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Spinlocks:
Instead of blocking, spin (busy-wait)!

lock() {
while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
PAUSE;
}

unlock() {
lock = UNLOCKED;

}
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Blocking locks vs. spinlocks

 Why do standard libraries (e.g., POSIX) use blocking locks?
- Answer: stability!
Spinlocks perform great when # threads < # hardware contexts
But when # threads > # hardware contexts, performance collapses!

- Reason: spinners preempt the critical sections, stopping all progress on the critical path!
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Blocking locks vs. spinlocks

 Why do standard libraries (e.g., POSIX) use blocking locks?

- Answer: stability!
Spinlocks perform great when # threads < # hardware contexts
But when # threads > # hardware contexts, performance collapses!
- Reason: spinners preempt the critical sections, stopping all progress on the critical path!

Holds splnlock

Extremely long critical path!
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I-FlexGuard: the best of both worlds!

« Goal: get the best of both worlds!
When # threads < available # hw ctxts, spinlock perf.
When # threads > available # hw ctxts, blocking lock perf.
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- Can we do this?

* Insight: nowadays, with eBPF we can!
« We can instrument context switches to see all preemptions
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locking lock!

A eBPF

- We canview the full state of the thread: preemption address + register contents

= We can 100% tell whether we are in a critical section!
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- Spin-then-park: spin a little before blocking
« Actually POSIX uses this, sometimes worse than just blocking in our experiments
- Heuristic: how long do you spin?
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[Dice, 2017] .

[He et al,, 2005] .

Spin-then-park: spin a little before blocking
« Actually POSIX uses this, sometimes worse than just blocking in our experiments
- Heuristic: how long do you spin?

Malthusian locks: spin-then-park + some threads in a "passive" list 3

- Few active threads in the "spin" phase (fairness tradeoff) Eh Q)

« Heuristic: how long do you spin? Active Passive
Time-published locks: store timestamps, guess preemption if "stale" timestamp n =g O

- Heuristic: what timeout do you pick? EAD - =0




=
o
o

—— Blocking (Futex)
Spinlock (MCS)
- == |deal Hybrid Lock

I-FlexGuard: the best of both worlds!

Use a spinlock Switch to blocking
(MCS) : [lock (Futex) when lock
;! holder preempted

=
=)
o

| — V]

-—
oan Emm mmm :
— .

e Wait... Didn't others try to do this before?!
« le, switch between spinning and blocking?

Critical Section time (ms)

] —

. - 08 09 10 11 12
. - !
Answer: yes, but they used unreliable heuristics! Thread Count / Core Count

- Spin-then-park: spin a little before blocking
« Actually POSIX uses this, sometimes worse than just blocking in our experiments
- Heuristic: how long do you spin?
[Dice, 2017] - Malthusian locks: spin-then-park + some threads in a "passive" list

) [E]
- Few active threads in the "spin" phase (fairness tradeoff) Eh Q)
Active ) \ Passive

- Heuristic: how long do you spin?

[He et al, 2005] - Time-published locks: store timestamps, guess preemption if "stale" timestamp O =0 O
- Heuristic: what timeout do you pick? EAD - =0
[Teabeetal,2017]  « |-Spinlocks: only take the lock if enough time left in Xen timeslice (kernel locks in VMs) Ics')(_
- Heuristic: how much is "enough time"? |_1oc'k_('>
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FlexGuard: first completely deterministic approach!

« Switches to blocking precisely when a critical section preemption happens
* Thanks to eBPF!

[Dice, 2017] Malthusian locks: spin-then-park + some threads in a "passive" list T

Few active threads in the "spin" phase (fairness tradeoff) 5 G
.

Heuristic: ?

[He et al, 2005] Time-published locks: store timestamps, guess preemption if "stale" timestamp u - O
Heuristic: ? t|:| - B0

[Teabe et al, 2017] I-Spinlocks: only take the lock if enough time left in Xen timeslice (kernel locks in VMs) fes 3¢
Heuristic: ? Lock()




FlexGuard's Preemption Monitor

* FlexGuard's Preemption Monitor detects critical section (CS) preemptions
- eBPF handler that hooks to the sched_switch event aleBPF

« How to detect thread in a critical section?

5 def lock(L):

6 while (True):

7 if L == UNLOCKED:

8 label at_xchg

9 if XCHG(&L, LOCKED) == UNLOCKED:
10 label at_break

11 break

12

13 def unlock(L):
14

15 label at_store
16 L. = UNLOCKED




FlexGuard's Preemption Monitor

* FlexGuard's Preemption Monitor detects critical section (CS) preemptions
- eBPF handler that hooks to the sched_switch event aleBPF

« How to detect thread in a critical section?

« Example with a simple TATAS spinlock 5 def lock(L):
6 while (True):
7 if L == UNLOCKED:
8 label at_xchg
9 if XCHG(&L, LOCKED) == UNLOCKED:
10 label at_break
11 break

12

13 def unlock(L):
14

15 label at_store
16 L. = UNLOCKED




FlexGuard's Preemption Monitor

* FlexGuard's Preemption Monitor detects critical section (CS) preemptions

- eBPF handler that hooks to the sched_switch event aleBPF
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* FlexGuard's Preemption Monitor detects critical section (CS) preemptions
- eBPF handler that hooks to the sched_switch event aeBPF

« How to detect thread in a critical section?

