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Background: blocking locks vs. spinlocks

• Blocking locks:

• Most common locks, e.g., pthread_mutex_lock()
• A thread fails to acquire the lock: it blocks with the FUTEX syscall

• A thread releases the lock: it wakes up the next one

• Problem: slow, due to costly context switches on the critical path!

• Not much you can do to speed them up…
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Blocking locks vs. spinlocks

• Spinlocks:

• Instead of blocking, spin (busy-wait)!

• Transitions between critical sections much faster: one cache miss!

• Lots of research in this area, many very fast spinlock algorithms!

• TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks…

• Spinning wastes energy? A few, but faster applications = lower energy consumption!
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lock() {
  while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
    PAUSE;
}

unlock() {
  lock = UNLOCKED;
}
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Blocking locks vs. spinlocks

• Why do standard libraries (e.g., POSIX) use blocking locks?

• Answer: stability!

• Spinlocks perform great when # threads ≤ # hardware contexts

• But when # threads > # hardware contexts, performance collapses!

• Reason: spinners preempt the critical sections, stopping all progress on the critical path!
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Extremely long critical path!



FlexGuard: the best of both worlds!

5

• Goal: get the best of both worlds!

• When # threads ≤ available # hw ctxts, spinlock perf.

• When # threads > available # hw ctxts, blocking lock perf.

• Idea: use a spinlock, when critical section preempted, switch to a blocking lock!

• Can we do this?

• Insight: nowadays, with eBPF we can!

• We can instrument context switches to see all preemptions

• We can view the full state of the thread: preemption address + register contents

⇒ We can 100% tell whether we are in a critical section!
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FlexGuard: the best of both worlds!

• Wait… Didn’t others try to do this before?!

• I.e., switch between spinning and blocking?

• Answer: yes, but they used unreliable heuristics!

• Spin-then-park: spin a little before blocking

• Actually POSIX uses this, sometimes worse than just blocking in our experiments

• Heuristic: how long do you spin?

• Malthusian locks: spin-then-park + some threads in a "passive" list

• Few active threads in the "spin" phase (fairness tradeoff)

• Heuristic: how long do you spin?

• Time-published locks: store timestamps, guess preemption if "stale" timestamp

• Heuristic: what timeout do you pick?

• I-Spinlocks: only take the lock if enough time left in Xen timeslice (kernel locks in VMs)

• Heuristic: how much is "enough time"?

6
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FlexGuard: first completely deterministic approach!

• Switches to blocking precisely when a critical section preemption happens

• Thanks to eBPF!

[Teabe et al., 2017]

[He et al., 2005]

[Dice, 2017]



FlexGuard’s Preemption Monitor

• FlexGuard’s Preemption Monitor detects critical section (CS) preemptions

• eBPF handler that hooks to the sched_switch event

• How to detect thread in a critical section?

• Example with a simple TATAS spinlock

• Idea: use a flag!

• Set it at the end of lock()
• Unset it at the beginning of unlock()
• If flag set, we’re in a critical section!

• Actually, need to use a counter for nested CSs

• If cs_counter > 0, we’re in a critical section

• Is that enough to be accurate?
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FlexGuard’s Preemption Monitor

• Answer: no, the counter is not enough.

• lock() function: when are we in the critical section?

• Right a!er XCHG succeeded in changing the lock value, already in the CS!

• There could be instructions until the actual cs_counter increment!

• I.e., if we’ve been preempted between at_break and the end of the lock function

• unlock() function: when are we in the critical section?

• Until the store at line 16 actually completed, still in the CS!

• There could be instructions between the cs_counter decrement and that!

• I.e., if we’ve been preempted between the beginning of the unlock function and at_store
• Assuming at_store is the final MOV that changes the lock variable’s value

• Can we take care of these cases?

• Yes, since the eBPF handler has access to the preemption address!

8
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FlexGuard’s Preemption Monitor

• Is it finally accurate?

• No, still one problematic case:

• What if preeemption right a!er the XCHG?

