
FLEXGUARD: FAST MUTUAL EXCLUSION

INDEPENDENT OF SUBSCRIPTION
→ → → TO APPEAR AT SOSP ’25, SEOUL, SOUTH KOREA

Victor Laforet*, Sanidhya Kashyap†, Călin Iorgulescu‡,

Julia Lawall*, Jean-Pierre Lozi*

* Inria, Paris, France
† EPFL, Lausanne, Switzerland
‡ Oracle Labs, Zürich, Switzerland

1

Background: blocking locks vs. spinlocks

• Blocking locks:

• Most common locks, e.g., pthread_mutex_lock()
• A thread fails to acquire the lock: it blocks with the FUTEX syscall

• A thread releases the lock: it wakes up the next one

• Problem: slow, due to costly context switches on the critical path!

• Not much you can do to speed them up…

2

Background: blocking locks vs. spinlocks

• Blocking locks:

• Most common locks, e.g., pthread_mutex_lock()
• A thread fails to acquire the lock: it blocks with the FUTEX syscall

• A thread releases the lock: it wakes up the next one

• Problem: slow, due to costly context switches on the critical path!

• Not much you can do to speed them up…

2

Background: blocking locks vs. spinlocks

• Blocking locks:

• Most common locks, e.g., pthread_mutex_lock()
• A thread fails to acquire the lock: it blocks with the FUTEX syscall

• A thread releases the lock: it wakes up the next one

• Problem: slow, due to costly context switches on the critical path!

• Not much you can do to speed them up…

2

Background: blocking locks vs. spinlocks

• Blocking locks:

• Most common locks, e.g., pthread_mutex_lock()
• A thread fails to acquire the lock: it blocks with the FUTEX syscall

• A thread releases the lock: it wakes up the next one

• Problem: slow, due to costly context switches on the critical path!

• Not much you can do to speed them up…

2

Background: blocking locks vs. spinlocks

• Blocking locks:

• Most common locks, e.g., pthread_mutex_lock()
• A thread fails to acquire the lock: it blocks with the FUTEX syscall

• A thread releases the lock: it wakes up the next one

• Problem: slow, due to costly context switches on the critical path!

• Not much you can do to speed them up…

2

…

…

Background: blocking locks vs. spinlocks

• Blocking locks:

• Most common locks, e.g., pthread_mutex_lock()
• A thread fails to acquire the lock: it blocks with the FUTEX syscall

• A thread releases the lock: it wakes up the next one

• Problem: slow, due to costly context switches on the critical path!

• Not much you can do to speed them up…

2

…

…

Background: blocking locks vs. spinlocks

• Blocking locks:

• Most common locks, e.g., pthread_mutex_lock()
• A thread fails to acquire the lock: it blocks with the FUTEX syscall

• A thread releases the lock: it wakes up the next one

• Problem: slow, due to costly context switches on the critical path!

• Not much you can do to speed them up…

2

…

…

Background: blocking locks vs. spinlocks

• Blocking locks:

• Most common locks, e.g., pthread_mutex_lock()
• A thread fails to acquire the lock: it blocks with the FUTEX syscall

• A thread releases the lock: it wakes up the next one

• Problem: slow, due to costly context switches on the critical path!

• Not much you can do to speed them up…

2

…

…

Background: blocking locks vs. spinlocks

• Blocking locks:

• Most common locks, e.g., pthread_mutex_lock()
• A thread fails to acquire the lock: it blocks with the FUTEX syscall

• A thread releases the lock: it wakes up the next one

• Problem: slow, due to costly context switches on the critical path!

• Not much you can do to speed them up…

2

…

…

Background: blocking locks vs. spinlocks

• Blocking locks:

• Most common locks, e.g., pthread_mutex_lock()
• A thread fails to acquire the lock: it blocks with the FUTEX syscall

• A thread releases the lock: it wakes up the next one

• Problem: slow, due to costly context switches on the critical path!

• Not much you can do to speed them up…

2

…

…

Background: blocking locks vs. spinlocks

• Blocking locks:

• Most common locks, e.g., pthread_mutex_lock()
• A thread fails to acquire the lock: it blocks with the FUTEX syscall

• A thread releases the lock: it wakes up the next one

• Problem: slow, due to costly context switches on the critical path!

• Not much you can do to speed them up…

2

…

…

Background: blocking locks vs. spinlocks

• Blocking locks:

• Most common locks, e.g., pthread_mutex_lock()
• A thread fails to acquire the lock: it blocks with the FUTEX syscall

• A thread releases the lock: it wakes up the next one

• Problem: slow, due to costly context switches on the critical path!

• Not much you can do to speed them up…

2

…

… Long critical path!