« Example with a simple TATAS spinlock 5 def lock(L):
. Idea: flac! 6 while (True):
ea. use a fag: 7 if L == UNLOCKED:
. Setitatthe end of lock() 8 label at_xchg
9 if XCHG(&L, LOCKED) == UNLOCKED:

« Unset it at the beginning of unlock() 10 label at_break

. . - : 11 break
If flag set, we're in a critical section! 12 cs counter 4= 1 <

« Actually, need to use a counter for nested CSs CSI: 13 def unlock(L):
14 cs_counter -= ] <

« Ifcs_counter > 0, we'rein acritical section 15 label at_store
16 L = UNLOCKED

 Isthat enough to be accurate?




5 def lock(L):
6 while (True):
7 if L == UNLOCKED:
! I I 8 label at_xch
FlexGuard’s Preemption Monitor 9 S

10 label at_break
11 break
12 cs_counter += 1

« Answer: no, the counter is not enough. CS[ 13 def unlock(L):
14 cs_counter -= 1

15 label at_store
16 L = UNLOCKED




5 def lock(L):
6 while (True):
7 if L == UNLOCKED:
! 1 I 8 label at_xch
FlexGuard'’s Preemption Monitor : A L LOCKED) — UNLOCKED:
10 label at_break
11 break
12 cs_counter += 1
« Answer: no, the counter is not enough. CS[ 13 def unlock(L):
14 cs_counter -= 1
15 label at_store
e lock() function: when are we in the critical section? 16 L = UNLOCKED




5 def lock(L):
6 while (True):
7 if L == UNLOCKED:
! 1 I 8 label at_xch
FlexGuard'’s Preemption Monitor : A L LOCKED) — UNLOCKED:
10 label at_break
11 break
12 cs_counter += 1
« Answer: no, the counter is not enough. CS[ 13 def unlock(L):
14 cs_counter -= 1
15 label at_store
e lock() function: when are we in the critical section? 16 L = UNLOCKED

« Right after XCHG succeeded in changing the lock value, already in the CS!
- There could be instructions until the actual cs_counter increment!




def lock(L):
while (True):
if L == UNLOCKED:

label at_xchg
if XCHG(&L, LOCKED) == UNLOCKED:

10 label at_break
11 break :] cS
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12 cs_counter += 1
* Answer: no, the counter is not enough. CS[ 13 def unlock(L):
14 cs_counter =1
15 label at_store
e lock() function: when are we in the critical section? 16 L = UNLOCKED

« Right after XCHG succeeded in changing the lock value, already in the CS!
- There could be instructions until the actual cs_counter increment!
- le,if we've been preempted between at_break and the end of the lock function




def lock(L):
while (True):
if L == UNLOCKED:

label at_xchg
if XCHG(&L, LOCKED) == UNLOCKED:

10 label at_break
11 break :] cS
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12 cs_counter += 1
« Answer: no, the counter is not enough. CS[ 13 def unlock(L):
14 cs_counter =1
15 label at_store
e lock() function: when are we in the critical section? 16 L = UNLOCKED

« Right after XCHG succeeded in changing the lock value, already in the CS!
- There could be instructions until the actual cs_counter increment!
- le,if we've been preempted between at_break and the end of the lock function

e unlock() function: when are we in the critical section?




def lock(L):
while (True):
if L == UNLOCKED:
label at_xchg
9 if XCHG(&L, LOCKED) == UNLOCKED:

10 label at_break
11 break :] cS

12 cs_counter += 1
« Answer: no, the counter is not enough. CS[ 13 def unlock(L):
14 cs_counter -= 1

15 label at_store
e lock() function: when are we in the critical section? 16 L = UNLOCKED

« Right after XCHG succeeded in changing the lock value, already in the CS!
- There could be instructions until the actual cs_counter increment!
- le,if we've been preempted between at_break and the end of the lock function

FlexGuard's Preemption Monitor

* unlock() function: when are we in the critical section?
« Until the store at line 16 actually completed, still in the CS!
« There could be instructions between the cs_counter decrement and that!




def lock(L):
while (True):
if L == UNLOCKED:

label at_xchg
9 if XCHG(&L, LOCKED) == UNLOCKED:

10 label at_break
11 break :] cS

12 cs_counter += 1
* Answer: no, the counter is not enough. CS[ 13 def unlock(L):
14 cs_counter -= 1 cS

15 label at_store
e lock() function: when are we in the critical section? 16 L = UNLOCKED

« Right after XCHG succeeded in changing the lock value, already in the CS!
- There could be instructions until the actual cs_counter increment!
- le,if we've been preempted between at_break and the end of the lock function
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* unlock() function: when are we in the critical section?
« Until the store at line 16 actually completed, still in the CS!
- There could be instructions between the cs_counter decrement and that!
- le, if we've been preempted between the beginning of the unlock function and at_store
- Assuming at_store is the final MOV that changes the lock variable's value




def lock(L):
while (True):
if L == UNLOCKED:

label at_xchg
9 if XCHG(&L, LOCKED) == UNLOCKED:

