EN
REPUBLIQUE
FRANCAISE

Liberté
Egalité
Fraternité

y 4

lrezia—

FLEXGUARD: FAST MUTUAL EXCLUSION
INDEPENDENT OF SUBSCRIPTION

- ->->TO APPEAR AT SOSP '25, SEOQUL, SOUTH KOREA

Victor Laforet”, Sanidhya Kashyap?, Calin lorgulescu?,
Julia Lawall’, Jean-Pierre Lozi"

“Inria, Paris, France
T EPFL, Lausanne, Switzerland
tOracle Labs, Zurich, Switzerland

Background: blocking locks vs. spinlocks

Blocking locks:
Most common locks, e.g,, pthread_mutex_lock()

b

zea—

Background: blocking locks vs. spinlocks

« Blocking locks:
Most common locks, e.g.,, pthread_mutex_lock()
A thread fails to acquire the lock: it blocks with the FUTEX syscall

b

zea—

Background: blocking locks vs. spinlocks

« Blocking locks:
Most common locks, e.g.,, pthread_mutex_lock()
A thread fails to acquire the lock: it blocks with the FUTEX syscall
A thread releases the lock: it wakes up the next one

b

zea—

I-Background: blocking locks vs. spinlocks

« Blocking locks:
Most common locks, e.g.,, pthread_mutex_lock()
A thread fails to acquire the lock: it blocks with the FUTEX syscall
A thread releases the lock: it wakes up the next one
Problem: slow, due to costly context switches on the critical path!

Not much you can do to speed them up...

b

zea—

Background: blocking locks vs. spinlocks

* Blocking locks:
Most common locks, e.g., pthread_mutex_lock()

A thread fails to acquire the lock: it blocks with the FUTEX syscall

A thread releases the lock: it wakes up the next one

Problem: slow, due to costly context switches on the critical path!
Not much you can do to speed them up...

lock() lock() Wasted

- CRITICAL
- SECTION

CRITICAL
SECTION

CPU1
CONTEXT
SWITCH

lock() M, lock()

CRITICAL
SECTION

SLEEPELE

CPUO
CONTEXT
SWITCH

b

L —

Background: blocking locks vs. spinlocks

* Blocking locks:
Most common locks, e.g., pthread_mutex_lock()
A thread fails to acquire the lock: it blocks with the FUTEX syscall
A thread releases the lock: it wakes up the next one

Problem: slow, due to costly context switches on the critical path!
Not much you can do to speed them up...

lock() Wasted

CRITICAL
SECTION

- CRITICAL

= SECTION

CPU1

CONTEXT
SWITCH

lock() M‘ lock()

CRITICAL
SECTION

SLEEPRRL

CPUO
CONTEXT
SWITCH

b

L —

Background: blocking locks vs. spinlocks

* Blocking locks:
Most common locks, e.g., pthread_mutex_lock()
A thread fails to acquire the lock: it blocks with the FUTEX syscall
A thread releases the lock: it wakes up the next one
Problem: slow, due to costly context switches on the critical path!
Not much you can do to speed them up...

lock() lock() Wasted

- CRITICAL

= SECTION

: Wasted

CRITICAL
SECTION

CPU1
CONTEXT
SWITCH

CRITICAL

SECTION SLEEP R

CPUO
CONTEXT
SWITCH

b

L —

CPU1

CPUO

Background: blocking locks vs. spinlocks

* Blocking locks:

lock()

- CRITICAL
- SECTION

Most common locks, e.g., pthread_mutex_lock()

A thread fails to acquire the lock: it blocks with the FUTEX syscall

A thread releases the lock: it wakes up the next one

Problem: slow, due to costly context switches on the critical path!
Not much you can do to speed them up...

lock() Wasted

CRITICAL
SECTION

CONTEXT
SWITCH

CRITICAL

SECTION SLEEP R

CONTEXT
SWITCH

b

L —

Background: blocking locks vs. spinlocks

* Blocking locks:
Most common locks, e.g, pthread_mutex_lock()
A thread fails to acquire the lock: it blocks with the FUTEX syscall
A thread releases the lock: it wakes up the next one
Problem: slow, due to costly context switches on the critical path!
Not much you can do to speed them up...

CRITICAL
SECTION

' Wasted lock()

1
CRITICAL
SECTION

- CRITICAL

= SECTION

lock()

CPU1

CONTEXT
SWITCH

SLEEPELE

CPUO
CONTEXT
SWITCH

b

L —

Background: blocking locks vs. spinlocks

* Blocking locks:
Most common locks, e.g., pthread_mutex_lock()
A thread fails to acquire the lock: it blocks with the FUTEX syscall
A thread releases the lock: it wakes up the next one
Problem: slow, due to costly context switches on the critical path!
Not much you can do to speed them up...

CRITICAL
SECTION

' Wasted lock()

1
CRITICAL
SECTION

- CRITICAL
- SECTION

lock()

CPU1

CONTEXT
SWITCH

SLEEPELE

CPUO
CONTEXT
SWITCH

b

L —

Background: blocking locks vs. spinlocks

* Blocking locks:
Most common locks, e.g, pthread_mutex_lock()
A thread fails to acquire the lock: it blocks with the FUTEX syscall
A thread releases the lock: it wakes up the next one
Problem: slow, due to costly context switches on the critical path!
Not much you can do to speed them up...

lock() lock() Wasted

- CRITICAL

= SECTION

lock() ' Wasted

CRITICAL
SECTION

CPU1
CONTEXT
SWITCH

CRITICAL

SECTION SLEEP R

CPUO
CONTEXT
SWITCH

b

L —

Background: blocking locks vs. spinlocks

* Blocking locks:
Most common locks, e.g., pthread_mutex_lock()

A thread fails to acquire the lock: it blocks with the FUTEX syscall

A thread releases the lock: it wakes up the next one

Problem: slow, due to costly context switches on the critical path!
Not much you can do to speed them up...

lock() lock() Wasted

- CRITICAL CRITICAL
=\ SECTION SECTION

CPU1

lock() M‘ lock()

CRITICAL
SECTION

SLEEPEEE Long critical path!

CPUO
CONTEXT
SWITCH

Blocking locks vs. spinlocks

Spinlocks:
Instead of blocking, spin (busy-wait)!

b

zea—

Blocking locks vs. spinlocks

Spinlocks:
Instead of blocking, spin (busy-wait)!

lock() {
while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
PAUSE;
}

unlock() {
lock = UNLOCKED;

}

lock() {
while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
Blocking locks vs. spinlocks | PAES
unlock() {
lock = UNLOCKED;
3
« Spinlocks:

 Instead of blocking, spin (busy-wait)!
- Transitions between critical sections much faster: one cache miss!

lock() {
while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
Blocking locks vs. spinlocks | PAES
unlock() {
lock = UNLOCKED;
3
« Spinlocks:

Instead of blocking, spin (busy-wait)!
Transitions between critical sections much faster: one cache miss!
Lots of research in this area, many very fast spinlock algorithms!
TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks...

lock() {
while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
Blocking locks vs. spinlocks | PAsEs
unlock() {
lock = UNLOCKED;
3
« Spinlocks:

Instead of blocking, spin (busy-wait)!
Transitions between critical sections much faster: one cache miss!
Lots of research in this area, many very fast spinlock algorithms!
TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks...

lock() lock()

CRITICAL CRITICAL

“secTioN. °PIN section il

ock() lock()

spiNn SRITICALE opy

CPU1

CPUO

SECTION

lock() {
while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
Blocking locks vs. spinlocks | PAsEs
unlock() {
lock = UNLOCKED;
3
« Spinlocks:

Instead of blocking, spin (busy-wait)!
Transitions between critical sections much faster: one cache miss!
Lots of research in this area, many very fast spinlock algorithms!
TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks...

JCRITICAL . CRITICAL i
| SECTION SECTION

ock() lock()

spiNn SRITICALE opy

CPUO

SECTION

lock() {
while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
Blocking locks vs. spinlocks | PAsEs
unlock() {
lock = UNLOCKED;
3
« Spinlocks:

Instead of blocking, spin (busy-wait)!
Transitions between critical sections much faster: one cache miss!
Lots of research in this area, many very fast spinlock algorithms!
TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks...

lock() lock()

ICRITICAL. . CRITICAL i
- SECTION SECTION

CPU1

CRITICAL
SPIN crc1ion. SPIN

CPUO

lock() {
while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
Blocking locks vs. spinlocks | PAsEs
unlock() {
lock = UNLOCKED;
3
« Spinlocks:

Instead of blocking, spin (busy-wait)!
Transitions between critical sections much faster: one cache miss!
Lots of research in this area, many very fast spinlock algorithms!
TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks...

lock() lock()

CRITICAL ., CRITICAL i
-1 SECTION SECTION

CPU1

CRITICAL
SPIN crc1ion. SPIN

CPUO

lock() {
while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
Blocking locks vs. spinlocks | PAsEs
unlock() {
lock = UNLOCKED;
3
« Spinlocks:

Instead of blocking, spin (busy-wait)!
Transitions between critical sections much faster: one cache miss!
Lots of research in this area, many very fast spinlock algorithms!
TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks...

JCRITICAL . CRITICAL i
| SECTION SECTION

ock() lock()

spiNn SRITICALE opy

CPU1

CPUO

SECTION

lock() {
while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
Blocking locks vs. spinlocks | PAsEs
unlock() {
lock = UNLOCKED;
3
« Spinlocks:

Instead of blocking, spin (busy-wait)!
Transitions between critical sections much faster: one cache miss!
Lots of research in this area, many very fast spinlock algorithms!
TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks...

lock() lock() I

CRITICAL CRITICAL

“secTioN. °PIN section il

ock() lock()

spiNn SRITICALE opy

CPU1

CPUO

SECTION

lock() {
while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
Blocking locks vs. spinlocks | PAsEs
unlock() {
lock = UNLOCKED;
3
« Spinlocks:

Instead of blocking, spin (busy-wait)!
Transitions between critical sections much faster: one cache miss!
Lots of research in this area, many very fast spinlock algorithms!
TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks...

lock() lock()

ICRITICAL. . CRITICAL i
- SECTION SECTION

CPU1

CRITICAL
SEIN SECTION

CPUO

lock() {
while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
Blocking locks vs. spinlocks | PAsEs
unlock() {
lock = UNLOCKED;
3
« Spinlocks:

Instead of blocking, spin (busy-wait)!
Transitions between critical sections much faster: one cache miss!
Lots of research in this area, many very fast spinlock algorithms!
TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks...

lock() lock()

CRITICAL CRITICAL

“secTioN. °PIN section il

ock() lock()

spin SRITICAL T o5y EEE

CPU1

Short critical path!

CPUO

SECTION

lock() {
while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
Blocking locks vs. spinlocks | PAsEs
unlock() {
lock = UNLOCKED;
3
« Spinlocks:

Instead of blocking, spin (busy-wait)!
Transitions between critical sections much faster: one cache miss!
Lots of research in this area, many very fast spinlock algorithms!
TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks...

lock() lock()

- CRITICAL CRITICAL

“secTioN. °PIN section [

ock() lock()

spiNn SRITICALE opy

CPU1

Short critical path!

CPUO

SECTION

Spinning wastes energy? A few, but faster applications = lower energy consumption!

Blocking locks vs. spinlocks

Why do standard libraries (e.g., POSIX) use blocking locks?

b

zea—

Blocking locks vs. spinlocks

 Why do standard libraries (e.g., POSIX) use blocking locks?
Answer: stability!
Spinlocks perform great when # threads < # hardware contexts
But when # threads > # hardware contexts, performance collapses!

b

zea—

Blocking locks vs. spinlocks

« Why do standard libraries (e.g., POSIX) use blocking locks?
Answer: stability!
Spinlocks perform great when # threads < # hardware contexts
But when # threads > # hardware contexts, performance collapses!
Reason: spinners preempt the critical sections, stopping all progress on the critical path!

lr

zea—

CPU1
THREAD 2

CPUO

THREAD 1

THREAD O

Blocking locks vs. spinlocks

 Why do standard libraries (e.g., POSIX) use blocking locks?
- Answer: stability!
Spinlocks perform great when # threads < # hardware contexts
But when # threads > # hardware contexts, performance collapses!

- Reason: spinners preempt the critical sections, stopping all progress on the critical path!

Holds spinlock

b

ea—

CPU1

CPUO

THREAD 1 THREAD 2

THREAD O

Blocking locks vs. spinlocks

 Why do standard libraries (e.g., POSIX) use blocking locks?

- Answer: stability!
Spinlocks perform great when # threads < # hardware contexts
But when # threads > # hardware contexts, performance collapses!
- Reason: spinners preempt the critical sections, stopping all progress on the critical path!

Holds splnlock

Extremely long critical path!

rd

lreeia— 4

I-FlexGuard: the best of both worlds!

« Goal: get the best of both worlds!
When # threads < available # hw ctxts, spinlock perf.
When # threads > available # hw ctxts, blocking lock perf.

b

zea—

=
o
o

—— Blocking (Futex)
—— Spinlock (MCS)
- == |deal Hybrid Lock

I-FlexGuard: the best of both worlds!