• Then we are in a critical section iff the return value is UNLOCKED!

• Can we take care of this case?

• Yes, we can force the return value of XCHG to be in a specific register (w/ asm volatile)

• In the eBPF handler, we can access dumped register value (through the task_struct)!

⇒ Preemptions detected with 100% accuracy!

• Is it important to be fully accurate?

• Yes application critical sections only a few lines long, preemptions likely in lock()/unlock()
• Sufficient to cause performance collapse!
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FlexGuard’s lock algorithm

• We now have a reliable way to detect critical section preemptions

• We need an efficient hybrid spin/blocking lock algorithm to go with it

• For this, we need a bit of background on efficient lock algorithms

• Focus: efficient spinlock algorithms

• Blocking locks simply call the FUTEX syscall, can’t be improved

• Unless you spin…
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Previous work on spinlocks

• Basic spinlock:

• In theory, transitions between critical sections fast: one cache miss!

• lock = UNLOCKED invalidates lock’s cache line

• Another thread fetches it and instantly executes a successful CAS

• Much faster than waking up a thread

• In practice, spinlocks can be very fast, but you need smarter algorithms than that…

• Lots of write contention on the lock variable!

12

lock() {
    while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
        PAUSE; // Spinloop hint
}

unlock() { lock = UNLOCKED; }
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Previous work on spinlocks

• Optimisation 1: spin in read mode on the lock variable

• Test-and-Test-and-Set (TATAS) lock: test the lock value without an atomic instruction first

• Not 100% in read mode, nothing ensures lock is still UNLOCKED when you do the XCHG…

• Ticket lock: current ticket defines who’s in CS

• Like at the post office ✉ (in some countries🇨🇭)

• Before acquiring the lock: get your ticket

• Atomic but not on the critical path

• Lock acquisition:

• Spin until the current ticket == your ticket value

• 100% in read mode!

• On CS exit: atomically increment the current ticket

13

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)
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// curr_tkt == 42, next_tkt == 43

my_tkt =
atomic_inc(&next_tkt);
// my_tkt == 43

atomic_inc(&curr_tkt);
// curr_tkt == 43

CS

CS

while (my_tkt != curr_tkt)
    PAUSE;

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)
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Previous work on spinlocks

• Optimisation 2: use multiple lock variables

• Queue locks (MCS, CLH):

• One queue node/lock variable per thread

• Lock acquisition: enqueue the thread’s node (atomic, outside the critical path)

• On critical section exit: write local lock variable to signal the next thread we’re done

• Difference between MCS and CLH: direction of the queue

14

T2: waiting

next
waiting 1

tail

T1: in CS

next
waiting 0

[Mellor-Crummey et all., 1991] [Craig et al. 1993; Magnussen et al. 1994]
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• Optimisation 3: NUMA-awareness

• Modern machines often have Non-Uniform Memory Architectures (NUMA)

• E.g., one NUMA node = one processor

• Faster to hand over the lock on the same NUMA node than to a remote NUMA node

• Idea: hand over the lock locally for a while before handing it over remotely

• Trades fairness for performance

Previous work on spinlocks
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• Optimisation 3: NUMA-awareness

• Lock cohorting: use a pair of spinlock algorithms (from TATAS, ticket, MCS, CLH…)

• One for local nodes, one to switch between nodes

• Shuffle lock: queue lock, move threads so that local waiters are next

• With one extra optimisation (unrelated to NUMA): TAS + MCS

• Fast path: just acquire the TAS lock if free (L1-2)

• Slow path: acquire the MCS, acquire the TAS lock, release the MCS (L4-7)

• Advantages:

• Fast acquisition when lock free; at most one spinner on the TAS lock

• At most one MCS acquired at a time, lower memory consumption for nested locks

• Only one MCS node per thread needed, instead of one per thread per lock

Previous work on spinlocks

16

[Dice et al., 2012]