10 label at_break
11 break :] cS

12 cs_counter += 1
Answer: no, the counter is not enough. CS[ 13 def unlock(L):
14 cs_counter -= 1 cS

15 label at_store
lock() function: when are we in the critical section? 16 L = UNLOCKED

« Right after XCHG succeeded in changing the lock value, already in the CS!
- There could be instructions until the actual cs_counter increment!
- le,if we've been preempted between at_break and the end of the lock function
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unlock() function: when are we in the critical section?
« Until the store at line 16 actually completed, still in the CS!
- There could be instructions between the cs_counter decrement and that!
- le, if we've been preempted between the beginning of the unlock function and at_store
- Assuming at_store is the final MOV that changes the lock variable's value

Can we take care of these cases?




def lock(L):
while (True):
if L == UNLOCKED:

label at_xchg
9 if XCHG(&L, LOCKED) == UNLOCKED:

10 label at_break
11 break ] cS

12 cs_counter += 1
Answer: no, the counter is not enough. CS[ 13 def unlock(L):
14 cs_counter -= 1 cS

15 label at_store
lock() function: when are we in the critical section? 16 L = UNLOCKED

« Right after XCHG succeeded in changing the lock value, already in the CS!
- There could be instructions until the actual cs_counter increment!
- le,if we've been preempted between at_break and the end of the lock function

FlexGuard's Preemption Monitor

unlock() function: when are we in the critical section?
« Until the store at line 16 actually completed, still in the CS!
- There could be instructions between the cs_counter decrement and that!
- le, if we've been preempted between the beginning of the unlock function and at_store
- Assuming at_store is the final MOV that changes the lock variable's value

Can we take care of these cases?
« Yes, since the eBPF handler has access to the preemption address!
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10
11
12

« Isitfinally accurate? CS[ 13

14
15
16

def lock(L):
while (True):
if L == UNLOCKED:

label at_xchg
if XCHG(&L, LOCKED) == UNLOCKED:

label at_break
break cS
cs_counter += 1

def unlock(L):
cs_counter -= 1 cS
label at_store
L = UNLOCKED




def lock(L):
while (True):
if L == UNLOCKED:
label at_xchg
if XCHG(&L, LOCKED) == UNLOCKED:

10 label at_break
11 break :] cS

FlexGuard's Preemption Monitor
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12 cs_counter += 1

* Isitfinally accurate? CS[ 13 def unlock(L):
14 cs_counter -= 1 cS
15 label at_store

* No, still one problematic case: 16 L = UNLOCKED

*  What if preeemption right after the XCHG?
* Then we are |




def lock(L):
while (True):
if L == UNLOCKED:
label at_xchg
if XCHG(&L, LOCKED) == UNLOCKED:

10 label at_break
11 break :] cS

12 cs_counter += 1
CS[::13 def unlock(L):
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« Isitfinally accurate?

14 cs_counter -= 1 cS
15 label at_store
* No, still one problematic case: 16 L = UNLOCKED

*  What if preeemption right after the XCHG?
* Then we are |

« Can we take care of this case?
*  Yes, we can force the return value of XCHG to be in a specific register (w/ asm volatile)
* Inthe eBPF handler, we can access dumped register value (through the task_struct)!
= Preemptions detected with 100% accuracy!




def lock(L):
while (True):
if L == UNLOCKED:

label at_xchg
if XCHG(&L, LOCKED) == UNLOCKED:

10 label at_break
11 break :] cS
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12 cs_counter += 1

* Isitfinally accurate? CS[ 13 def unlock(L):
14 cs_counter -= 1 cS
15 label at_store

* No, still one problematic case: 16 L = UNLOCKED

*  What if preeemption right after the XCHG?
 Thenwe are !

« Can we take care of this case?
*  Yes, we can force the return value of XCHG to be in a specific register (w/ asm volatile)
* Inthe eBPF handler, we can access dumped register value (through the task_struct)!
= Preemptions detected with 100% accuracy!

* Isitimportant to be fully accurate?

* Yes application critical sections only a few lines long, preemptions likely in 1ock()/unlock()
« Sufficient to cause performance collapse!
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= 0 # Per-thread critical section (CS)

# counter (# of CSs a thread is 1in)

B W N =

def lock(L):
while (True)

num_preempted_cs

if L == UNLOCKED:

label at_xchg

__thread cs_counter

__thread bool is_cs_preempted = False # Thread in CS?

® # System-wide preemption counter
17 def sched_switch_btf(prev, next):