F
bl q

» Goal: get the best of both worlds! _ K

Critical Section time (ms)
=
<

« When # threads < available # hw ctxts, spinlock perf. :
0.8 09 10 1.1 1.2

- When # threads > available # hw ctxts, blocking lock perf. Thread Count / Core Count
Lower is better

I-FlexGuard: the best of both worlds!

Goal: get the best of both worlds!
When # threads < available # hw ctxts, spinlock perf.

When # threads > available # hw ctxts, blocking lock perf.

Critical Section time (ms)

=
o
o

=
o
o

—— Blocking (Futex)

—— Spinlock (MCS)

- == |deal Hybrid Lock
Use a spinlock Switch to blocking

(MCS) :!lock (Futex) when lock
| holder preempted

— \I

p—]
- N5 .
W

08 09 1.0 1.1 1.2
Thread Count / Core Count
Lower is better

Idea: use a spinlock, when critical section preempted, switch to a blocking lock!

I-FlexGuard: the best of both worlds!

Goal: get the best of both worlds!
When # threads < available # hw ctxts, spinlock perf.

When # threads > available # hw ctxts, blocking lock perf.

Critical Section time (ms)

=
o
o

=
o
o

—— Blocking (Futex)

—— Spinlock (MCS)

- == |deal Hybrid Lock
Use a spinlock Switch to blocking

(MCS) :!lock (Futex) when lock
| holder preempted

— \I

p—]
- N5 .
W

08 09 1.0 1.1 1.2
Thread Count / Core Count
Lower is better

Idea: use a spinlock, when critical section preempted, switch to a blocking lock!

Can we do this?

=
o
o

I-FlexGuard: the best of both worlds!

e Blocking (Futex)
—— Spinlock (MCS)
- == |deal Hybrid Lock

Use a spinlock Switch to blocking

(MCS) :!lock (Futex) when lock
;! holder preempted

« Goal: get the best of both worlds!
« When # threads < available # hw ctxts, spinlock perf. —

=

Critical Section time (ms)
=
<

—r
/

e -
— .

- When # threads > available # hw ctxts, blocking lock perf.

* ldea: use a spinlock, when critical section preempted, switchtoab
- Can we do this?

* Insight: nowadays, with eBPF we can!
« We can instrument context switches to see all preemptions

08 09 1.0 1.1 1.2
Thread Count / Core Count

Lower is better
locking lock!

A eBPF

- We canview the full state of the thread: preemption address + register contents

= We can 100% tell whether we are in a critical section!

I-FlexGuard: the best of both worlds!

Wait... Didn't others try to do this before?!
l.e., switch between spinning and blocking?

Critical Section time (ms)

=
o
o

=
=)
o

| r

_-
| e .
— :

-

—— Blocking (Futex)
Spinlock (MCS)
- == |deal Hybrid Lock

Use a spinlock Switch to blocking
(MCS) : [lock (Futex) when lock
;! holder preempted

— T

08 09 1.0 1.1 1.2
Thread Count / Core Count

I-FlexGuard: the best of both worlds!

Wait... Didn't others try to do this before?!
l.e., switch between spinning and blocking?

Answer: yes, but they used unreliable heuristics!

Critical Section time (ms)

=
o
o

=
=)
o

—— Blocking (Futex)
Spinlock (MCS)
- == |deal Hybrid Lock

Use a spinlock Switch to blocking
(MCS) : [lock (Futex) when lock
;! holder preempted

— T

| r

-
] e .
— H

—-—

08 09 1.0 1.1 1.2
Thread Count / Core Count

I-FlexGuard: the best of both worlds!

Wait... Didn't others try to do this before?!
l.e., switch between spinning and blocking?

Answer: yes, but they used unreliable heuristics!
Spin-then-park: spin a little before blocking

Critical Section time (ms)

=
o
o

=
=)
o

Use a spinlock

—— Blocking (Futex)
Spinlock (MCS)
- == |deal Hybrid Lock

:| Switch to blocking
(MCS) : [lock (Futex) when lock
;! holder preempted

— T

[

] —

/

-—
oan Emm mmm :
— .

08 09 1.0 1.1 1.2
Thread Count / Core Count

Actually POSIX uses this, sometimes worse than just blocking in our experiments

Heuristic: how long do you spin?

=
o
o

—— Blocking (Futex)

"
r £ Spinlock (MCS)

FlexGuard: the best of both worlds! o — = Ideal Hybrid Lock
g Use aspinlock | Switch to blocking
o (MCS) :!lock (Futex) when lock
48 1071 ;! holder preempted
wn

« Wait... Didn't others try to do this before?! § | 4-,7 -

= | K
@)

« le, switch between spinning and blocking?

-—
| oan Emm mmm .
— H

—-—

« Answer: yes, but they used unreliable heuristics! O'8Threg'dgC0ur%t'3 Corélcl:ountllz
- Spin-then-park: spin a little before blocking
« Actually POSIX uses this, sometimes worse than just blocking in our experiments
- Heuristic: how long do you spin?
[Dice, 2017] - Malthusian locks: spin-then-park + some threads in a "passive" list

- Few active threads in the "spin" phase (fairness tradeoff) Eh 5 Q)
Active) \ Passive

- Heuristic: how long do you spin?

109, :
- | —— Blocking (Futex)
r £ Spinlock (MCS)
FlexGuard: the best of both worlds! o = = Ideal Hybrid Lock
g Use aspinlock | Switch to blocking
ke, (MCS) :!lock (Futex) when lock
48 1071 ;! holder preempted
wn
« Wait... Didn't others try to do this before?! g | - -
« le, switch between spinning and blocking? O . ____———-;I
: - 0.8 09 10 1.1 1.2
o - !
Answer: yes, but they used unreliable heuristics! Thread Count / Core Count

[Dice, 2017] .

[He et al,, 2005] .

Spin-then-park: spin a little before blocking
« Actually POSIX uses this, sometimes worse than just blocking in our experiments
- Heuristic: how long do you spin?

Malthusian locks: spin-then-park + some threads in a "passive" list 3

- Few active threads in the "spin" phase (fairness tradeoff) Eh Q)

« Heuristic: how long do you spin? Active Passive
Time-published locks: store timestamps, guess preemption if "stale" timestamp n =g O

- Heuristic: what timeout do you pick? EAD - =0

=
o
o

—— Blocking (Futex)
Spinlock (MCS)
- == |deal Hybrid Lock

I-FlexGuard: the best of both worlds!

Use a spinlock Switch to blocking
(MCS) : [lock (Futex) when lock
;! holder preempted

=
=)
o

| — V]

-—
oan Emm mmm :
— .

e Wait... Didn't others try to do this before?!
« le, switch between spinning and blocking?

Critical Section time (ms)

] —

. - 08 09 10 11 12
. - !
Answer: yes, but they used unreliable heuristics! Thread Count / Core Count

- Spin-then-park: spin a little before blocking
« Actually POSIX uses this, sometimes worse than just blocking in our experiments
- Heuristic: how long do you spin?
[Dice, 2017] - Malthusian locks: spin-then-park + some threads in a "passive" list

) [E]
- Few active threads in the "spin" phase (fairness tradeoff) Eh Q)
Active) \ Passive

- Heuristic: how long do you spin?

[He et al, 2005] - Time-published locks: store timestamps, guess preemption if "stale" timestamp O =0 O
- Heuristic: what timeout do you pick? EAD - =0
[Teabeetal,2017] « |-Spinlocks: only take the lock if enough time left in Xen timeslice (kernel locks in VMs) Ics')(_
- Heuristic: how much is "enough time"? |_1oc'k_('>

10°; —
- | —— Blocking (Futex)
r £ —— Spinlock (MCS)
FlexGuard: the best of both worlds! 2 = = Ideal Hybrid Lock
g Use aspinlock | Switch to blocking
o (MCS) :lock (Futex) when lock
g 1071 !l holder preempted
5
. Wait... 2 S : -
l.e., switch between spinning and blocking? ® Bl —LI

FlexGuard: first completely deterministic approach!

« Switches to blocking precisely when a critical section preemption happens
* Thanks to eBPF!

[Dice, 2017] Malthusian locks: spin-then-park + some threads in a "passive" list T

Few active threads in the "spin" phase (fairness tradeoff) 5 G
.

Heuristic: ?

[He et al, 2005] Time-published locks: store timestamps, guess preemption if "stale" timestamp u - O
Heuristic: ? t|:| - B0

[Teabe et al, 2017] I-Spinlocks: only take the lock if enough time left in Xen timeslice (kernel locks in VMs) fes 3¢
Heuristic: ? Lock()

FlexGuard's Preemption Monitor

* FlexGuard's Preemption Monitor detects critical section (CS) preemptions
- eBPF handler that hooks to the sched_switch event aleBPF

« How to detect thread in a critical section?

5 def lock(L):

6 while (True):

7 if L == UNLOCKED:

8 label at_xchg

9 if XCHG(&L, LOCKED) == UNLOCKED:
10 label at_break

11 break

12

13 def unlock(L):
14

15 label at_store
16 L. = UNLOCKED

FlexGuard's Preemption Monitor

* FlexGuard's Preemption Monitor detects critical section (CS) preemptions
- eBPF handler that hooks to the sched_switch event aleBPF

« How to detect thread in a critical section?

« Example with a simple TATAS spinlock 5 def lock(L):
6 while (True):
7 if L == UNLOCKED:
8 label at_xchg
9 if XCHG(&L, LOCKED) == UNLOCKED:
10 label at_break
11 break

12

13 def unlock(L):
14

15 label at_store
16 L. = UNLOCKED

FlexGuard's Preemption Monitor

* FlexGuard's Preemption Monitor detects critical section (CS) preemptions

- eBPF handler that hooks to the sched_switch event aleBPF

« How to detect thread in a critical section?

« Example with a simple TATAS spinlock 5 def lock(L):
. Idea: flag! 6 while (True):
- US€ a Tag: 7 if L == UNLOCKED:
- Set it at the end of lock() 8 label at _xchg
_ o 9 if XCHG(&L, LOCKED) == UNLOCKED:
« Unset it at the beginning of unlock() 10 label at_break
11 break

- If flag set, we're in a critical section! 9
CSI: 13 def unlock(L):

14
15 label at_store
16 L. = UNLOCKED

FlexGuard's Preemption Monitor

* FlexGuard's Preemption Monitor detects critical section (CS) preemptions
- eBPF handler that hooks to the sched_switch event aleBPF

« How to detect thread in a critical section?

« Example with a simple TATAS spinlock 5 def lock(L):
. Idea: flag! 6 while (True):
- US€ a Tag: 7 if L == UNLOCKED:
- Set it at the end of lock() 8 label at _xchg
_ o 9 if XCHG(&L, LOCKED) == UNLOCKED:
« Unset it at the beginning of unlock() 10 label at_break
11 break

If flag set, we're in a critical section! 12 cs counter 4= 1 <

« Actually, need to use a counter for nested CSs CSI: 13 def unlock(L):
14 cs_counter -=] <

« Ifcs_counter > 0, we'rein acritical section 15 label at_store
16 L = UNLOCKED

FlexGuard's Preemption Monitor

* FlexGuard's Preemption Monitor detects critical section (CS) preemptions
- eBPF handler that hooks to the sched_switch event aeBPF

« How to detect thread in a critical section?

« Example with a simple TATAS spinlock 5 def lock(L):
. Idea: flac! 6 while (True):
ea. use a fag: 7 if L == UNLOCKED:
. Setitatthe end of lock() 8 label at_xchg
9 if XCHG(&L, LOCKED) == UNLOCKED:

« Unset it at the beginning of unlock() 10 label at_break

. . - : 11 break
If flag set, we're in a critical section! 12 cs counter 4= 1 <

« Actually, need to use a counter for nested CSs CSI: 13 def unlock(L):
14 cs_counter -=] <

« Ifcs_counter > 0, we'rein acritical section 15 label at_store
16 L = UNLOCKED

 Isthat enough to be accurate?