• Optimisation 3: NUMA-awareness

• Lock cohorting: use a pair of spinlock algorithms (from TATAS, ticket, MCS, CLH…)

• One for local nodes, one to switch between nodes

• Shuffle lock: queue lock, move threads so that local waiters are next

• With one extra optimisation (unrelated to NUMA): TAS + MCS

• Fast path: just acquire the TAS lock if free (L1-2)

• Slow path: acquire the MCS, acquire the TAS lock, release the MCS (L4-7)

• Advantages:

• Fast acquisition when lock free; at most one spinner on the TAS lock

• At most one MCS acquired at a time, lower memory consumption for nested locks

• Only one MCS node per thread needed, instead of one per thread per lock

Previous work on spinlocks

16

1 shuffle_lock() {
2     if (lock == UNLOCKED)
3         locked = XCHG(&lock, LOCKED);
4     if (locked != UNLOCKED)
5         mcs_lock(&mcs_lock);
6         while (XCHG(&lock, LOCKED) != UNLOCKED)
7             PAUSE;
8         mcs_unlock(&mcs_lock);
9     ...

[Dice et al., 2012]

[Kashyap et al., 2019]
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[Dice et al., 2012]

[Kashyap et al., 2019]



• Optimisation 3: NUMA-awareness
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• Similar TAS+MCS optimization as the Shuffle lock

• But the TAS lock variable can also be used as the FUTEX lock variable

⇒ Possible to acquire the lock as spinning or blocking

⇒ No atomicity issues

• Spin mode ⇔ num_preempted_cs == 0
• In spin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling

• NUMA has little impact on recent x86 machines

• In blocking mode: MCS queue bypassed!

• Spinning→blocking transition: spin waiters exit the MCS queue

• Blocking→spinning transition: blocking waiters reenqueue themselves in the MCS queue

• One woken up at each unlock() if there are blocked waiters, TAS attempt then reenqueuing
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Evaluation: microbenchmark (Intel)

18

Intel machine,

104 hardware contexts

Lower is better

FlexGuard avoids the performance collapse at high subscription

Even greatly outperforms the blocking locks… but why?
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Runnable threads

19

Microbenchmark with 140 threads

Intel machine, 104 hardware contexts

⇒ Oversubscribed case

MCS performs poorly because

# spinning waiters > # hardware contexts

The pure blocking lock performs better, but

often the next waiter is not running, because

 #spinning waiters = 0

FlexGuard performs best because it has

0 < # spinning waiters ≤ # hardware contexts

Critical section preemptions
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Evaluation: microbenchmark (AMD)

20

AMD machine,

512 hardware contexts

Lower is better

FlexGuard almost always best



Evaluation: benchmarks

21Higher is better



Evaluation: benchmarks

21Higher is better

FlexGuard matches or outperforms

other locks on both low and

high subscription



Evaluation: benchmarks

21Higher is better

Benchmarks w/ concurrent workload: fixed number

of benchmark threads, varying number

of concurrent threads

In this case, timeslice extension helps because

the concurrent workload’s threads cannot be blocked
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Evaluation: benchmarks

22Higher is better

Poor performance of MCS, MCS-TP, and Malthusian,

due to the high number of locks (266K): one queue node

per thread and per lock, many cache misses

FlexGuard performs well due to the Shuffle lock optimization
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Needs barrier support!
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• FlexGuard = best of both worlds between spinning and blocking

• Preemption Monitor: accurate critical section preemption detection

• First non-heuristic approach, thanks to eBPF!

• FlexGuard’s lock algorithm: outperforms blocking locks when oversubscribed

• Good amount of spinning waiters

• Recently proposed Linux timeslice extension: complementary

• Where could FlexGuard be used?

• In standard libraries such as e.g., POSIX

• Spinlock performance, without sacrificing stability

• No performance collapse!

• In more synchronization primitives

• Read-write locks, condition variables, barriers,
optimistic locking, delegation locks…

• In the virtualized case (vCPU preemptions)



Conclusion

24

• FlexGuard = best of both worlds between spinning and blocking

• Preemption Monitor: accurate critical section preemption detection

• First non-heuristic approach, thanks to eBPF!