18
19
20
21

22
23

CS?=—p1f XCHG(&L, LOCKED) == UNLOCKED: 2

label at_break

break
cs_counter +

def unlock(L):
cs_counter -
label at_store

L = UNLOCKED

# If next was previously preempted

if next.is_cs_preempted:
next.is_cs_preempted = False
atomic_dec(num_preempted_cs)

prev_in_cs = False # Will be set to true if prev in CS code
if prev.cs_counter > 0: # values > 1 indicate nesting
prev_in_cs = True # prev holding at least one lock; in CS
else # prev.cs_counter == 0
# Addr. of next instruction to execute after preemption
preemption_addr = bpf_get_task_stack(prev)[0]
if at_xchg < preemption_addr <= at_break:
registers = bpf_get_task_registers(prev)
if registers.rcx == UNLOCKED:
prev_in_cs = True # lock acquired; already in CS code
elif at_break < preemption_addr <= lock$end or
unlock <= preemption_addr <= at_store:
prev_in_cs = True # prev in already/still in CS code

if prev_in_cs:
prev.is_cs_preempted = True
atomic_inc(num_preempted_cs)
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1
2
3
4

def lock(L):

while (True):
if L. == UNLOCKED:

label at_xchg

CS?=—pi1f XCHG(&L, LOCKED)

label at_break

break

cs_counter +=

def unlock(L):
cs_counter -
label at_store

L = UNLOCKED

__thread bool is_

__thread cs_counter = 0 # Per-thread critical section (CS)

# counter (# of CSs a thread is 1in)
cs_preempted =

== UNLOCKED:

False # Thread in CS?

pti(prev, next):

# If'next was previously preempted

if next.is_cs_preempted:
next.is_cs_preempted = False
atomic_dec(num_preempted_cs)

prev_in_cs = False # Will be set to true if prev in CS code
if prev.cs_counter > 0: # values > 1 indicate nesting
prev_in_cs = True # prev holding at least one lock; in CS
else # prev.cs_counter == 0
# Addr. of next instruction to execute after preemption
preemption_addr = bpf_get_task_stack(prev)[0]
if at_xchg < preemption_addr <= at_break:
registers = bpf_get_task_registers(prev)
if registers.rcx == UNLOCKED:
prev_in_cs = True # lock acquired; already in CS code
elif at_break < preemption_addr <= lock$end or
unlock <= preemption_addr <= at_store:
prev_in_cs = True # prev in already/still in CS code

if prev_in_cs:
prev.is_cs_preempted = True
atomic_inc(num_preempted_cs)
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__thread cs_counter = 0 # Per-thread critical section (CS)
# counter (# of CSs a thread is 1in)
__thread bool is_cs_preempted =
num_preempted_cs

1
2
3
4

def lock(L):

while (True):
if L == UNLOCKED:
label at_xchg

CS?=—pi1f XCHG(&L, LOCKED)

label at_break

break

cs_counter +=

def unlock(L):
cs_counter -
label at_store

L

= UNLOCKED

False # Thread in CS?

= 0 # System-wide preemption counter
17 def sched_switch btf(prev next)

== UNLOCKED:

if next.is cs_preempted
next.is_cs_preempted = Falsel next rescheduled in CS
atomic_dec(num_preempted_cs)

prev_in_cs = False # Will be set to true if prev in CS code
if prev.cs_counter > 0: # values > 1 indicate nesting
prev_in_cs = True # prev holding at least one lock; in CS
else # prev.cs_counter == 0
# Addr. of next instruction to execute after preemption
preemption_addr = bpf_get_task_stack(prev)[0]
if at_xchg < preemption_addr <= at_break:
registers = bpf_get_task_registers(prev)
if registers.rcx == UNLOCKED:
prev_in_cs = True # lock acquired; already in CS code
elif at_break < preemption_addr <= lock$end or
unlock <= preemption_addr <= at_store:
prev_in_cs = True # prev in already/still in CS code

if prev_in_cs:
prev.is_cs_preempted = True
atomic_inc(num_preempted_cs)
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def lock(L):

while (True):
if L. == UNLOCKED:

label at_xchg

if XCHG(&L, LOCKED)

label at_break

break

cs_counter +=

def unlock(L):
cs_counter -
label at_store

L = UNLOCKED

num_preempted_cs

__thread cs_counter = 0 # Per-thread critical section (CS)

# counter (# of CSs a thread is 1in)

__thread bool is_cs_preempted =

False # Thread in CS?

= 0 # System-wide preemption counter

== UNLOCKED:

17
18
19
20
21

22

def sched_switch_btf(prev, next):
# If next was previously preempted
if next.is_cs_preempted:
next.is_cs_preempted = False
atomic_dec(num_preempted_cs)

RLEY in = False # Will be set to true if prev in CS code

else # prev.cs_counter == 0

# values > 1 indicate nesting
prev_in_cs = Irue # prev holding at least one lock;

in CS

# Addr. of next instruction to execute after preemption

preemption_addr = bpf_get_task_stack(prev)[0]

if at_xchg < preemption_addr <= at_break:
registers = bpf_get_task_registers(prev)
if registers.rcx == UNLOCKED:

prev_in_cs = True # lock acquired; already in CS code

elif at_break < preemption_addr <= lock$end or
unlock <= preemption_addr <= at_store:

prev_in_cs = True # prev in already/still in CS code

if prev_in_cs:
prev.is_cs_preempted = True
atomic_inc(num_preempted_cs)
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1 __thread cs_counter = 0 # Per-thread critical section (CS)

2 # counter (# of CSs a thread is 1in)

3 __thread bool is_cs_preempted = False # Thread in CS?