5 def lock(L):
6 while (True):
7 if L == UNLOCKED:
! I I 8 label at_xch
FlexGuard’s Preemption Monitor 9 S

10 label at_break
11 break
12 cs_counter += 1

« Answer: no, the counter is not enough. CS[13 def unlock(L):
14 cs_counter -= 1

15 label at_store
16 L = UNLOCKED

5 def lock(L):
6 while (True):
7 if L == UNLOCKED:
! 1 I 8 label at_xch
FlexGuard'’s Preemption Monitor : A L LOCKED) — UNLOCKED:
10 label at_break
11 break
12 cs_counter += 1
« Answer: no, the counter is not enough. CS[13 def unlock(L):
14 cs_counter -= 1
15 label at_store
e lock() function: when are we in the critical section? 16 L = UNLOCKED

5 def lock(L):
6 while (True):
7 if L == UNLOCKED:
! 1 I 8 label at_xch
FlexGuard'’s Preemption Monitor : A L LOCKED) — UNLOCKED:
10 label at_break
11 break
12 cs_counter += 1
« Answer: no, the counter is not enough. CS[13 def unlock(L):
14 cs_counter -= 1
15 label at_store
e lock() function: when are we in the critical section? 16 L = UNLOCKED

« Right after XCHG succeeded in changing the lock value, already in the CS!
- There could be instructions until the actual cs_counter increment!

def lock(L):
while (True):
if L == UNLOCKED:

label at_xchg
if XCHG(&L, LOCKED) == UNLOCKED:

10 label at_break
11 break :] cS

O 00 N O Gl

FlexGuard's Preemption Monitor

12 cs_counter += 1
* Answer: no, the counter is not enough. CS[13 def unlock(L):
14 cs_counter =1
15 label at_store
e lock() function: when are we in the critical section? 16 L = UNLOCKED

« Right after XCHG succeeded in changing the lock value, already in the CS!
- There could be instructions until the actual cs_counter increment!
- le,if we've been preempted between at_break and the end of the lock function

def lock(L):
while (True):
if L == UNLOCKED:

label at_xchg
if XCHG(&L, LOCKED) == UNLOCKED:

10 label at_break
11 break :] cS

O 00 N O Gl

FlexGuard's Preemption Monitor

12 cs_counter += 1
« Answer: no, the counter is not enough. CS[13 def unlock(L):
14 cs_counter =1
15 label at_store
e lock() function: when are we in the critical section? 16 L = UNLOCKED

« Right after XCHG succeeded in changing the lock value, already in the CS!
- There could be instructions until the actual cs_counter increment!
- le,if we've been preempted between at_break and the end of the lock function

e unlock() function: when are we in the critical section?

def lock(L):
while (True):
if L == UNLOCKED:
label at_xchg
9 if XCHG(&L, LOCKED) == UNLOCKED:

10 label at_break
11 break :] cS

12 cs_counter += 1
« Answer: no, the counter is not enough. CS[13 def unlock(L):
14 cs_counter -= 1

15 label at_store
e lock() function: when are we in the critical section? 16 L = UNLOCKED

« Right after XCHG succeeded in changing the lock value, already in the CS!
- There could be instructions until the actual cs_counter increment!
- le,if we've been preempted between at_break and the end of the lock function

FlexGuard's Preemption Monitor

* unlock() function: when are we in the critical section?
« Until the store at line 16 actually completed, still in the CS!
« There could be instructions between the cs_counter decrement and that!

def lock(L):
while (True):
if L == UNLOCKED:

label at_xchg
9 if XCHG(&L, LOCKED) == UNLOCKED:

10 label at_break
11 break :] cS

12 cs_counter += 1
* Answer: no, the counter is not enough. CS[13 def unlock(L):
14 cs_counter -= 1 cS

15 label at_store
e lock() function: when are we in the critical section? 16 L = UNLOCKED

« Right after XCHG succeeded in changing the lock value, already in the CS!
- There could be instructions until the actual cs_counter increment!
- le,if we've been preempted between at_break and the end of the lock function

FlexGuard's Preemption Monitor

* unlock() function: when are we in the critical section?
« Until the store at line 16 actually completed, still in the CS!
- There could be instructions between the cs_counter decrement and that!
- le, if we've been preempted between the beginning of the unlock function and at_store
- Assuming at_store is the final MOV that changes the lock variable's value

def lock(L):
while (True):
if L == UNLOCKED:

label at_xchg
9 if XCHG(&L, LOCKED) == UNLOCKED:

10 label at_break
11 break :] cS

12 cs_counter += 1
Answer: no, the counter is not enough. CS[13 def unlock(L):
14 cs_counter -= 1 cS

15 label at_store
lock() function: when are we in the critical section? 16 L = UNLOCKED

« Right after XCHG succeeded in changing the lock value, already in the CS!
- There could be instructions until the actual cs_counter increment!
- le,if we've been preempted between at_break and the end of the lock function

FlexGuard's Preemption Monitor

unlock() function: when are we in the critical section?
« Until the store at line 16 actually completed, still in the CS!
- There could be instructions between the cs_counter decrement and that!
- le, if we've been preempted between the beginning of the unlock function and at_store
- Assuming at_store is the final MOV that changes the lock variable's value

Can we take care of these cases?

def lock(L):
while (True):
if L == UNLOCKED:

label at_xchg
9 if XCHG(&L, LOCKED) == UNLOCKED:

10 label at_break
11 break] cS

12 cs_counter += 1
Answer: no, the counter is not enough. CS[13 def unlock(L):
14 cs_counter -= 1 cS

15 label at_store
lock() function: when are we in the critical section? 16 L = UNLOCKED

« Right after XCHG succeeded in changing the lock value, already in the CS!
- There could be instructions until the actual cs_counter increment!
- le,if we've been preempted between at_break and the end of the lock function

FlexGuard's Preemption Monitor

unlock() function: when are we in the critical section?
« Until the store at line 16 actually completed, still in the CS!
- There could be instructions between the cs_counter decrement and that!
- le, if we've been preempted between the beginning of the unlock function and at_store
- Assuming at_store is the final MOV that changes the lock variable's value

Can we take care of these cases?
« Yes, since the eBPF handler has access to the preemption address!

O 00 N O Gl

FlexGuard's Preemption Monitor

10
11
12

« Isitfinally accurate? CS[13

14
15
16

def lock(L):
while (True):
if L == UNLOCKED:

label at_xchg
if XCHG(&L, LOCKED) == UNLOCKED:

label at_break
break cS
cs_counter += 1

def unlock(L):
cs_counter -= 1 cS
label at_store
L = UNLOCKED

def lock(L):
while (True):
if L == UNLOCKED:
label at_xchg
if XCHG(&L, LOCKED) == UNLOCKED:

10 label at_break
11 break :] cS

FlexGuard's Preemption Monitor

ND OO0 I O G

(=]

12 cs_counter += 1

* Isitfinally accurate? CS[13 def unlock(L):
14 cs_counter -= 1 cS
15 label at_store

* No, still one problematic case: 16 L = UNLOCKED

* What if preeemption right after the XCHG?
* Then we are |

def lock(L):
while (True):
if L == UNLOCKED:
label at_xchg
if XCHG(&L, LOCKED) == UNLOCKED:

10 label at_break
11 break :] cS

12 cs_counter += 1
CS[::13 def unlock(L):

ND OO0 I O G

FlexGuard's Preemption Monitor

« Isitfinally accurate?

14 cs_counter -= 1 cS
15 label at_store
* No, still one problematic case: 16 L = UNLOCKED

* What if preeemption right after the XCHG?
* Then we are |

« Can we take care of this case?
* Yes, we can force the return value of XCHG to be in a specific register (w/ asm volatile)
* Inthe eBPF handler, we can access dumped register value (through the task_struct)!
= Preemptions detected with 100% accuracy!

def lock(L):
while (True):
if L == UNLOCKED:

label at_xchg
if XCHG(&L, LOCKED) == UNLOCKED:

10 label at_break
11 break :] cS

FlexGuard's Preemption Monitor

ND OO0 I O G

12 cs_counter += 1

* Isitfinally accurate? CS[13 def unlock(L):
14 cs_counter -= 1 cS
15 label at_store

* No, still one problematic case: 16 L = UNLOCKED

* What if preeemption right after the XCHG?
 Thenwe are !

« Can we take care of this case?
* Yes, we can force the return value of XCHG to be in a specific register (w/ asm volatile)
* Inthe eBPF handler, we can access dumped register value (through the task_struct)!
= Preemptions detected with 100% accuracy!

* Isitimportant to be fully accurate?

* Yes application critical sections only a few lines long, preemptions likely in 1ock()/unlock()
« Sufficient to cause performance collapse!

O 0 3 O Ui

10
11
12

13
14
15
16

FlexGuard’'s Preemption Monitor
= 0 # Per-thread critical section (CS)

counter (# of CSs a thread is 1in)

B W N =

def lock(L):
while (True)

num_preempted_cs

if L == UNLOCKED:

label at_xchg

__thread cs_counter

__thread bool is_cs_preempted = False # Thread in CS?

® # System-wide preemption counter
17 def sched_switch_btf(prev, next):

18
19
20
21

22
23

CS?=—p1f XCHG(&L, LOCKED) == UNLOCKED: 2

label at_break

break
cs_counter +

def unlock(L):
cs_counter -
label at_store

L = UNLOCKED

If next was previously preempted

if next.is_cs_preempted:
next.is_cs_preempted = False
atomic_dec(num_preempted_cs)

prev_in_cs = False # Will be set to true if prev in CS code
if prev.cs_counter > 0: # values > 1 indicate nesting
prev_in_cs = True # prev holding at least one lock; in CS
else # prev.cs_counter == 0
Addr. of next instruction to execute after preemption
preemption_addr = bpf_get_task_stack(prev)[0]
if at_xchg < preemption_addr <= at_break:
registers = bpf_get_task_registers(prev)
if registers.rcx == UNLOCKED:
prev_in_cs = True # lock acquired; already in CS code
elif at_break < preemption_addr <= lock$end or
unlock <= preemption_addr <= at_store:
prev_in_cs = True # prev in already/still in CS code

if prev_in_cs:
prev.is_cs_preempted = True
atomic_inc(num_preempted_cs)

O 0 3 O Ui

10
11
12

13
14
15
16

FlexGuard's Preemption Monitor

1
2
3
4

def lock(L):

while (True):
if L. == UNLOCKED:

label at_xchg

CS?=—pi1f XCHG(&L, LOCKED)

label at_break

break

cs_counter +=

def unlock(L):
cs_counter -
label at_store

L = UNLOCKED

__thread bool is_

__thread cs_counter = 0 # Per-thread critical section (CS)

counter (# of CSs a thread is 1in)
cs_preempted =

== UNLOCKED:

False # Thread in CS?

pti(prev, next):

If'next was previously preempted

if next.is_cs_preempted:
next.is_cs_preempted = False
atomic_dec(num_preempted_cs)

prev_in_cs = False # Will be set to true if prev in CS code
if prev.cs_counter > 0: # values > 1 indicate nesting
prev_in_cs = True # prev holding at least one lock; in CS
else # prev.cs_counter == 0
Addr. of next instruction to execute after preemption
preemption_addr = bpf_get_task_stack(prev)[0]
if at_xchg < preemption_addr <= at_break:
registers = bpf_get_task_registers(prev)
if registers.rcx == UNLOCKED:
prev_in_cs = True # lock acquired; already in CS code
elif at_break < preemption_addr <= lock$end or
unlock <= preemption_addr <= at_store:
prev_in_cs = True # prev in already/still in CS code

if prev_in_cs:
prev.is_cs_preempted = True
atomic_inc(num_preempted_cs)

O 0 3 O Ui

10
11
12

13
14
15
16

FlexGuard's Preemption Monitor
__thread cs_counter = 0 # Per-thread critical section (CS)
counter (# of CSs a thread is 1in)
__thread bool is_cs_preempted =
num_preempted_cs

1
2
3
4

def lock(L):

while (True):
if L == UNLOCKED:
label at_xchg

CS?=—pi1f XCHG(&L, LOCKED)

label at_break

break

cs_counter +=

def unlock(L):
cs_counter -
label at_store

L

= UNLOCKED

False # Thread in CS?

= 0 # System-wide preemption counter
17 def sched_switch btf(prev next)

== UNLOCKED:

if next.is cs_preempted
next.is_cs_preempted = Falsel next rescheduled in CS
atomic_dec(num_preempted_cs)

prev_in_cs = False # Will be set to true if prev in CS code
if prev.cs_counter > 0: # values > 1 indicate nesting
prev_in_cs = True # prev holding at least one lock; in CS
else # prev.cs_counter == 0
Addr. of next instruction to execute after preemption
preemption_addr = bpf_get_task_stack(prev)[0]
if at_xchg < preemption_addr <= at_break:
registers = bpf_get_task_registers(prev)
if registers.rcx == UNLOCKED:
prev_in_cs = True # lock acquired; already in CS code
elif at_break < preemption_addr <= lock$end or
unlock <= preemption_addr <= at_store:
prev_in_cs = True # prev in already/still in CS code

if prev_in_cs:
prev.is_cs_preempted = True
atomic_inc(num_preempted_cs)

O 0 3 O Ui

10
11
12

13
14
15
16

FlexGuard's Preemption Monitor

1
2
3
4

def lock(L):

while (True):
if L. == UNLOCKED:

label at_xchg

if XCHG(&L, LOCKED)

label at_break

break

cs_counter +=

def unlock(L):
cs_counter -
label at_store

L = UNLOCKED

num_preempted_cs

__thread cs_counter = 0 # Per-thread critical section (CS)

counter (# of CSs a thread is 1in)

__thread bool is_cs_preempted =

False # Thread in CS?

