilege). n-RCL,
however, exhibits bad performance: a single level of nesting is sufficient to make it
perform worse than most other lock algorithms. This is due to the fact that the inner
locks have no contention at all, and for most lock algorithms, this means obtaining
them almost instantly: all MCS needs to do is to enqueue a node in an empty list, for
instance. For n-RCL, a transfer of control is needed, which is much costlier, especially
since when contention is very high, each thread has to wait for all other threads
to perform one transfer of control before they can execute their critical section, on
average. Developers must therefore be careful to not use multiple servers for nested
locks with RCL. Moreover, even if all nested locks are assigned to the same server,
significant overhead is to be expected if some of the inner locks may not always be
nested.
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Fig. 21. Comparison with more locks.

Highlights. RCL performs similarly or better than other lock algorithms when nested
critical sections are used, as long as all nested locks are handled by the same server
(and not contended by external sources). Using several RCL servers for nested critical
sections has major overhead: RCL is outperformed by all other lock algorithms in this
case.

5.5.3. Energy-Aware RCL. Energy efficiency is beyond the scope of this article, since
all lock algorithms presented in this article, with the exception of blocking locks, rely
heavily on busy-waiting. We still briefly experimented with an energy-aware version
of RCL on Magnycours-48 to check whether such a design is viable. The energy-aware
version of RCL uses the SSE3 MONITOR/MWAIT instructions on the client side when
waiting for a reply from the server: instead of busy-waiting, a client enters power-
saving mode until its critical section has been executed. Our results show that the
energy-aware version of RCL has an overhead of about 30% on our microbenchmark.

5.6. Comparison with More Locks

For clarity, until this point in the evaluation, we only compared RCL to a subset of the
lock algorithms that were mentioned in the article. We now compare the performance
of RCL with that of the lock algorithms that were presented in Section 2.4, using our
microbenchmark. The results are shown in Figure 21. The locks we use are a backoff
lock with random backoff delay (BO), the CLH queue lock [Craig 2003; Magnusson
et al. 1994], a hierarchical version of the CLH queue lock [Luchangco et al. 2006], a
ticket lock, a hierarchical version of the ticket lock [David et al. 2013], and a Cohort
Lock [Dice et al. 2012]. We used implementations from David et al. [2013] for all lock
algorithms, except for the Cohort Lock. Since the authors of the Lock Cohorting paper
were not able to provide us with their code due to licensing issues, we picked a Cohort
Lock (COHORT-PTL-TKT) for which they presented a very detailed pseudocode in Dice
et al. [2015], in order to reduce the chances of writing an suboptimal implementation.
COHORT-PTL-TKT also happens to be one of the fastest cohort locks according to the
evaluation in Dice et al. [2015]. We access five cache lines in critical sections in order to
be in a favorable scenario for hierarchical locks (including Cohort Locks): with only one
cache line access, the performance improvements of these lock algorithms over their
nonhierarchical counterparts are low.

High contention. The backoff lock performs very well at the highest contention level,
because we adjusted the maximum backoff delay at that level of contention. However,
it performs much worse at other contention levels. CLH performs similarly to MCS,
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which is to be expected since both are queue locks. On our hardware, and with our
microbenchmark, H-CLH only gives a very small performance improvement over MCS.
On Magnycours-48, this is consistent with the Opteron results presented in David et al.
[2013], and on Niagara2-128, we expected to obtain a lower performance improvement
than in Dice et al. [2015] since our Niagara2 only has two sockets instead of four. The
ticket lock performs poorly, and its hierarchical version proposed by [David et al. 2013],
which is similar to the COHORT-TKT-TKT lock, performs similar to queue locks. While
the COHORT-PTL-TKT lock performs poorly on Magnycours-48, it performs well on
Niagara2-128: its performance is similar performance to that of CC-Synch and DSM-
Synch.

The hierarchical ticket lock and Cohort Locks have a parameter that specifies how
many critical sections can be executed consecutively on the same node. We used 1,024
in the curves that are marked H-TKT and COHORT-PTL-TKT, since it was found to be
an optimal parameter in the evaluation by Dice et al. [2015]. On our hardware and with
our microbenchmark, we noticed that we could improve the performance of H-TKT and
COHORT-PTL-TKT, by setting this limit to a very high value: by sacrificing fairness,
we can reach optimal performance for these two lock algorithms. Doing so greatly
improves the performance of the hierarchical ticket lock (H-TKT-INF) and the Cohort
Lock (COHORT-PTL-TKT-INF) on Magnycours-48, but even with this performance
boost, both lock algorithms are still more than three times slower than CC-Synch and
DSM-Synch. On Niagara2-128, H-TKT-INF performs worse than COHORT-PTL-TKT,
but COHORT-PTL-TKT-INF performs very well, being even faster than CC-Synch and
DSM-Synch. In any case, none of the evaluated lock algorithms perform as well as
RCL.

Low Contention. On Magnycours-48, RCL performs better than other evaluated lock
algorithms under low contention. This may be due to the fact that critical sections
access five cache lines, which gives a locality advantage to RCL. On Niagara2-128,
RCL performs worse than most locks under low contention.

Highlights. Under high contention, RCL outperforms a backoff lock, a ticket lock,
and CLH. RCL also outperforms the hierarchical locks we evaluated (including a cohort
lock), even when they were fine-tuned to disregard all fairness in order to maximize
performance. Under low contention, however, RCL is often outperformed by other lock
algorithms.

6. CONCLUSION

This article has presented RCL, a novel locking technique that focuses on both reduc-
ing lock acquisition time and improving the execution speed of critical sections through
increased data locality. The key idea is to go one step further than combining locks,
and to dedicate hardware threads for the execution of critical sections: since current
multicore architectures have dozens of hardware threads at their disposal that typi-
cally cannot be fully exploited because applications lack scalability, dedicating some
of these hardware threads for a specific task such as serving critical sections can only
improve the application’s performance. RCL takes the form of a runtime library for
Linux and Solaris that supports x86 and SPARC architectures. In order to ease the
reengineering of legacy applications, RCL proposes a profiler as well as a methodology
for detecting highly contended locks and locks whose critical sections suffer from poor
data locality, since these two kinds of locks can generally benefit from RCL. Once these
locks have been identified, using RCL is facilitated by a provided reengineering tool
that encapsulates critical sections into functions. We show that RCL outperforms other
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existing lock algorithms on a microbenchmark and on some applications where locks
are a bottleneck.

Later Works Related to RCL. Following the publication of RCL [Lozi et al. 2012], RCL
has been used and improved in several other works. In particular:

—Hassan et al. [2014] propose a new algorithm for software transactional memory that
executes commit and invalidation routines on dedicated remote server threads, with
an implementation that uses RCL internally.

—Petrović et al. [2014] propose a universal construction inspired by RCL and combining
locks that dedicates servers to the execution of critical sections on partially non-
cache-coherent architectures.

—Pusukuri et al. [2014] propose to migrate threads across multicore architectures so
that threads seeking locks are more likely to find them on the same core, which is
similar to RCL in that it improves data locality of critical sections.

—Brandenburg [2013] compares the performance of real-time locking protocols for par-
titioned fixed-priority (P-FP) scheduling and cites RCL as an example of a distributed
locking protocol: the DFLP algorithm they use is reminiscent of RCL.

Availability. The implementation of the RCL runtime, Liblock, the profiler, the
reengineering tool, as well as test scripts and results are available at URL: http://
rclrepository.gforge.inria.fr.
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