4 ® # System-wide preemption counter

num_preempted_cs

def lock(L):
while (True)

if L == UNLOCKED:

label at_xchg

17 def sched_switch_btf(prev, next):

18
19
20
21

22

CS?=—p1f XCHG(&L, LOCKED) == UNLOCKED: 2

label at_break

break
cs_counter +

def unlock(L):
cs_counter -
label at_store

L = UNLOCKED

# If next was previously preempted

if next.is_cs_preempted:
next.is_cs_preempted = False
atomic_dec(num_preempted_cs)

prev_in_cs = False # Will be set to true if prev in CS code
if prev.cs_counter > 0: # values > 1 indicate nesting
prev_in_cs = True # prev holding at least one lock; in CS
else # prev.cs_counter == 0
# Addr. of next instruction to execute after preemption
preemption_addr = bpf_get_task_stack(prev)[0]

if at_xchg < preemption_addr <= at_break:
registers = bpf_get_task_registers(prev)
if registers.rcx == UNLOCKED:
prev_in_cs = lrue # lock acquired; already 1in code
elif at_break < preemption_addr <= lock$end or
unlock <= preemption_addr <= at_store:
prev_in_cs = True # prev in already/still in CS code

if prev_in_cs:
prev.is_cs_preempted = True
atomic_inc(num_preempted_cs)
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1
2
3
4

def lock(L):

while (True):
if L. == UNLOCKED:

label at_xchg

if XCHG(&L, LOCKED)

label at_break

break

cs_counter +=

def unlock(L):
cs_counter -
label at_store

L = UNLOCKED

num_preempted_cs

__thread cs_counter = 0 # Per-thread critical section (CS)

# counter (# of CSs a thread is 1in)

__thread bool is_cs_preempted =

False # Thread in CS?

= 0 # System-wide preemption counter
17 def sched_switch_btf(prev, next):

== UNLOCKED:

18
19
20
21

22
23

# If next was previously preempted

if next.is_cs_preempted:
next.is_cs_preempted = False
atomic_dec(num_preempted_cs)

prev_in_cs = False # Will be set to true if prev in CS code
if prev.cs_counter > 0: # values > 1 indicate nesting
prev_in_cs = True # prev holding at least one lock; in CS
else # prev.cs_counter == 0
# Addr. of next instruction to execute after preemption
preemption_addr = bpf_get_task_stack(prev)[0]
if at_xchg < preemption_addr <= at_break:
registers = bpf_get_task_registers(prev)
if registers.rcx == UNLOCKED:
brev_in = True # lock acquired: already in CS code

elif at_break < preemption_addr <= lock$end or

unlock <= preemption_addr <= at_store:
prev_in_cs = True # prev in already/still in CS code

if prev_in_cs:
prev.is_cs_preempted = True
atomic_inc(num_preempted_cs)
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def lock(L):

while (True):
if L. == UNLOCKED:

label at_xchg

if XCHG(&L, LOCKED)

label at_break

break

cs_counter +=

def unlock(L):
cs_counter -
label at_store

L = UNLOCKED

num_preempted_cs

__thread cs_counter = 0 # Per-thread critical section (CS)

# counter (# of CSs a thread is 1in)

__thread bool is_cs_preempted =

False # Thread in CS?

= 0 # System-wide preemption counter
17 def sched_switch_btf(prev, next):

== UNLOCKED:

18
19
20
21

22
23

# If next was previously preempted

if next.is_cs_preempted:
next.is_cs_preempted = False
atomic_dec(num_preempted_cs)

prev_in_cs = False # Will be set to true if prev in CS code
if prev.cs_counter > 0: # values > 1 indicate nesting
prev_in_cs = True # prev holding at least one lock; in CS
else # prev.cs_counter == 0
# Addr. of next instruction to execute after preemption
preemption_addr = bpf_get_task_stack(prev)[0]
if at_xchg < preemption_addr <= at_break:
registers = bpf_get_task_registers(prev)
if registers.rcx == UNLOCKED:
prev_in_cs = True # lock acquired; already in CS code

if prev_in_cs:
prev.is_cs_preempted = True
atomic_inc(num_preempted_cs)
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1 = 0 # Per-thread critical section (CS)
2 # counter (# of CSs a thread is 1in)
3 __thread bool is_cs_preempted = False # Thread in CS?
4 ® # System-wide preemption counter

__thread cs_counter

num_preempted_cs

def lock(L):
while (True)

if L == UNLOCKED:

label at_xchg

17 def sched_switch_btf(prev, next):