= 0 # System-wide preemption counter

== UNLOCKED:

17
18
19
20
21

22

def sched_switch_btf(prev, next):
If next was previously preempted
if next.is_cs_preempted:
next.is_cs_preempted = False
atomic_dec(num_preempted_cs)

RLEY in = False # Will be set to true if prev in CS code

else # prev.cs_counter == 0

values > 1 indicate nesting
prev_in_cs = Irue # prev holding at least one lock;

in CS

Addr. of next instruction to execute after preemption

preemption_addr = bpf_get_task_stack(prev)[0]

if at_xchg < preemption_addr <= at_break:
registers = bpf_get_task_registers(prev)
if registers.rcx == UNLOCKED:

prev_in_cs = True # lock acquired; already in CS code

elif at_break < preemption_addr <= lock$end or
unlock <= preemption_addr <= at_store:

prev_in_cs = True # prev in already/still in CS code

if prev_in_cs:
prev.is_cs_preempted = True
atomic_inc(num_preempted_cs)

O 0 3 O Ui

10
11
12

13
14
15
16

FlexGuard's Preemption Monitor
1 __thread cs_counter = 0 # Per-thread critical section (CS)

2 # counter (# of CSs a thread is 1in)

3 __thread bool is_cs_preempted = False # Thread in CS?

4 ® # System-wide preemption counter

num_preempted_cs

def lock(L):
while (True)

if L == UNLOCKED:

label at_xchg

17 def sched_switch_btf(prev, next):

18
19
20
21

22

CS?=—p1f XCHG(&L, LOCKED) == UNLOCKED: 2

label at_break

break
cs_counter +

def unlock(L):
cs_counter -
label at_store

L = UNLOCKED

If next was previously preempted

if next.is_cs_preempted:
next.is_cs_preempted = False
atomic_dec(num_preempted_cs)

prev_in_cs = False # Will be set to true if prev in CS code
if prev.cs_counter > 0: # values > 1 indicate nesting
prev_in_cs = True # prev holding at least one lock; in CS
else # prev.cs_counter == 0
Addr. of next instruction to execute after preemption
preemption_addr = bpf_get_task_stack(prev)[0]

if at_xchg < preemption_addr <= at_break:
registers = bpf_get_task_registers(prev)
if registers.rcx == UNLOCKED:
prev_in_cs = lrue # lock acquired; already 1in code
elif at_break < preemption_addr <= lock$end or
unlock <= preemption_addr <= at_store:
prev_in_cs = True # prev in already/still in CS code

if prev_in_cs:
prev.is_cs_preempted = True
atomic_inc(num_preempted_cs)

O 0 3 O Ui

10
11
12

13
14
15
16

FlexGuard's Preemption Monitor

1
2
3
4

def lock(L):

while (True):
if L. == UNLOCKED:

label at_xchg

if XCHG(&L, LOCKED)

label at_break

break

cs_counter +=

def unlock(L):
cs_counter -
label at_store

L = UNLOCKED

num_preempted_cs

__thread cs_counter = 0 # Per-thread critical section (CS)

counter (# of CSs a thread is 1in)

__thread bool is_cs_preempted =

False # Thread in CS?

= 0 # System-wide preemption counter
17 def sched_switch_btf(prev, next):

== UNLOCKED:

18
19
20
21

22
23

If next was previously preempted

if next.is_cs_preempted:
next.is_cs_preempted = False
atomic_dec(num_preempted_cs)

prev_in_cs = False # Will be set to true if prev in CS code
if prev.cs_counter > 0: # values > 1 indicate nesting
prev_in_cs = True # prev holding at least one lock; in CS
else # prev.cs_counter == 0
Addr. of next instruction to execute after preemption
preemption_addr = bpf_get_task_stack(prev)[0]
if at_xchg < preemption_addr <= at_break:
registers = bpf_get_task_registers(prev)
if registers.rcx == UNLOCKED:
brev_in = True # lock acquired: already in CS code

elif at_break < preemption_addr <= lock$end or

unlock <= preemption_addr <= at_store:
prev_in_cs = True # prev in already/still in CS code

if prev_in_cs:
prev.is_cs_preempted = True
atomic_inc(num_preempted_cs)

O 0 3 O Ui

10
11
12

13
14
15
16

FlexGuard's Preemption Monitor

1
2
3
4

def lock(L):

while (True):
if L. == UNLOCKED:

label at_xchg

if XCHG(&L, LOCKED)

label at_break

break

cs_counter +=

def unlock(L):
cs_counter -
label at_store

L = UNLOCKED

num_preempted_cs

__thread cs_counter = 0 # Per-thread critical section (CS)

counter (# of CSs a thread is 1in)

__thread bool is_cs_preempted =

False # Thread in CS?

= 0 # System-wide preemption counter
17 def sched_switch_btf(prev, next):

== UNLOCKED:

18
19
20
21

22
23

If next was previously preempted

if next.is_cs_preempted:
next.is_cs_preempted = False
atomic_dec(num_preempted_cs)

prev_in_cs = False # Will be set to true if prev in CS code
if prev.cs_counter > 0: # values > 1 indicate nesting
prev_in_cs = True # prev holding at least one lock; in CS
else # prev.cs_counter == 0
Addr. of next instruction to execute after preemption
preemption_addr = bpf_get_task_stack(prev)[0]
if at_xchg < preemption_addr <= at_break:
registers = bpf_get_task_registers(prev)
if registers.rcx == UNLOCKED:
prev_in_cs = True # lock acquired; already in CS code

if prev_in_cs:
prev.is_cs_preempted = True
atomic_inc(num_preempted_cs)

O 0 3 O Ui

10
11
12

13
14
15
16

FlexGuard's Preemption Monitor
1 = 0 # Per-thread critical section (CS)
2 # counter (# of CSs a thread is 1in)
3 __thread bool is_cs_preempted = False # Thread in CS?
4 ® # System-wide preemption counter

__thread cs_counter

num_preempted_cs

def lock(L):
while (True)

if L == UNLOCKED:

label at_xchg

17 def sched_switch_btf(prev, next):

18
19
20
21

22
23

CS?=—p1f XCHG(&L, LOCKED) == UNLOCKED: 2

label at_break

break
cs_counter +

def unlock(L):
cs_counter -
label at_store

L = UNLOCKED

If next was previously preempted

if next.is_cs_preempted:
next.is_cs_preempted = False
atomic_dec(num_preempted_cs)

prev_in_cs = False # Will be set to true if prev in CS code
if prev.cs_counter > 0: # values > 1 indicate nesting
prev_in_cs = True # prev holding at least one lock; in CS
else # prev.cs_counter == 0
Addr. of next instruction to execute after preemption
preemption_addr = bpf_get_task_stack(prev)[0]
if at_xchg < preemption_addr <= at_break:
registers = bpf_get_task_registers(prev)
if registers.rcx == UNLOCKED:
prev_in_cs = True # lock acquired; already in CS code
elif at_break < preemption_addr <= lock$end or
unlock <= preemption_addr <= at_store:
prev_in_cs = True # prev in already/still in CS code

if prev_in_cs:

prev.is_cs_preempted = True | prev preempted in CS
atomic_inc(num_preempted_cs)

tﬁizdh,- 10

FlexGuard’s lock algorithm

* We now have a reliable way to detect critical section preemptions

zea—

FlexGuard’s lock algorithm

* We now have a reliable way to detect critical section preemptions

« We need an efficient hybrid spin/blocking lock algorithm to go with it

zea—

FlexGuard’s lock algorithm

* We now have a reliable way to detect critical section preemptions
« We need an efficient hybrid spin/blocking lock algorithm to go with it

* For this, we need a bit of background on efficient lock algorithms

b

zea—

n

FlexGuard’s lock algorithm

We now have a reliable way to detect critical section preemptions

We need an efficient hybrid spin/blocking lock algorithm to go with it

For this, we need a bit of background on efficient lock algorithms

Focus: efficient spinlock algorithms

« Blocking locks simply call the FUTEX syscall, can’t be improved
« Unless you spin...

b

zea—

n

Previous work on spinlocks

Basic spinlock:

lock() {

}

unlock()

while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)

PAUSE; // Spinloop hint

{ lock = UNLOCKED; 3}

Previous work on spinlocks

« Basic spinlock:

lock() {
while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
PAUSE; // Spinloop hint
3

unlock() { lock = UNLOCKED; }

* Intheory, transitions between critical sections fast: one cache miss!
« lock = UNLOCKED invalidates lock’s cache line

Previous work on spinlocks

« Basic spinlock:

lock() {
while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
PAUSE; // Spinloop hint
3

unlock() { lock = UNLOCKED; }

* Intheory, transitions between critical sections fast: one cache miss!
« lock = UNLOCKED invalidates lock’s cache line
- Another thread fetches it and instantly executes a successful CAS
e Much faster than waking up a thread

Previous work on spinlocks

Basic spinlock:

In theory, transitions between critical sections fast: one cache miss!
lock = UNLOCKED invalidates lock’s cache line
- Another thread fetches it and instantly executes a successful CAS

lock() {

}

unlock()

while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)

PAUSE; // Spinloop hint

{ lock = UNLOCKED; 3}

e Much faster than waking up a thread

In practice, spinlocks can be very fast, but you need smarter algorithms than that...

Lots of write contention on the lock variable!

lr

zea—

12

Previous work on spinlocks

Optimisation 1: spin in read mode on the lock variable

Test-and-Test-and-Set (TATAS) lock: test the lock value without an atomic instruction first

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)

Previous work on spinlocks

Optimisation 1: spin in read mode on the lock variable

Test-and-Test-and-Set (TATAS) lock: test the lock value without an atomic instruction first

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)

Not 100% in read mode, nothing ensures lock is still UNLOCKED when you do the XCHG...

Previous work on spinlocks

« Optimisation 1:spinin read mode on the lock variable

Test-and-Test-and-Set (TATAS) lock: test the lock value without an atomic instruction first

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)

- Not100% in read mode, nothing ensures lock is still UNLOCKED when you do the XCHG...

- Ticket lock: current ticket defines who's in CS

« Like at the post office (in some countries &) my_tkt =
atomic_inc(&next_tkt);

// my_tkt == 43

while (my_tkt != curr_tkt)
PAUSE ;

atomic_inc(&curr_tkt);
// curr_tkt == 43

Previous work on spinlocks

« Optimisation 1:spinin read mode on the lock variable

Test-and-Test-and-Set (TATAS) lock: test the lock value without an atomic instruction first

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)

- Not100% in read mode, nothing ensures lock is still UNLOCKED when you do the XCHG...

« Ticket lock: current ticket defines who's in CS // curr_tkt == 42, next_tkt == 43

. Like at the post office " (in some countries &)

- Before acquiring the lock: get your ticket

- Atomic but not on the critical path while (my_tkt != curr_tkt)

PAUSE ;

atomic_inc(&curr_tkt);
// curr_tkt == 43

Previous work on spinlocks

« Optimisation 1:spinin read mode on the lock variable

Test-and-Test-and-Set (TATAS) lock: test the lock value without an atomic instruction first

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)

Not 100% in read mode, nothing ensures lock is still UNLOCKED when you do the XCHG...

« Ticket lock: current ticket defines who's in CS // curr_tkt == 42, next_tkt == 43

my_tkt =
atomic_inc(&next_tkt);
// my_tkt == 43

Like at the post office (in some countries &)

Before acquiring the lock: get your ticket

o i iy while (my_tkt !'= curr_tkt)
Atomic but not on the critical path

Lock aCCIL"Sltlon: atomic_inc(&curr_tkt);

* Spln until the current tiCkEt —= yOUF tiCkEt Value ... // curr_tkt == 43
« 100% in read mode!

Previous work on spinlocks

« Optimisation 1:spinin read mode on the lock variable

Test-and-Test-and-Set (TATAS) lock: test the lock value without an atomic instruction first

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)

- Not100% in read mode, nothing ensures lock is still UNLOCKED when you do the XCHG...

« Ticket lock: current ticket defines who's in CS // curr_tkt == 42, next_tkt == 43

« Like at the post office (in some countries &) my_tkt =
atomic_inc(&next_tkt);

- Before acquiring the lock: get your ticket // my_tkt == 43

- Atomic but not on the critical path
- Lock acquisition:

+ Spin until the current ticket == your ticket value |
« 100% in read mode!

while (my_tkt != curr_tkt)
PAUSE ;

atomic_inc(&curr_tkt);
// curr_tkt == 43

- 0OnCSexit: atomically increment the current ticket

Previous work on spinlocks

e Optimisation 2: use multiple lock variables
« Queue locks (MCS, CLH): [Mellor-Crummey et all, 1991] [Craig et al. 1993; Magnussen et al. 1994]

- One queue node/lock variable per thread

tail .

\ 4

next

next I

waiting | @ waiting

Previous work on spinlocks

e Optimisation 2: use multiple lock variables
« Queue locks (MCS, CLH): [Mellor-Crummey et all, 1991] [Craig et al. 1993; Magnussen et al. 1994]

- One queue node/lock variable per thread
- Lock acquisition: enqueue the thread's node (atomic, outside the critical path)

tail .

T1:in CS

next

\ 4

\ 4

next

waiting | @ waiting waiting @

next

Previous work on spinlocks

e Optimisation 2: use multiple lock variables
« Queue locks (MCS, CLH): [Mellor-Crummey et all, 1991] [Craig et al. 1993; Magnussen et al. 1994]
- One queue node/lock variable per thread
- Lock acquisition: enqueue the thread's node (atomic, outside the critical path)
« Oncritical section exit: write local lock variable to signal the next thread we're done

tail .