Blocking locks vs. spinlocks

• Spinlocks:

• Instead of blocking, spin (busy-wait)!

• Transitions between critical sections much faster: one cache miss!

• Lots of research in this area, many very fast spinlock algorithms!

• TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks…

• Spinning wastes energy? A few, but faster applications = lower energy consumption!

3

Blocking locks vs. spinlocks

• Spinlocks:

• Instead of blocking, spin (busy-wait)!

• Transitions between critical sections much faster: one cache miss!

• Lots of research in this area, many very fast spinlock algorithms!

• TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks…

• Spinning wastes energy? A few, but faster applications = lower energy consumption!

3

lock() {
 while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
 PAUSE;
}

unlock() {
 lock = UNLOCKED;
}

Blocking locks vs. spinlocks

• Spinlocks:

• Instead of blocking, spin (busy-wait)!

• Transitions between critical sections much faster: one cache miss!

• Lots of research in this area, many very fast spinlock algorithms!

• TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks…

• Spinning wastes energy? A few, but faster applications = lower energy consumption!

3

lock() {
 while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
 PAUSE;
}

unlock() {
 lock = UNLOCKED;
}

Blocking locks vs. spinlocks

• Spinlocks:

• Instead of blocking, spin (busy-wait)!

• Transitions between critical sections much faster: one cache miss!

• Lots of research in this area, many very fast spinlock algorithms!

• TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks…

• Spinning wastes energy? A few, but faster applications = lower energy consumption!

3

lock() {
 while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
 PAUSE;
}

unlock() {
 lock = UNLOCKED;
}

Blocking locks vs. spinlocks

• Spinlocks:

• Instead of blocking, spin (busy-wait)!

• Transitions between critical sections much faster: one cache miss!

• Lots of research in this area, many very fast spinlock algorithms!

• TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks…

• Spinning wastes energy? A few, but faster applications = lower energy consumption!

3

lock() {
 while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
 PAUSE;
}

unlock() {
 lock = UNLOCKED;
}

…

…

Blocking locks vs. spinlocks

• Spinlocks:

• Instead of blocking, spin (busy-wait)!

• Transitions between critical sections much faster: one cache miss!

• Lots of research in this area, many very fast spinlock algorithms!

• TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks…

• Spinning wastes energy? A few, but faster applications = lower energy consumption!

3

lock() {
 while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
 PAUSE;
}

unlock() {
 lock = UNLOCKED;
}

…

…

Blocking locks vs. spinlocks

• Spinlocks:

• Instead of blocking, spin (busy-wait)!

• Transitions between critical sections much faster: one cache miss!

• Lots of research in this area, many very fast spinlock algorithms!

• TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks…

• Spinning wastes energy? A few, but faster applications = lower energy consumption!

3

lock() {
 while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
 PAUSE;
}

unlock() {
 lock = UNLOCKED;
}

…

…

Blocking locks vs. spinlocks

• Spinlocks:

• Instead of blocking, spin (busy-wait)!

• Transitions between critical sections much faster: one cache miss!

• Lots of research in this area, many very fast spinlock algorithms!

• TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks…

• Spinning wastes energy? A few, but faster applications = lower energy consumption!

3

lock() {
 while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
 PAUSE;
}

unlock() {
 lock = UNLOCKED;
}

…

…

Blocking locks vs. spinlocks

• Spinlocks:

• Instead of blocking, spin (busy-wait)!

• Transitions between critical sections much faster: one cache miss!

• Lots of research in this area, many very fast spinlock algorithms!

• TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks…

• Spinning wastes energy? A few, but faster applications = lower energy consumption!

3

lock() {
 while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
 PAUSE;
}

unlock() {
 lock = UNLOCKED;
}

…

…

Blocking locks vs. spinlocks

• Spinlocks:

• Instead of blocking, spin (busy-wait)!

• Transitions between critical sections much faster: one cache miss!

• Lots of research in this area, many very fast spinlock algorithms!

• TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks…

• Spinning wastes energy? A few, but faster applications = lower energy consumption!

3

lock() {
 while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
 PAUSE;
}

unlock() {
 lock = UNLOCKED;
}

…

…

Blocking locks vs. spinlocks

• Spinlocks:

• Instead of blocking, spin (busy-wait)!

• Transitions between critical sections much faster: one cache miss!

• Lots of research in this area, many very fast spinlock algorithms!

• TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks…

• Spinning wastes energy? A few, but faster applications = lower energy consumption!

3

lock() {
 while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
 PAUSE;
}

unlock() {
 lock = UNLOCKED;
}

…

…

Blocking locks vs. spinlocks

• Spinlocks:

• Instead of blocking, spin (busy-wait)!