18
19
20
21

22
23

CS?=—p1f XCHG(&L, LOCKED) == UNLOCKED: 2

label at_break

break
cs_counter +

def unlock(L):
cs_counter -
label at_store

L = UNLOCKED

# If next was previously preempted

if next.is_cs_preempted:
next.is_cs_preempted = False
atomic_dec(num_preempted_cs)

prev_in_cs = False # Will be set to true if prev in CS code
if prev.cs_counter > 0: # values > 1 indicate nesting
prev_in_cs = True # prev holding at least one lock; in CS
else # prev.cs_counter == 0
# Addr. of next instruction to execute after preemption
preemption_addr = bpf_get_task_stack(prev)[0]
if at_xchg < preemption_addr <= at_break:
registers = bpf_get_task_registers(prev)
if registers.rcx == UNLOCKED:
prev_in_cs = True # lock acquired; already in CS code
elif at_break < preemption_addr <= lock$end or
unlock <= preemption_addr <= at_store:
prev_in_cs = True # prev in already/still in CS code

if prev_in_cs:

prev.is_cs_preempted = True | prev preempted in CS
atomic_inc(num_preempted_cs)
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* We now have a reliable way to detect critical section preemptions
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« We need an efficient hybrid spin/blocking lock algorithm to go with it
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FlexGuard’s lock algorithm

We now have a reliable way to detect critical section preemptions

We need an efficient hybrid spin/blocking lock algorithm to go with it

For this, we need a bit of background on efficient lock algorithms

Focus: efficient spinlock algorithms

« Blocking locks simply call the FUTEX syscall, can’t be improved
« Unless you spin...

b
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Previous work on spinlocks

Basic spinlock:

lock() {

}

unlock()

while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)

PAUSE; // Spinloop hint

{ lock = UNLOCKED; 3}
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« Basic spinlock:

lock() {
while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
PAUSE; // Spinloop hint
3

unlock() { lock = UNLOCKED; }

* Intheory, transitions between critical sections fast: one cache miss!
« lock = UNLOCKED invalidates lock’s cache line
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« Basic spinlock:

lock() {
while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
PAUSE; // Spinloop hint
3

unlock() { lock = UNLOCKED; }

* Intheory, transitions between critical sections fast: one cache miss!
« lock = UNLOCKED invalidates lock’s cache line
- Another thread fetches it and instantly executes a successful CAS
e Much faster than waking up a thread




Previous work on spinlocks

Basic spinlock:

In theory, transitions between critical sections fast: one cache miss!
lock = UNLOCKED invalidates lock’s cache line
- Another thread fetches it and instantly executes a successful CAS

lock() {

}

unlock()

while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)

PAUSE; // Spinloop hint

{ lock = UNLOCKED; 3}

e Much faster than waking up a thread

In practice, spinlocks can be very fast, but you need smarter algorithms than that...

Lots of write contention on the lock variable!

lr
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Previous work on spinlocks

Optimisation 1: spin in read mode on the lock variable

Test-and-Test-and-Set (TATAS) lock: test the lock value without an atomic instruction first

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)
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Not 100% in read mode, nothing ensures lock is still UNLOCKED when you do the XCHG...




Previous work on spinlocks

« Optimisation 1:spinin read mode on the lock variable

Test-and-Test-and-Set (TATAS) lock: test the lock value without an atomic instruction first

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)

- Not100% in read mode, nothing ensures lock is still UNLOCKED when you do the XCHG...

- Ticket lock: current ticket defines who's in CS

« Like at the post office  (in some countries &) my_tkt =
atomic_inc(&next_tkt);

// my_tkt == 43

while (my_tkt != curr_tkt)
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Test-and-Test-and-Set (TATAS) lock: test the lock value without an atomic instruction first

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)

- Not100% in read mode, nothing ensures lock is still UNLOCKED when you do the XCHG...
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. Like at the post office " (in some countries &)
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PAUSE ;
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Previous work on spinlocks

« Optimisation 1:spinin read mode on the lock variable

Test-and-Test-and-Set (TATAS) lock: test the lock value without an atomic instruction first

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)

Not 100% in read mode, nothing ensures lock is still UNLOCKED when you do the XCHG...

« Ticket lock: current ticket defines who's in CS // curr_tkt == 42, next_tkt == 43

my_tkt =
atomic_inc(&next_tkt);
// my_tkt == 43

Like at the post office  (in some countries &)

Before acquiring the lock: get your ticket

o i iy while (my_tkt !'= curr_tkt)
Atomic but not on the critical path

Lock aCCIL"Sltlon: atomic_inc(&curr_tkt);

* Spln until the current tiCkEt —= yOUF tiCkEt Value ................................................................. // curr_tkt == 43
« 100% in read mode!




Previous work on spinlocks

« Optimisation 1:spinin read mode on the lock variable

Test-and-Test-and-Set (TATAS) lock: test the lock value without an atomic instruction first

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)

- Not100% in read mode, nothing ensures lock is still UNLOCKED when you do the XCHG...