T2:in CS

next

\ 4

next

waiting | @ waiting @

Previous work on spinlocks

« Optimisation 2: use multiple lock variables
« Queue locks (MCS, CLH): [Mellor-Crummey et all, 1991] [Craig et al. 1993; Magnussen et al. 1994]
- One queue node/lock variable per thread
- Lock acquisition: enqueue the thread's node (atomic, outside the critical path)

« Oncritical section exit: write local lock variable to signal the next thread we're done
- Difference between MCS and CLH: direction of the queue

tail .

T2:in CS

next

\ 4

next

waiting | @ waiting @

Previous work on spinlocks

* Optimisation 3: NUMA-awareness

- Modern machines often have Non-Uniform Memory Architectures (NUMA)
- E.g, one NUMA node = one processor

zea—

Previous work on spinlocks

* Optimisation 3: NUMA-awareness
- Modern machines often have Non-Uniform Memory Architectures (NUMA)
- E.g, one NUMA node = one processor
- Faster to hand over the lock on the same NUMA node than to a remote NUMA node

zea—

Previous work on spinlocks

« Optimisation 3: NUMA-awareness
- Modern machines often have Non-Uniform Memory Architectures (NUMA)
- E.g,one NUMA node = one processor
- Faster to hand over the lock on the same NUMA node than to a remote NUMA node

- Idea: hand over the lock locally for a while before handing it over remotely
- Trades fairness for performance

zea—

Previous work on spinlocks

* Optimisation 3: NUMA-awareness
Modern machines often have Non-Uniform Memory Architectures (NUMA)
E.g, one NUMA node = one processor
Faster to hand over the lock on the same NUMA node than to a remote NUMA node

Idea: hand over the lock locally for a while before handing it over remotely
Trades fairness for performance

4 0 O N\ [])
ol o0 - O 7 O
_ NUMA node 1) U NUMA node 2 Y

zea—

Previous work on spinlocks

« Optimisation 3: NUMA-awareness

Modern machines often have Non-Uniform Memory Architectures (NUMA)
E.g, one NUMA node = one processor
Faster to hand over the lock on the same NUMA node than to a remote NUMA node

Idea: hand over the lock locally for a while before handing it over remotely
Trades fairness for performance

4 N\)
M [

m
m
u O U g O

_ NUMA node 1 Y _ NUMA node 2 Y

zea—

Previous work on spinlocks

* Optimisation 3: NUMA-awareness

Modern machines often have Non-Uniform Memory Architectures (NUMA)
E.g, one NUMA node = one processor
Faster to hand over the lock on the same NUMA node than to a remote NUMA node

Idea: hand over the lock locally for a while before handing it over remotely
Trades fairness for performance

N\])

4 0 O

u
o O—o 50 UL O

_ NUMA node 1 Y _ NUMA node 2 Y

zea—

Previous work on spinlocks

* Optimisation 3: NUMA-awareness

Modern machines often have Non-Uniform Memory Architectures (NUMA)
E.g, one NUMA node = one processor
Faster to hand over the lock on the same NUMA node than to a remote NUMA node

Idea: hand over the lock locally for a while before handing it over remotely
Trades fairness for performance

N\])

4 0 O

u
o0 o0 UL O

_ NUMA node 1 Y _ NUMA node 2 Y

zea—

Previous work on spinlocks

« Optimisation 3: NUMA-awareness
Modern machines often have Non-Uniform Memory Architectures (NUMA)
E.g, one NUMA node = one processor
Faster to hand over the lock on the same NUMA node than to a remote NUMA node

Idea: hand over the lock locally for a while before handing it over remotely
Trades fairness for performance

4 s N\ [])
o o0 - O 7 O
_ NUMA node 1) U NUMA node 2 Y

zea—

Previous work on spinlocks

* Optimisation 3: NUMA-awareness
Modern machines often have Non-Uniform Memory Architectures (NUMA)
E.g, one NUMA node = one processor
Faster to hand over the lock on the same NUMA node than to a remote NUMA node

Idea: hand over the lock locally for a while before handing it over remotely
Trades fairness for performance

4 O O A] A
ol o0 - O 7 O
_ NUMA node 1) U NUMA node 2 Y

zea—

Previous work on spinlocks

« Optimisation 3: NUMA-awareness

Modern machines often have Non-Uniform Memory Architectures (NUMA)
E.g, one NUMA node = one processor
Faster to hand over the lock on the same NUMA node than to a remote NUMA node

Idea: hand over the lock locally for a while before handing it over remotely
Trades fairness for performance

4 0 O N I:I/|_—_|)
O
o o0 g O

_ NUMA node 1 Y _ NUMA node 2 Y

zea—

Previous work on spinlocks

* Optimisation 3: NUMA-awareness

Modern machines often have Non-Uniform Memory Architectures (NUMA)
E.g, one NUMA node = one processor
Faster to hand over the lock on the same NUMA node than to a remote NUMA node

Idea: hand over the lock locally for a while before handing it over remotely
Trades fairness for performance

N\])

4 0 O

ob o0 DD\DEI

_ NUMA node 1 Y _ NUMA node 2 Y

zea—

Previous work on spinlocks

* Optimisation 3: NUMA-awareness

Modern machines often have Non-Uniform Memory Architectures (NUMA)
E.g, one NUMA node = one processor
Faster to hand over the lock on the same NUMA node than to a remote NUMA node

Idea: hand over the lock locally for a while before handing it over remotely
Trades fairness for performance

N\])

4 0 O

O]
obd o4O H o O

_ NUMA node 1 Y _ NUMA node 2 Y

zea—

Previous work on spinlocks

[Dice et al,, 2012]

Optimisation 3: NUMA-awareness

Lock cohorting: use a pair of spinlock algorithms (from TATAS, ticket, MCS, CLH...)
« One for local nodes, one to switch between nodes

zea—

1 shuffle_lock() {

2 if (lock == UNLOCKED)
. . 3 locked = XCHG(&lock, LOCKED);
Previous work on spinlocks 4 if (locked 1= UNLOCKED)
5 mcs_lock(&mes_lock);
6 while (XCHG(&lock, LOCKED) !'= UNLOCKED)
7 PAUSE ;
8
9

mcs_unlock(&mcs_lock);

« Optimisation 3: NUMA-awareness

[Dice et al, 2012] « Lock cohorting: use a pair of spinlock algorithms (from TATAS, ticket, MCS, CLH...)
- One for local nodes, one to switch between nodes

[Kashyap etal,2019] « Shuffle lock: queue lock, move threads so that local waiters are next
- With one extra optimisation (unrelated to NUMA): TAS + MCS

shuffle_lock() {
if (lock == UNLOCKED)
locked = XCHG(&lock, LOCKED);

1
2
. . 3
Previous work on spinlocks 4 if (locked 1= UNLOCKED)
5 mcs_lock(&mes_lock);
6 while (XCHG(&lock, LOCKED) != UNLOCKED)
7 PAUSE ;
8
9

mcs_unlock(&mcs_lock);

« Optimisation 3: NUMA-awareness

[Dice et al, 2012] « Lock cohorting: use a pair of spinlock algorithms (from TATAS, ticket, MCS, CLH...)
- One for local nodes, one to switch between nodes

[Kashyap etal,2019] « Shuffle lock: queue lock, move threads so that local waiters are next
- With one extra optimisation (unrelated to NUMA): TAS + MCS

- Fast path:just acquire the TAS lock if free (L1-2)
- Slow path: acquire the MCS, acquire the TAS lock, release the MCS (L4-7)

1 shuffle_lock() {

2 if (lock == UNLOCKED)
. . 3 locked = XCHG(&lock, LOCKED);
Previous work on spinlocks 4 if (locked 1= UNLOCKED)
5 mcs_lock(&mes_lock);
6 while (XCHG(&lock, LOCKED) !'= UNLOCKED)
7 PAUSE ;
8
9

mcs_unlock(&mcs_lock);

« Optimisation 3: NUMA-awareness

[Dice et al, 2012] « Lock cohorting: use a pair of spinlock algorithms (from TATAS, ticket, MCS, CLH...)
« One for local nodes, one to switch between nodes

[Kashyapetal,2019] « Shuffle lock: queue lock, move threads so that local waiters are next
- With one extra optimisation (unrelated to NUMA): TAS + MCS

- Fast path: just acquire the TAS lock if free (L1-2)
- Slow path: acquire the MCS, acquire the TAS lock, release the MCS (L4-7)

- Advantages:
- Fast acquisition when lock free; at most one spinner on the TAS lock
- At most one MCS acquired at a time, lower memory consumption for nested locks
- Only one MCS node per thread needed, instead of one per thread per lock

&'zu&—- 16

Single-variable lock states

LOCKED_WITH_BLOCKED_WAITERS = at least one thread is blocking,
the holder should call futex_wake when releasing the lock
UNLOCKED = ®, LOCKED = 1, LOCKED_WITH_BLOCKED_WAITERS = 2

CS preemption counter updated by the eBPF Preemption Monitor
num_preempted_cs = 0

class Lock:

val = UNLOCKED, queue = None # Single-variable lock, MCS tail
class QNode:

next = None, waiting = False

def mcs_exit(lock: Lock, gnode: QNode):
if gnode.next is None:
if CAS(&lock.queue, gnode, None) == gnode:
return
while gnode.next is None:
PAUSEQ)
gnode.next.waiting = False

def flexguard_unlock(lock: Lock, gnode: QNode):
gnode.cs_counter -= 1
label at_unlock
if XCHG(&lock.val, UNLOCKED) == LOCKED_WITH_BLOCKED_WAITERS:
futex_wake(&lock.val, 1) # Wake one of the waiting threads

def flexguard_lock(lock: Lock, gnode: QNode):

label at_fastpath # Try to steal the single-variable lock if free

if lock.val == UNLOCKED and CAS(&lock.val, UNLOCKED, LOCKED):
gnode.cs_counter += 1
return
There are waiters in the queue, enter the slow path
flexguard_slow_path(lock, gnode)

34
35
36
37
38
39
40
41
42
43
44
45
46
47
43
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

def flexguard_slow_path(lock, gnode):
enqueued = False
if num_preempted_cs == 0: # If spinning, begin Phase 1
enqueued = True
gnode.next = None
gnode.waiting = True
label at_xchg
pred = XCHG(&lock.queue, qgnode)
if pred is not None:
pred.next = gnode
while gnode.waiting and num_preempted_cs == 0:
PAUSEQ)
label at_phase2 # Begin Phase 2
state = CAS(&lock.val, UNLOCKED, LOCKED)
while state != UNLOCKED:
if num_preempted_cs == 0: # Busy-waiting mode
PAUSEQ)
state = CAS(&lock.val, UNLOCKED, LOCKED)
else: # Blocking mode
if enqueued:
mcs_exit(lock, gnode)
enqueued = False
if state != LOCKED_WITH_BLOCKED_WAITERS:
state = XCHG(&lock.val, LOCKED_WITH_BLOCKED_WAITERS)
if state != UNLOCKED:
futex_wait(&lock.val, LOCKED_WITH_BLOCKED_WAITERS)
state = XCHG(&lock.val, LOCKED_WITH_BLOCKED_WAITERS)
if state != UNLOCKED and num_preempted_cs == 0:
Back to spin mode, restart slow path (using MCS)
return flexguard_slow_path(lock, gnode)
if enqueued: # Exit the queue if still enqueued
mcs_exit(lock, qgnode)

gnode.cs_counter += 1 -

FlexGuard’s lock algorithm

 Similar TAS+MCS optimization as the Shuffle lock
 Butthe TAS lock variable can also be used as the FUTEX lock variable

17

FlexGuard’s lock algorithm

 Similar TAS+MCS optimization as the Shuffle lock
e Butthe TAS lock variable can also be used as the FUTEX lock variable
= Possible to acquire the lock as spinning or blocking

17

FlexGuard’s lock algorithm

« Similar TAS+MCS optimization as the Shuffle lock

e Butthe TAS lock variable can also be used as the FUTEX lock variable
= Possible to acquire the lock as spinning or blocking
= No atomicity issues

17

FlexGuard’s lock algorithm

 Similar TAS+MCS optimization as the Shuffle lock

But the TAS lock variable can also be used as the FUTEX lock variable
= Possible to acquire the lock as spinning or blocking
= No atomicity issues

« Spin mode © num_preempted_cs ==

17

FlexGuard’s lock algorithm

 Similar TAS+MCS optimization as the Shuffle lock
« Butthe TAS lock variable can also be used as the FUTEX lock variable
= Possible to acquire the lock as spinning or blocking
= No atomicity issues

* Spin mode © num_preempted_cs ==
* Inspin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling

17

FlexGuard’s lock algorithm

« Similar TAS+MCS optimization as the Shuffle lock

e Butthe TAS lock variable can also be used as the FUTEX lock variable
= Possible to acquire the lock as spinning or blocking
= No atomicity issues

* Spin mode © num_preempted_cs ==
* Inspin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling
 NUMA has little impact on recent x86 machines

17

FlexGuard’s lock algorithm

 Similar TAS+MCS optimization as the Shuffle lock
» Butthe TAS lock variable can also be used as the FUTEX lock variable
= Possible to acquire the lock as spinning or blocking
= No atomicity issues

* Spin mode © num_preempted_cs ==

* Inspin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling
 NUMA has little impact on recent x86 machines

* Inblocking mode: MCS queue bypassed!