• FlexGuard’s lock algorithm: outperforms blocking locks when oversubscribed

• Good amount of spinning waiters

• Recently proposed Linux timeslice extension: complementary

• Where could FlexGuard be used?

• In standard libraries such as e.g., POSIX

• Spinlock performance, without sacrificing stability

• No performance collapse!

• In more synchronization primitives

• Read-write locks, condition variables, barriers,
optimistic locking, delegation locks…

• In the virtualized case (vCPU preemptions)



Conclusion

24

• FlexGuard = best of both worlds between spinning and blocking

• Preemption Monitor: accurate critical section preemption detection

• First non-heuristic approach, thanks to eBPF!

• FlexGuard’s lock algorithm: outperforms blocking locks when oversubscribed

• Good amount of spinning waiters

• Recently proposed Linux timeslice extension: complementary

• Where could FlexGuard be used?

• In standard libraries such as e.g., POSIX

• Spinlock performance, without sacrificing stability

• No performance collapse!

• In more synchronization primitives

• Read-write locks, condition variables, barriers,
optimistic locking, delegation locks…

• In the virtualized case (vCPU preemptions)



Conclusion

24

• FlexGuard = best of both worlds between spinning and blocking

• Preemption Monitor: accurate critical section preemption detection

• First non-heuristic approach, thanks to eBPF!

• FlexGuard’s lock algorithm: outperforms blocking locks when oversubscribed

• Good amount of spinning waiters

• Recently proposed Linux timeslice extension: complementary

• Where could FlexGuard be used?

• In standard libraries such as e.g., POSIX

• Spinlock performance, without sacrificing stability

• No performance collapse!

• In more synchronization primitives

• Read-write locks, condition variables, barriers,
optimistic locking, delegation locks…

• In the virtualized case (vCPU preemptions)



Conclusion

24

• FlexGuard = best of both worlds between spinning and blocking

• Preemption Monitor: accurate critical section preemption detection

• First non-heuristic approach, thanks to eBPF!

• FlexGuard’s lock algorithm: outperforms blocking locks when oversubscribed

• Good amount of spinning waiters

• Recently proposed Linux timeslice extension: complementary

• Where could FlexGuard be used?

• In standard libraries such as e.g., POSIX

• Spinlock performance, without sacrificing stability

• No performance collapse!

• In more synchronization primitives

• Read-write locks, condition variables, barriers,
optimistic locking, delegation locks…

• In the virtualized case (vCPU preemptions)



Conclusion

24

• FlexGuard = best of both worlds between spinning and blocking

• Preemption Monitor: accurate critical section preemption detection

• First non-heuristic approach, thanks to eBPF!

• FlexGuard’s lock algorithm: outperforms blocking locks when oversubscribed

• Good amount of spinning waiters

• Recently proposed Linux timeslice extension: complementary

• Where could FlexGuard be used?

• In standard libraries such as e.g., POSIX

• Spinlock performance, without sacrificing stability

• No performance collapse!

• In more synchronization primitives

• Read-write locks, condition variables, barriers,
optimistic locking, delegation locks…

• In the virtualized case (vCPU preemptions)



Conclusion

24

• FlexGuard = best of both worlds between spinning and blocking

• Preemption Monitor: accurate critical section preemption detection

• First non-heuristic approach, thanks to eBPF!

• FlexGuard’s lock algorithm: outperforms blocking locks when oversubscribed

• Good amount of spinning waiters

• Recently proposed Linux timeslice extension: complementary

• Where could FlexGuard be used?

• In standard libraries such as e.g., POSIX

• Spinlock performance, without sacrificing stability

• No performance collapse!

• In more synchronization primitives

• Read-write locks, condition variables, barriers,
optimistic locking, delegation locks…

• In the virtualized case (vCPU preemptions)