« Ticket lock: current ticket defines who's in CS // curr_tkt == 42, next_tkt == 43

« Like at the post office  (in some countries &) my_tkt =
atomic_inc(&next_tkt);

- Before acquiring the lock: get your ticket // my_tkt == 43

- Atomic but not on the critical path
- Lock acquisition:

+ Spin until the current ticket == your ticket value |
« 100% in read mode!

while (my_tkt != curr_tkt)
PAUSE ;

atomic_inc(&curr_tkt);
// curr_tkt == 43

-  0OnCSexit: atomically increment the current ticket




Previous work on spinlocks

e Optimisation 2: use multiple lock variables
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Previous work on spinlocks

« Optimisation 2: use multiple lock variables
« Queue locks (MCS, CLH): [Mellor-Crummey et all, 1991] [Craig et al. 1993; Magnussen et al. 1994]
- One queue node/lock variable per thread
- Lock acquisition: enqueue the thread's node (atomic, outside the critical path)

« Oncritical section exit: write local lock variable to signal the next thread we're done
- Difference between MCS and CLH: direction of the queue

tail .

T2:in CS

next

\ 4

next

waiting | @ waiting @
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* Optimisation 3: NUMA-awareness

Modern machines often have Non-Uniform Memory Architectures (NUMA)
E.g, one NUMA node = one processor
Faster to hand over the lock on the same NUMA node than to a remote NUMA node

Idea: hand over the lock locally for a while before handing it over remotely
Trades fairness for performance
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Previous work on spinlocks

[Dice et al,, 2012]

Optimisation 3: NUMA-awareness

Lock cohorting: use a pair of spinlock algorithms (from TATAS, ticket, MCS, CLH...)
« One for local nodes, one to switch between nodes

zea—



1 shuffle_lock() {

2 if (lock == UNLOCKED)
. . 3 locked = XCHG(&lock, LOCKED);
Previous work on spinlocks 4 if (locked 1= UNLOCKED)
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- One for local nodes, one to switch between nodes

[Kashyap etal,2019] « Shuffle lock: queue lock, move threads so that local waiters are next
- With one extra optimisation (unrelated to NUMA): TAS + MCS




shuffle_lock() {
if (lock == UNLOCKED)
locked = XCHG(&lock, LOCKED);

1
2
. . 3
Previous work on spinlocks 4 if (locked 1= UNLOCKED)
5 mcs_lock(&mes_lock);
6 while (XCHG(&lock, LOCKED) != UNLOCKED)
7 PAUSE ;
8
9

mcs_unlock(&mcs_lock);

« Optimisation 3: NUMA-awareness

[Dice et al, 2012] « Lock cohorting: use a pair of spinlock algorithms (from TATAS, ticket, MCS, CLH...)
- One for local nodes, one to switch between nodes

[Kashyap etal,2019] « Shuffle lock: queue lock, move threads so that local waiters are next
- With one extra optimisation (unrelated to NUMA): TAS + MCS

- Fast path:just acquire the TAS lock if free (L1-2)
- Slow path: acquire the MCS, acquire the TAS lock, release the MCS (L4-7)




1 shuffle_lock() {

2 if (lock == UNLOCKED)
. . 3 locked = XCHG(&lock, LOCKED);
Previous work on spinlocks 4 if (locked 1= UNLOCKED)
5 mcs_lock(&mes_lock);
6 while (XCHG(&lock, LOCKED) !'= UNLOCKED)
7 PAUSE ;
8
9

mcs_unlock(&mcs_lock);

« Optimisation 3: NUMA-awareness

[Dice et al, 2012] « Lock cohorting: use a pair of spinlock algorithms (from TATAS, ticket, MCS, CLH...)
« One for local nodes, one to switch between nodes

[Kashyapetal,2019] « Shuffle lock: queue lock, move threads so that local waiters are next
- With one extra optimisation (unrelated to NUMA): TAS + MCS

- Fast path: just acquire the TAS lock if free (L1-2)
- Slow path: acquire the MCS, acquire the TAS lock, release the MCS (L4-7)

- Advantages:
- Fast acquisition when lock free; at most one spinner on the TAS lock
- At most one MCS acquired at a time, lower memory consumption for nested locks
- Only one MCS node per thread needed, instead of one per thread per lock

&'zu&—- 16



# Single-variable lock states

# LOCKED_WITH_BLOCKED_WAITERS = at least one thread is blocking,
# the holder should call futex_wake when releasing the lock
UNLOCKED = ®, LOCKED = 1, LOCKED_WITH_BLOCKED_WAITERS = 2

# CS preemption counter updated by the eBPF Preemption Monitor
num_preempted_cs = 0

class Lock:

val = UNLOCKED, queue = None # Single-variable lock, MCS tail
class QNode:

next = None, waiting = False

def mcs_exit(lock: Lock, gnode: QNode):
if gnode.next is None:
if CAS(&lock.queue, gnode, None) == gnode:
return
while gnode.next is None:
PAUSEQ)
gnode.next.waiting = False

def flexguard_unlock(lock: Lock, gnode: QNode):
gnode.cs_counter -= 1
label at_unlock
if XCHG(&lock.val, UNLOCKED) == LOCKED_WITH_BLOCKED_WAITERS:
futex_wake(&lock.val, 1) # Wake one of the waiting threads

def flexguard_lock(lock: Lock, gnode: QNode):

label at_fastpath # Try to steal the single-variable lock if free

if lock.val == UNLOCKED and CAS(&lock.val, UNLOCKED, LOCKED):
gnode.cs_counter += 1
return
# There are waiters in the queue, enter the slow path
flexguard_slow_path(lock, gnode)