17

FlexGuard’s lock algorithm

« Similar TAS+MCS optimization as the Shuffle lock
« Butthe TAS lock variable can also be used as the FUTEX lock variable
= Possible to acquire the lock as spinning or blocking
= No atomicity issues

* Spin mode © num_preempted_cs ==

* Inspin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling
 NUMA has little impact on recent x86 machines

* Inblocking mode: MCS queue bypassed!

« Spinning->blocking transition: spin waiters exit the MCS queue

17

FlexGuard’s lock algorithm

* Similar TAS+MCS optimization as the Shuffle lock
e Butthe TAS lock variable can also be used as the FUTEX lock variable
= Possible to acquire the lock as spinning or blocking
= No atomicity issues

* Spin mode © num_preempted_cs ==

* Inspin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling
 NUMA has little impact on recent x86 machines

* Inblocking mode: MCS queue bypassed!

« Spinning->blocking transition: spin waiters exit the MCS queue
« Blocking->spinning transition: blocking waiters reenqueue themselves in the MCS queue
* One woken up at each unlock() if there are blocked waiters, TAS attempt then reenqueuing

17

Evaluation: microbenchmark (Intel)

—+—Pure blocking lock —x-= MCS — *= Shuffle lock =e=: Spinlock w/ timeslice extension —x = u-SCL
-m-- POSIX == MCS-TP —# = Malthusian -=®:= FlexGuard w/ timeslice extension —o— FlexGuard
10°
ﬂ,,.,.,,,;m AT .
101 S
) 103 | UD
5102_ F o R e cypomentyerImITRS -V‘. tlCDO
—1 ,J
i’-.

Intel machine,
104 hardware contexts

Lower is better

Linear scale

I 50 100 150 200 250 200 150 100 50 1
Number of threads (varies over time)

Evaluation: microbenchmark (Intel)
With spin-then-park

—+—Pure blocking lock —x-= MCS — »= Shuffle lock =e=: Spinlock w/ timeslice extension —x = u-SCL
--m-- POSIX =®- MCS-TP — #= = Malthusian -=®:= FlexGuard w/ timeslice extension —o— [lexGuard
10°
ﬂ,,m,ﬁm AT .
101 5
aD) 103 i UD
5102_ F o R e cypomentyerImITRS -"" tlC)O
—1 ,J
i!.

Intel machine,
104 hardware contexts

Lower is better

Linear scale

I 50 100 150 200 250 200 150 100 50 1
Number of threads (varies over time)

Evaluation: microbenchmark (Intel) Rrecently proposed patch for Linux

—x = u-SCL

—0— FHlexGuard

—+—Pure blocking lock —x-= MCS = *= Shuffle lock
-l POSIX =& MCS-TP === Malthusian

Intel machine,
104 hardware contexts

Lower is better

Linear scale

I 50 100 150 200 250 200 150 100 50 1
Number of threads (varies over time)

Evaluation: microbenchmark (Intel)

—+—Pure blocking lock —x-= MCS — *= Shuffle lock =e=: Spinlock w/ timeslice extension —x = u-SCL
-m-- POSIX == MCS-TP — 4= Malthusian -=®:= FlexGuard w/ timeslice extension —o— FlexGuard

SR Wﬁfﬁiﬁ"ﬁr ol

et SV ameg

e S s ke o

Intel machine,
104 hardware contexts

FlexGuard performs similar to

MCS at low subscription Lower is better

Normalized CS execution time

I 50 100 150 200 250 200 150 100 50 1
Number of threads (varies over time)

Evaluation: microbenchmark (Intel)

—+=—Pure blocking lock —x = MCS = *= Shuffle lock =e=: Spinlock w/ timeslice extension

--m:- POSIX -

- 101

00 150 200 250 200 150 100
Number of threads (varies over time)

FlexGuard avoids the performance collapse at high subscription

Log. scale

Linear scale

—x = u-SCL

@ MCS-TP = #= = Malthusian ==®:= FlexGuard w/ timeslice extension —o— [lexGuard

Intel machine,
104 hardware contexts

Lower is better

Even greatly outperforms the blocking locks... but why?

Number of runnable threads

Runnable threads

—+—Pure blocking lock —x- = MCS — *= Shuffle lock =e=: Spinlock w/ timeslice extension —x = u-SCL
=@+ POSIX MCS-TP — #= = Malthusian --@-= FlexGuard w/ timeslice extension —0— FlexGuard
150 '__L _______ Ll _| Microbenchmark with 140 threads
Intel machine, 104 hardware contexts
5 l = Oversubscribed case
37 l l u J # hardware contexts
1001 H.\ I | IIAJ lIHH. J,‘Ah I T —

2.007 2.0075 2.008

o)
-

\lm— 4
2 2.01 2.02 2.03 2.04
Benchmark Time (seconds)

Number of runnable threads

Runnable threads

—+—Pure blocking lock —x- = MCS — *= Shuffle lock =e=: Spinlock w/ timeslice extension —x = u-SCL
--@-- POSIX =& MCS-TP — 4= = Malthusian ==®:= FlexGuard w/ timeslice extension —o— [lexGuard
150'__7__ _______ Ll _| Microbenchmark with 140 threads
Intel machine, 104 hardware contexts
°] l = Oversubscribed case
31 l l u J # hardware contexts
100 =l y\ I | 1‘ | ll H L) L‘ | h I _\ MCS performs poorly because

2.007 2.0075 2.008

spinning waiters > # hardware contexts

o)
-

\lm— %
2 2.01 2.02 2.03 2.04
Benchmark Time (seconds)

Number of runnable threads

Runnable threads

—+—Pure blocking lock —x- = MCS — *= Shuffle lock =e=: Spinlock w/ timeslice extension —x = u-SCL
=@+ POSIX MCS-TP — #= = Malthusian --@-= FlexGuard w/ timeslice extension —0— FlexGuard
150 '__L _______ Ll _| Microbenchmark with 140 threads
Intel machine, 104 hardware contexts
5 l = Oversubscribed case
37 l l u J # hardware contexts
100 =4 J.\ I | ll | h H L] J,‘ | h I _\ MCS performs poorly because

2.007 2.0075 2.008 # spinning waiters > # hardware contexts

o)
-

The pure blocking lock performs better, but
‘H A often the next waiter is not running, because
N _____________________} #spinning waiters = 0

2 2.01 2.02 2.03 2.04
Benchmark Time (seconds)

Number of runnable threads

Runnable threads

—+=— Pure blocking lock
-

150

100+

o)
-

POSIX

_x. -

MCS
MCS-TP

= *= Shuffle lock
— 4= = Malthusian

-—e=- Spi
sm@ram Fle

nlock w/ timeslice extension —x = u-SCL
xGuard w/ timeslice extension —0— FlexGuard

2.007 2.0075

\lm— 'f[

2 2.01

L Mumull

2.008

2.02

2.03

Benchmark Time (seconds)

hardware contexts
e —— MCS performs poorly because

N

Microbenchmark with 140 threads
Intel machine, 104 hardware contexts
= Oversubscribed case

spinning waiters > # hardware contexts

FlexGuard performs best because it has
0 < # spinning waiters < # hardware contexts

The pure blocking lock performs better, but
often the next waiter is not running, because

< #spinning waiters = 0

2.04

Number of runnable threads

Runnable threads

—+— Pure blocking lock —x = MCS = *= Shuffle lock == Spi
POSIX =@ MCS-TP — 4= = Malthusian --@-= FlexGuard w/ timeslice extension —0— FlexGuard

150

100+

o)
-

nlock w/ timeslice extension —x = u-SCL

n'iy mlmhmﬂ

a1 N ’h'th

hardware contexts

\

2.008

Microbenchmark with 140 threads
Intel machine, 104 hardware contexts
= Oversubscribed case

\ MCS performs poorly because

spinning waiters > # hardware contexts

FlexGuard performs best because it has
0 < # spinning waiters < # hardware contexts

The pure blocking lock performs better, but
often the next waiter is not running, because

2.01 2.02 2.03
Benchmark Time (seconds)

< #spinning waiters = 0

04

Critical section preemptions

&Izu’a,- 19

Evaluation: microbenchmark (AMD)

—+—Pure blocking lock —x-= MCS — *= Shuffle lock =e=: Spinlock w/ timeslice extension —x = u-SCL
-m-- POSIX == MCS-TP — 4= Malthusian -=®:= FlexGuard w/ timeslice extension —o— FlexGuard

Log. scale

AMD machine,
512 hardware contexts

Lower is better

Linear scale

1 140 280 420 560 700 560 420 280
Number of threads (varies over time)

Evaluation: microbenchmark (AMD)

—+—Pure blocking lock —x-= MCS — *= Shuffle lock =e=: Spinlock w/ timeslice extension —x = u-SCL
@+ POSIX == MCS-TP == Malthusian == FlexGuard w/ timeslice extension —o— FlexGuard
10°
105 T]]
: <
‘ It g
Hl -
| Yo
» « « —— = nlm— l _ N . . I *‘w‘A 3
As compared to Intel, better R A AMD hi
performance of POSIX, £ - . 512 hardware contexts
Shuffle lock, and u-SCL. | L e

u®

R S P Ly

-t

Lower is better

Linear scale

"Oﬂ"‘.-‘

1 140 280 420 560 700 560 420 280
Number of threads (varies over time)

Evaluation: microbenchmark (AMD)

—+—Pure blocking lock —x-= MCS — *= Shuffle lock =e=: Spinlock w/ timeslice extension —x = u-SCL
-m-- POSIX == MCS-TP —# = Malthusian -=®:= FlexGuard w/ timeslice extension —o— FlexGuard
10°
10° 1 ©
10 S
) 103 | UD
2107, 3 2
= 10 e |
£1.2 - m———— AMD machine,
S | 512 hardware contexts
% 1.0 —rT
N M_ﬁr;ltf
@) .2:‘.‘- IS <7 "
<084 P 0 < Loweris better
g . : o ¥ I &
: 0.4 | E
z | —

0.2

"Oﬂ"‘.-‘

s nm = L et ey
#7250 420 560 700 560 420 280
Number of threads (varies over time)

N =
A e s we gy e

FlexGuard almost always best

Evaluation: benchmarks

—+=— Pure blocking lock

.-m-- POSIX
- 10°
Linear y-scale ——g— o '
~ K e
22 1 A e iy
= i I
=) d 9., 55
— "o’ - LN 1002
- r TR 2
a g Iﬁ' \'&.gx--_ ,E"
. b | 3b-0
—§° A :."b:i i 0 8
(] -
E /7 =
=H I /; N - 10
3 Poepmermirt— ¢ %od|Log. y-scale
1 2 8 32 104 128 256
benchmark threads
(a) Hash table on Intel.
{ 2
» > e .\\6\9-.
3 N\
0.4 8 -
o Y \, \
S w b
:3 /: & \. . \0‘9=3=C ,l:\._'
B, o o7 SN)
—ED 7 o = »\"‘ \:-\\x
2 : SRS ot
g 1+ LR T s I—:S‘,‘ = S W} o m—
2 b i
g T~
1 2 4 8 16 32 64 128
benchmark threads

(e) DB index on Intel.

—x- = MCS = »= Shuflle lock
=@ MCS-TP — 4= = Malthusian
. ’\\’i\.\' e s e o=
O Wl
7 . e
S, .
[e g e e e
= W - e e e e - - - - -
(<% 6 "y
2108y
3 LY
E 105 \'\ A,:~« _________ x—:_—_—_—_-_—a-u—""—’
‘,‘ \\‘ \!,_—_-'—:. 3 SEmEmTSEERE L
104 M - e
52 100 150 200 250

Throughput (10° Ops/s)
N

S

N

—_

—

e

concurrent threads (with 52 benchmark threads)

(b) Hash table on Intel w/ conc.

5 & Py S e

Ne.
0 .'\‘ /

\\2..//

5 L)
0

N

N . —

5 ‘&;‘;‘:‘ —— - T ————— A
0

52 100 150 200 250

concurrent threads (with 52 benchmark threads)

(f) DB index on Intel w/ conc.

=e=: Spinlock w/ timeslice extension
--@-= FlexGuard w/ timeslice extension

; 10°
. Linear y-scale
~~ e 08 e
O v T ——x_' ~% 8.‘
© i 1\ RN)
26 Yo - 10°5
2 Teenihany B
2 Ho®
23 g
E E
= ¥ 10
NS : 2%l Log. y-scale
1 2 8 32 128 512 640 768 896 1024
benchmark threads
(c) Hash table on AMD.

-6

3

o

o

24

H

& 4

82| &7

= e o9 s B0 —d
£ .

i e

(=}

8 16 32 64
benchmark threads

=y
[\
S

(g) DB index on AMD.

128 256 512 1024

—x -

u-SCL

—0— FlexGuard

10°
B\
o 8
% 10°y¥ -~s\<._'/-\._,___,_,_,___..._._:,_/n—.-._._..——n
-t & .'\ — |
8"107 :\r E\l\‘sﬂﬁg:‘::,\éB*\.a,/o-.; .. S=mer = ¢
- e . QD - L. Mool . u
- * = —%
= \'\ Sas = Bearl L =5
B0 A S e
P —
%0 ‘g‘. .',0,\. ~ "‘“‘“—*“’:*-.—'
o 5 \\';\ BE N
= 10 A NP &
ﬁ A{'Q ‘X \
B M) - > %
10* T alwrSasrpr Tl ey
el it 4
256 400 600 800 1000

concurrent threads (with 256 benchm: hreads)

(d) Hash table on AMD w/ conc.

—
(54

PG T o =" R — P = PG P @rr - O @ @ PY——
%)
3
o8
@)
‘S 1.0
Z ..
5 TS~—
T~
E \ .\o
20.5 \§‘ TS—,
E . ‘\\\‘— “TTr M \.\.\.\. q
ﬁ —“".—".‘F'_i -;‘-‘-—--_,_:__.__'__“_n_
sy P ae i e
0.0 L
256 400 600 800 1000

concurrent threads (with 256 benchmark threads)

(h) DB index on AMD w/ conc.

Higher is better

&’zu’a,— 2l

FlexGuard matches or outperforms

Evaluation: benCh marks other locks on both low and

high subscription
—+—Pure blocking lock —x- = MCS — *= Shuffle lock =e=: Spinlock w/ timeslice extension —x = u-SCL
-~ m-- POSIX =& MCS-TP = #= = Malthusian -=®-= FlexGuard w/ timeslice extension —o— FlexGuard

Linear y-scale jo——ty e o Linear y-scale 10°
3 ™ T R N Ity 3 R = S Y . \
aZ By bl 107/\(0\ ’\v)\ “‘\\‘ l."%.im___::. * a 3 RIS :—"o=‘.‘.3-.= ’\m\ 108 é‘h\. B —— P — e ————
o RY e al&107t : . o & RS i g ——— 1
% S : % T S o T e el R o o i
= 1°Z 0 T e — ¢ — T — — — —_— — — |~ =6 Priadl ou s S .
= =N W i el el Bl = ., ! = ~ s
=] [<W Q.4106 N = a— -‘x"p-g--a:_;_":: —A:f"\ (=P ‘\ S ~xe_ TN el
21 % S N 2 i ai PO SR RN F Al iy
o 10° 58 AN = 100 PP = e o 5 B o
o oflo " oo] X P &
= = s W o =33 = 10° R -,
2 =] = 10° N Y TR T T I 8 = b .
"ﬁ 10 "0 \\‘ /\x-'—’—':_z:_,—_,—_:.:‘.:f_’..:..'l:‘ ______________ "ES p : 10 10 - ‘\Tf\:’-*_‘.;: ~~~~~ ‘{,50,\ B
~ 0T g s ain e -4 o gy i gy _A-"—:\'“ o .,
10 o i il .t Log. y-scale il]
32 104 128 52 100 150 200 250 512 640 768 896 1024 256 400 600 800 1000
benchmark threads # concurrent threads (with 52 benchmark threads) # benchmark threads # concurrent threads (with 256 benchm: hreads)

(a) Hash table on Intel. (b) Hash table on Intel w/ conc. (c) Hash table on AMD. (d) Hash table on AMD w/ conc.

AS Azs @ —‘:— """"""" —6 - 1.54._.._ 0=+~ R — ST PO PP P PR— S PSS — @i
c] Q) =
2] [% 2] [72)
8.4 2, k\‘ 7 2, 2,
) 0201 \», @) o
B S T B 510
= 215 L =i 2 \
- = e - \.\
3 : 3 2 | o
—Eoz —ED 1'0 -ED —EDO 5 \x‘ .\.\
=] =3 N =2 = _ . ——— .\.
8 8 > s B = 8 8 ‘\\. ™ \.\'\o q
ﬁ 1y ﬁ 0.5 famt o S o g 1 ﬁ PP S FE gy AT T -
0 0.0 e Tt . i T et 0.0 =) A ——]
52 100 150 200 250 8 16 32 64 128 256 512 1024 256 400 600 800 1000
benchmark threads # concurrent threads (with 52 benchmark threads) # benchmark threads # concurrent threads (with 256 benchmark threads)

(e) DB index on Intel. (f) DB index on Intel w/ conc. (g) DB index on AMD. (h) DB index on AMD w/ conc.
Higher is better Lo ”

rEvaluation: benchmarks

Benchmarks w/ concurrent workload: fixed number
of benchmark threads, varying number
of concurrent threads

In this case, timeslice extension helps because
the concurrent workload'’s threads cannot be blocked

—+—Pure blocking lock —x- = MCS — *= Shuffle lock =e=: Spinlock w/ timeslice extension —x = u-SCL
--m-- POSIX =®--- MCS-TP — a= = Malthusian --@-= FlexGuard w/ timeslice extension —o— [lexGuard
9 9
Linear y-scale == gm0 1 . Linear y-scale 10
%\ = _f-'-"-—r'm...,..,_im__',:;: 7ms %\ '\Ff‘-’M-.-'.'a:.x:gm_a_, n il s g\
8"2 / ;‘\‘\—x-—~_~ — —— 10 % 84 Xz __,_(_‘*__ 10 £ % ‘Ns\{.:;/o__'_._."_'_____._._"_/._,_'___.___.‘
=) s 6.. 599:)) ;\x \‘;; = 5@ QQ: :\r E\=Q%ﬁ=/:\‘=i\~
= /E*-'.' i 10° 5 =6 ooy 10°50 L
"5 4 ".’ 5\;’&‘- . -5- \‘_\:"@-'-k _‘{___,;::-_ ::?._ all &
: /F £ : 2
- o o -
g | e 10" = : = B
0;%;;55&?;___..;;};5:_:5 Log. y-scale 0; 2% Log. y-scale
1 8 32 104 128 256 512 640 768 896 1024 256 400
benchmark threads # concurrent threads (with 52 benchmark threads) # benchmark threads # concurrent threads (with 256 benchm: hreads)
(a) Hash table on Intel. (b) Hash table on Intel w/ conc. (c) Hash table on AMD. (d) Hash table on AMD w/ conc.
?5 = 25 . ,;;1'5
w N = 2 2
54 N 520 5 5
g X Y - - ‘S 1.0
25 N . s s
= & L ~e=Ssfe-.—o—{ | 3 El E
a. £ R S 1 a a. a,
52 P BT Y 1. & B0
: -' e : g g
ﬁ 1+ L “LIIIT =1 .—l:- ‘ﬁ:@ :T:j:-i r— ﬁ 0.5 E"E A A @ FE
o P:—\—: = 2
0 s 0.0 0 s 0.0L
1 2 4 8 16 32 64 128 52 100 150 200 1 2 4 8 16 32 64 128 256 512 1024 256 400
benchmark threads # concurrent threads (with 52 benchmark threads) # benchmark threads # concurrent threads (with 256 benchmark threads)
(e) DB index on Intel. (f) DB index on Intel w/ conc. (g) DB index on AMD. (h) DB index on AMD w/ conc.
Higher is better a ”
LA

rEvaluation: benchmarks

—+—Pure blocking lock —x- = MCS — *= Shuffle lock =e=: Spinlock w/ timeslice extension —x = u-SCL
--m-- POSIX =:®-- MCS-TP — a= = Malthusian --@-= FlexGuard w/ timeslice extension —o— [lexGuard
30 25 y—u. 9.
—~ 25 ~ B) ~ ___ . """'—"'.'-——Tg\
S S S ~ I:'!\! S nmg mE N o,
g E I £20 o S N o N
—— = —, el e, N
E 56 § 201 N é g \‘- :.3<,_; Sy I8 .\+><:\
& & ok &1 &l R YR TN
5 2 S E 5 N S
iy iy 10 = :\ £10 £10
210 S e] | £ P
(o] o —~ o] Sa L — —A0~0
= = :"x N~ —— =5 5 5 5 = b %y
0 : 0 B h';é?-émr&-:a T A T T B RS I TTFOR 0 [0 D st T T e e e e i e 2]
1 2 4 8 16 32 64 128 256 52 100 150 200 250 1 2 4 8 16 32 64 128 256 512 1024 256 400 600 800 1000
benchmark threads # concurrent threads (with 52 benchmark threads) # benchmark threads # concurrent threads (with 256 benchmark threads)
(i) Dedup on Intel. (j) Dedup on Intel w/ conc. (k) Dedup on AMD. (1) Dedup on AMD w/ conc.
20 2001 '.:»- —_ o P il O T —1
=40 e b e S el 25\ 210" ’ T ’
é p’.é;fﬁ " : : é‘ é 7 b N E """ i £ Lot ..'\'-w- "’..\'N. @ — .. PP o.... @ q
3 T 3 3 150 - o B x
" 30 . A e
5 30 \ § § N X 5 100 et et N +74r—-’*\+—-+———’*
& 2 * & 3 g \ L\ & Y ey’. Heeees I CTRNSIC AT BRI PN
T N = : | e Ay pt : ‘
220 % 220 = 100 L ISR U S S = N / - P LT B
(=" -, =] = o Ve N kTP oy " g i . Sa-T
< | = = o= ~ G TP R | = D L o R L e -
o0 a o 80 s |- el T X o R A .
= S~ < = ; = \ T N2, 2 50w« =L
8 10 ./ > &P FOSN . I S 8 10 k 8 50 / ."\ * ’\\?\R . 8 \\// N ~
ﬁ ./ B ﬁ ! ﬁ / T '\"-\. “3»\\. N ﬁ _“'_,_..._::--m-.-.g.. R—. . i
G ;———"./ 0 5 0 ———ST_ —:- — o R e, e}, i mmn o Y :: :i .::;; 0 o e Mot Y) e oo —.; —_ ;-— -—: ; :—_ —-; -—-;: _-
1 2 4 8 16 32 64 128 256 0 50 100 150 200 250 1 2 4 8 16 32 64 128 256 512 1024 256 400 600 800 1000
benchmark threads # concurrent threads (with 104 benchmark threads) # benchmark threads # concurrent threads (with 256 benchmark threads)

(m) Raytrace on Intel.

(n) Raytrace on Intel w/ conc.

(o) Raytrace on AMD.

(p) Raytrace on AMD w/ conc.

Higher is better

&’zu’a,— 22

Poor performance of MCS, MCS-TP, and Malthusian,
due to the high number of locks (266K): one queue node

rEvaluation: benCh marks per thread and per lock, many cache misses

FlexGuard performs well due to the Shuffle lock optimization

—+—Pure blocking lock —x- = MCS — *= Shuffle lock =e=: Spinlock w/ timeslice extension —x = u-SCL
=@+ POSIX =®- MCS-TP — #= = Malthusian --@-= FlexGuard w/ timeslice extension —0— FlexGuard
30
= g2 C g
: £ £ £
35 2 2 2
H i H H
10 / = H10 Ei et S Y e §°10
E Ll g £ M A i s o £s
= W= E ; B = N
| : v b“‘é?.e A BTAL A WA T T T TR i S e e Sy f R i*é‘-'ﬁ-:#::-cﬁr_-ug—.—-*.-——~ Xomemar G- e v .
2 4 8 16 32 0 100 150 200 250 16 32 64 128 256 512 1024 0 256 400 600 800 1000
benchmark threads # concurrent threads (with 52 benchmark threads) # benchmark threads # concurrent threads (with 256 benchmark threads)
(i) Dedup on Intel. (j) Dedup on Intel w/ conc. (k) Dedup on AMD. (1) Dedup on AMD w/ conc.
.,2 Eo 2001 o—_ . " __—"——e o /'\./1
g% SR g g el
g g.:é_ , : e g g - g I -\...‘_,.- -\.,\. _____ P &isined *.m.. o)
27 N g g B e S i e o g
= = = = ; A e
= h = = 100 2 N o — A It
Eao / \b—| B H - N T !
B < o o oD o S s
= S~ < = % = 2 50w« =L
210 / B PR Bt 210 2 50 e ¢ Ta
ﬁ /.) ﬁ ﬁ ﬁ _.;._-—t--—:—\--"--l'-- =0 . " —
P! ./. . i e G U WD P Ny ey S .::;_ i T i S gu— .;._ _.;——-;-_ -_: ; :__ _-; -_-:: _-
01 2 4 8 16 32 64 128 256 0 0 50 100 150 200 250 01 2 4 8 16 32 64 128 256 512 1024 0 256 400 600 800 1000
benchmark threads # concurrent threads (with 104 benchmark threads) # benchmark threads # concurrent threads (with 256 benchmark threads)
(m) Raytrace on Intel. (n) Raytrace on Intel w/ conc. (o) Raytrace on AMD. (p) Raytrace on AMD w/ conc.