34
35
36
37
38
39
40
41
42
43
44
45
46
47
43
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

def flexguard_slow_path(lock, gnode):
enqueued = False
if num_preempted_cs == 0: # If spinning, begin Phase 1
enqueued = True
gnode.next = None
gnode.waiting = True
label at_xchg
pred = XCHG(&lock.queue, qgnode)
if pred is not None:
pred.next = gnode
while gnode.waiting and num_preempted_cs == 0:
PAUSEQ)
label at_phase2 # Begin Phase 2
state = CAS(&lock.val, UNLOCKED, LOCKED)
while state != UNLOCKED:
if num_preempted_cs == 0: # Busy-waiting mode
PAUSEQ)
state = CAS(&lock.val, UNLOCKED, LOCKED)
else: # Blocking mode
if enqueued:
mcs_exit(lock, gnode)
enqueued = False
if state != LOCKED_WITH_BLOCKED_WAITERS:
state = XCHG(&lock.val, LOCKED_WITH_BLOCKED_WAITERS)
if state != UNLOCKED:
futex_wait(&lock.val, LOCKED_WITH_BLOCKED_WAITERS)
state = XCHG(&lock.val, LOCKED_WITH_BLOCKED_WAITERS)
if state != UNLOCKED and num_preempted_cs == 0:
# Back to spin mode, restart slow path (using MCS)
return flexguard_slow_path(lock, gnode)
if enqueued: # Exit the queue if still enqueued
mcs_exit(lock, qgnode)

gnode.cs_counter += 1 -



FlexGuard’s lock algorithm

 Similar TAS+MCS optimization as the Shuffle lock
 Butthe TAS lock variable can also be used as the FUTEX lock variable

17



FlexGuard’s lock algorithm

 Similar TAS+MCS optimization as the Shuffle lock
e Butthe TAS lock variable can also be used as the FUTEX lock variable
= Possible to acquire the lock as spinning or blocking

17



FlexGuard’s lock algorithm

« Similar TAS+MCS optimization as the Shuffle lock

e Butthe TAS lock variable can also be used as the FUTEX lock variable
= Possible to acquire the lock as spinning or blocking
= No atomicity issues

17



FlexGuard’s lock algorithm

 Similar TAS+MCS optimization as the Shuffle lock

But the TAS lock variable can also be used as the FUTEX lock variable
= Possible to acquire the lock as spinning or blocking
= No atomicity issues

« Spin mode © num_preempted_cs ==

17



FlexGuard’s lock algorithm

 Similar TAS+MCS optimization as the Shuffle lock
« Butthe TAS lock variable can also be used as the FUTEX lock variable
= Possible to acquire the lock as spinning or blocking
= No atomicity issues

* Spin mode © num_preempted_cs ==
* Inspin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling

17



FlexGuard’s lock algorithm

« Similar TAS+MCS optimization as the Shuffle lock

e Butthe TAS lock variable can also be used as the FUTEX lock variable
= Possible to acquire the lock as spinning or blocking
= No atomicity issues

* Spin mode © num_preempted_cs ==
* Inspin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling
 NUMA has little impact on recent x86 machines

17



FlexGuard’s lock algorithm

 Similar TAS+MCS optimization as the Shuffle lock
» Butthe TAS lock variable can also be used as the FUTEX lock variable
= Possible to acquire the lock as spinning or blocking
= No atomicity issues

* Spin mode © num_preempted_cs ==

* Inspin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling
 NUMA has little impact on recent x86 machines

* Inblocking mode: MCS queue bypassed!

17



FlexGuard’s lock algorithm

« Similar TAS+MCS optimization as the Shuffle lock
« Butthe TAS lock variable can also be used as the FUTEX lock variable
= Possible to acquire the lock as spinning or blocking
= No atomicity issues

* Spin mode © num_preempted_cs ==

* Inspin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling
 NUMA has little impact on recent x86 machines

* Inblocking mode: MCS queue bypassed!

« Spinning->blocking transition: spin waiters exit the MCS queue

17



FlexGuard’s lock algorithm

* Similar TAS+MCS optimization as the Shuffle lock
e Butthe TAS lock variable can also be used as the FUTEX lock variable
= Possible to acquire the lock as spinning or blocking
= No atomicity issues

* Spin mode © num_preempted_cs ==

* Inspin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling
 NUMA has little impact on recent x86 machines

* Inblocking mode: MCS queue bypassed!

« Spinning->blocking transition: spin waiters exit the MCS queue
« Blocking->spinning transition: blocking waiters reenqueue themselves in the MCS queue
* One woken up at each unlock() if there are blocked waiters, TAS attempt then reenqueuing
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Evaluation: microbenchmark (Intel)
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Evaluation: benchmarks
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FlexGuard matches or outperforms
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rEvaluation: benchmarks

Benchmarks w/ concurrent workload: fixed number
of benchmark threads, varying number
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Poor performance of MCS, MCS-TP, and Malthusian,
due to the high number of locks (266K): one queue node

rEvaluation: benCh marks per thread and per lock, many cache misses
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