Higher is better Lo »

—+=— Pure blocking lock

—x. -

| -
m .-l..l POSIX -l‘,ll
e
)
Q 8 2
i A
Q9 3
R 26
&
— 54
L 2
a0
<= 3
S -
—— = .
e{,x
I 01 4 8 16 32 64 128 256
benchmark threads
(q) Streamcluster on Intel.
) ——, | \ N
D] R ST — sl T EPETIE
=] V@SS — e)
2,) Y \
50N T
2 4 . kW
o \ .~ Ky
,.E | = =TT ':T.\.'!_—'___'_—;—_--n.-u-—-— -
= | }\\‘
0T 100 150 200 250
benchmark threads
(an]
(o)
= (a) readrandom on Intel.
> 4
-1 Q
2
S
E
fﬂ + ‘,J‘—"‘:; \‘-\----.
E G
"E \\'\'\ .
— == g f_-{sa e [A
100 150 200 250
benchmark threads
— (e) fillrandom on Intel.

MCS
MCS-TP

Throughput (Runs/min)

(=)

S =)} (]

[\V]

Y

Shuffle lock

— 4= = Malthusian

100 150 200 250
concurrent threads (with 52 benchmark threads)

52

(r) Streamcluster on Intel w/ conc.

—
DN

—
=)

Throughput (10° Ops/s)
o~ o

o
N .
e

250

150
concurrent threads (with 52 benchmark threads)

100

(b) readrandom on Intel w/ conc.

Throughput (10° Ops/s)

4 .\’.

. v" S

Ly \
1 \“‘\ \‘ 1

n ot
‘\‘\'\ \'\

Yo

LS \

200
concurrent threads (with 52 benchmark threads)

2
R

150

(f) fillrandom on Intel w/ conc.

250

=e=: Spinlock w/ timeslice extension

--@-= FlexGuard w/ timeslice extension

—
[=]

)

S

Throughput (Runs/min)
[\V] [=)}

=,
8 16 32 64 128 256 512 1024
benchmark threads

(=}
-
X}
o

(s) Streamcluster on AMD.

x o,
12 H .\o/\' X
- & x\ﬂ>«\ %< _—x\
? 9 —
\% A,‘_/ A e \ .\.:\\
- F A /m K
a 6:\:,--'-’:“! ~‘\. +\/4_\‘_l: . et
-ﬁ) " » “ __5\{_‘:.\ A R CTT - R,
IR ISEEEREN
= I \.—*.\;_'__*_'-_'__,_,__._
e N
200 400 600 800 1000
benchmark threads
(c) readrandom on AMD.
3 o7
mo SN e ‘l‘:’g\;>mﬁ._,.
S .A__-r'-\u- \‘\\§
= N R ~ e, |
a * < ‘~\ [Y B
= 1 l = S -~ \\ ‘
&b R W
g | \\ \N ~ ~
= l \‘\\ \ N S -
O s Novosee Rballr:
200 400 600 800 1000
benchmark threads

(g) fillrandom on AMD.

—x

u-SCL

—0— FlexGuard

EZ'O
&
1)
e% 1.5 -y
RN X

5 TN\ —e—
210 r,&h&/. S e e
2 "R
05 \‘\ > i B
= ~~ Y% w
[*

00556 400 600 800 1000

concurrent threads (with 256 benchmark threads)

(t) Streamcluster on AMD w/ conc.

=)}

Throughput (10° Ops/s)
S

o]

400 B 600 . 800 1000
concurrent threads (with 256 benchmark threads)

(d) readrandom on AMD w/ conc.

sV

Throughput (10° Ops/s)

1000

800 .
concurrent threads (with 256 benchmark threads)
23

(h) fillrandom on AMD w/ conc.

400 600

Higher is better

LevelDB

—+=— Pure blocking lock

—x. -

III.II POSIX -l‘,ll
8 2
c) AN
E £
26 b o |
=) Sea N 2
E‘, DN .<§“2:1\
£ / R
%02 / \ ‘ 1\4:&
= — I \ R
<r1:f; 1
01 4 8 16 32 64 128
benchmark threads
(q) Streamcluster on Intel.
?é ¥‘T_-+__-*‘w———__4_ \ R
DG} S St — e N TTTITTTTIITII L
B AR e el
é" i \\ \:‘\0 ~e~.._ o, \ \‘
o . AN
= \ . L
<) \ —. Ky
g | P i ':T.\.'!_—'___'_—;—_--n.-u-—-— -
= | }\\‘
05 100 150 200 250
benchmark threads
(a) readrandom on Intel.
4
2
(@)
E
g =8 'f!—.kz_‘t_::
%n i \\\\. Wevreennnnnnrnnnnntt
o \\
& Wo-...
— i = - - - e R
100 150 200 250
benchmark threads
— (e) fillrandom on Intel.

MCS
MCS-TP

—-— e

Shuffle lock

— 4= = Malthusian

(]

Throughput (Runs/min)
[N

[\V]

=)}

(=)

(r)

concurrent threads (with 52 benchmark threads)

Streamcluster on Intel w/ conc.

—
DN

—~
2
5
n
(=}
Z
45‘8
j=¥
=)
=
i
=

—
=)

S

o
N .
.

250

150
concurrent threads (with 52 benchmark threads)

100

(b) readrandom on Intel w/ conc.

V]

Throughput (10° Ops/s)

o2

250

200
concurrent threads (with 52 benchmark threads)

150

(f) fillrandom on Intel w/ conc.

=e=: Spinlock w/ timeslice extension
--@-= FlexGuard w/ timeslice extension

Needs barrier support!

"‘“\x,
=10 %
g /8 NG N
ER: ,:/ \
= % o X
& s _;:». \
5 ° £\, \
& ¢ Ny AN
e 4 WA WY
e ./ ‘.‘;}\t’f'\ 5
/0/ - \"’%L:;:\.. ko‘.,
01 2 4 8 16 32 64 128 256 512 1024
benchmark threads
(s) Streamcluster on AMD.
x,x o,
/KE 12 ; .\0/ \. Pl ~x.
g‘ ,lo = % .,>\ ~x _—x\
- 9 =~ \
s b/ T
- ’1: Ay “ \ '
a 6 :\‘: ...;:{x! - :\. +\/4_\‘_l: ' .
-JSD " "\g __5\\2_‘1.\‘ PPN 3--..-.,.-i...,.___.l
S gl
= w_a\;_,,__,,_'__'__,_.__._
RN S R b
200 400 600 800 1000
benchmark threads
(c) readrandom on AMD.
2 1
mo AL e a \?ﬁ\iF'.ﬁ.-"\\
. I ~e—
= N TSR e e S
a > ~ A‘\ R e .
1 l = S -~ \\ ‘
&b R W
g | \\ ‘\T'\ ~
= l \‘\\ -,\‘ ~ -~ .
0 \" Hemdt = e \"-—:;;2- - '. Tr= o
200 400 600 800 1000
benchmark threads

(g) fillrandom on AMD.

—x

u-SCL

—0— FlexGuard

EZ'O
&
(72}
é 1.5 . r
RN X

LS\ e
210 r,&h&/. W T
g SRE

05 \‘\ > S S S e
= ~~ Y% w
[L 4

0.0 256 400 600 800 1000

concurrent threads (with 256 benchmark threads)

(t) Streamcluster on AMD w/ conc.

o]

N

'S

v
W\ o K
\ L SN -/
- ' " h7/w’\<;“~. -

/

N -
214

——
= ke

-

Throughput (10° Ops/s)

600 "800 1000

400
concurrent threads (with 256 benchmark threads)

(d) readrandom on AMD w/ conc.

? \
—~ / .
= .
2 7\
2 QD ol - -\
S i)
A ""’.k‘/ -\ A /=/=::>§#-—-l!/i\
= 1] Lt , ®
é.‘ A, \\ e ..., ..
S L e T s —
= R S
Eo \ AR *
By NNy
856 400 600 800 1000
concurrent threads (with 256 benchmark threads)
23

(h) fillrandom on AMD w/ conc.

Conclusion

 FlexGuard = best of both worlds between spinning and blocking

24

Conclusion

 FlexGuard = best of both worlds between spinning and blocking
* Preemption Monitor: accurate critical section preemption detection
* First non-heuristic approach, thanks to eBPF!

A eBPF

24

—+— Pure blocking lock —x= MCS == Shuffle lock == Spinlock w/ timeslice extension —x* = u-SCL ‘

n
co n C l u S I 0 n m- POSIX =& MCS-TP == Malthusian == FlexGuard w/ timeslice extension —o— FlexGuard

 FlexGuard = best of both worlds between spinning and blocking
* Preemption Monitor: accurate critical section preemption detection
 First non-heuristic approach, thanks to eBPF!
 FlexGuard's lock algorithm: outperforms blocking locks when oversubscribed
* Good amount of spinning waiters

Log. scale

Linear scale

1 50 100 150 200 250 200 150 100 50 1
Number of threads (varies over time)

24

—+=—Pure blocking lock —x-= MCS = *= Shuffle lock

co n c l u S i o n @ POSIX =& MCS-TP = 4= Malthusian

== Spinlock w/ timeslice extension
== FlexGuard w/ timeslice extension

—x = 1-SCL

—o— FlexGuard

 FlexGuard = best of both worlds between spinning and blocking

* Preemption Monitor: accurate critical section preemption detection

 First non-heuristic approach, thanks to eBPF!

 FlexGuard's lock algorithm: outperforms blocking locks when oversubscribed

* Good amount of spinning waiters

* Recently proposed Linux timeslice extension: complementary

A eBPF

50

100

150 200 250 200 150
Number of threads (varies over time)

100

Log. scale

Linear scale

24

Conclusion

—+— Pure blocking lock

--m-- POSIX

— -

R -

MCS = *= Shuffle lock
MCS-TP = a4 = Malthusian

== Spinlock w/ timeslice extension
== FlexGuard w/ timeslice extension

=% = u-5CL

—o— FlexGuard

 FlexGuard = best of both worlds between spinning and blocking

Preemption Monitor: accurate critical section preemption detection
* First non-heuristic approach, thanks to eBPF!

 FlexGuard'’s lock algorithm: outperforms blocking locks when oversubscribed
* Good amount of spinning waiters
Recently proposed Linux timeslice extension: complementary

Where could FlexGuard be used?
In standard libraries such as e.g., POSIX

* Spinlock performance, without sacrificing stability

* No performance collapse!

A eBPF

100
10°
10*
) 103
‘2102

g
N O

malized CS execution tim

Nor

<
o

2 =2 2
O s O

50

100

150 200 250 200 150
Number of threads (varies over time)

100

Log. scale

Linear scale

24

—+— Pure blocking lock —x= MCS == Shuffle lock == Spinlock w/ timeslice extension =% = u-5CL

| |
c 0 n C l u S I 0 n m- POSIX =& MCS-TP == Malthusian == FlexGuard w/ timeslice extension —o— FlexGuard

 FlexGuard = best of both worlds between spinning and blocking
* Preemption Monitor: accurate critical section preemption detection
* First non-heuristic approach, thanks to eBPF!
 FlexGuard's lock algorithm: outperforms blocking locks when oversubscribed
* Good amount of spinning waiters
* Recently proposed Linux timeslice extension: complementary

A eBPF

10°) Py |
10°4 mv- 't .&:_IL_ L) Q
 Where could FlexGuard be used? 0 "'”"1 R i"‘?’ ! ' \
- In standard libraries such as e.g., POSIX ER : 3

« Spinlock performance, without sacrificing stability
* No performance collapse!
* In more synchronization primitives

* Read-write locks, condition variables, barriers,
optimistic locking, delegation locks...

Nor
o o
CRNS

Linear scale

o
o

1 50 100 150 200 250 200 150 100 50 1
Number of threads (varies over time)

24

—+— Pure blocking lock —x= MCS == Shuffle lock == Spinlock w/ timeslice extension =% = u-5CL

| |
c 0 n C l u S I 0 n m- POSIX =& MCS-TP == Malthusian == FlexGuard w/ timeslice extension —o— FlexGuard

 FlexGuard = best of both worlds between spinning and blocking
* Preemption Monitor: accurate critical section preemption detection
* First non-heuristic approach, thanks to eBPF!
 FlexGuard'’s lock algorithm: outperforms blocking locks when oversubscribed
* Good amount of spinning waiters
* Recently proposed Linux timeslice extension: complementary

A eBPF

10° - —
10°4 mv- 't .&:_IL_ L) Q
 Where could FlexGuard be used? 5183 “'ﬂ"‘ i ”I!“I i"“ﬁ"] ' \
- In standard libraries such as e.g., POSIX ER : 3

* Spinlock performance, without sacrificing stability
* No performance collapse!
* In more synchronization primitives

* Read-write locks, condition variables, barriers,
optimistic locking, delegation locks...
1 50 100 150 200 250 200 150 100 50 1

® In the Vll’tualIZEd case (VCPU preemptlonS) Number of threads (varies over time)

Nor
o o
CRNS

Linear scale

o
o

24