• Transitions between critical sections much faster: one cache miss!

• Lots of research in this area, many very fast spinlock algorithms!

• TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks…

• Spinning wastes energy? A few, but faster applications = lower energy consumption!

3

lock() {
 while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
 PAUSE;
}

unlock() {
 lock = UNLOCKED;
}

…

… Short critical path!

Blocking locks vs. spinlocks

• Spinlocks:

• Instead of blocking, spin (busy-wait)!

• Transitions between critical sections much faster: one cache miss!

• Lots of research in this area, many very fast spinlock algorithms!

• TATAS locks, ticket locks, queue locks, NUMA locks, delegation locks…

• Spinning wastes energy? A few, but faster applications = lower energy consumption!

3

lock() {
 while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
 PAUSE;
}

unlock() {
 lock = UNLOCKED;
}

…

… Short critical path!

Blocking locks vs. spinlocks

• Why do standard libraries (e.g., POSIX) use blocking locks?

• Answer: stability!

• Spinlocks perform great when # threads ≤ # hardware contexts

• But when # threads > # hardware contexts, performance collapses!

• Reason: spinners preempt the critical sections, stopping all progress on the critical path!

4

Blocking locks vs. spinlocks

• Why do standard libraries (e.g., POSIX) use blocking locks?

• Answer: stability!

• Spinlocks perform great when # threads ≤ # hardware contexts

• But when # threads > # hardware contexts, performance collapses!

• Reason: spinners preempt the critical sections, stopping all progress on the critical path!

4

Blocking locks vs. spinlocks

• Why do standard libraries (e.g., POSIX) use blocking locks?

• Answer: stability!

• Spinlocks perform great when # threads ≤ # hardware contexts

• But when # threads > # hardware contexts, performance collapses!

• Reason: spinners preempt the critical sections, stopping all progress on the critical path!

4

Blocking locks vs. spinlocks

• Why do standard libraries (e.g., POSIX) use blocking locks?

• Answer: stability!

• Spinlocks perform great when # threads ≤ # hardware contexts

• But when # threads > # hardware contexts, performance collapses!

• Reason: spinners preempt the critical sections, stopping all progress on the critical path!

4

…

…

…
Holds spinlock

Blocking locks vs. spinlocks

• Why do standard libraries (e.g., POSIX) use blocking locks?

• Answer: stability!

• Spinlocks perform great when # threads ≤ # hardware contexts

• But when # threads > # hardware contexts, performance collapses!

• Reason: spinners preempt the critical sections, stopping all progress on the critical path!

4

…

…

…

…
Holds spinlock

Extremely long critical path!

FlexGuard: the best of both worlds!

5

• Goal: get the best of both worlds!

• When # threads ≤ available # hw ctxts, spinlock perf.

• When # threads > available # hw ctxts, blocking lock perf.

• Idea: use a spinlock, when critical section preempted, switch to a blocking lock!

• Can we do this?

• Insight: nowadays, with eBPF we can!

• We can instrument context switches to see all preemptions

• We can view the full state of the thread: preemption address + register contents

⇒ We can 100% tell whether we are in a critical section!

FlexGuard: the best of both worlds!

5

• Goal: get the best of both worlds!

• When # threads ≤ available # hw ctxts, spinlock perf.

• When # threads > available # hw ctxts, blocking lock perf.

• Idea: use a spinlock, when critical section preempted, switch to a blocking lock!

• Can we do this?

• Insight: nowadays, with eBPF we can!

• We can instrument context switches to see all preemptions

• We can view the full state of the thread: preemption address + register contents

⇒ We can 100% tell whether we are in a critical section!

Lower is better

FlexGuard: the best of both worlds!

5

• Goal: get the best of both worlds!

• When # threads ≤ available # hw ctxts, spinlock perf.

• When # threads > available # hw ctxts, blocking lock perf.

• Idea: use a spinlock, when critical section preempted, switch to a blocking lock!

• Can we do this?

• Insight: nowadays, with eBPF we can!

• We can instrument context switches to see all preemptions

• We can view the full state of the thread: preemption address + register contents

⇒ We can 100% tell whether we are in a critical section!

Lower is better

FlexGuard: the best of both worlds!

5

• Goal: get the best of both worlds!

• When # threads ≤ available # hw ctxts, spinlock perf.

• When # threads > available # hw ctxts, blocking lock perf.

• Idea: use a spinlock, when critical section preempted, switch to a blocking lock!

• Can we do this?

• Insight: nowadays, with eBPF we can!

• We can instrument context switches to see all preemptions

• We can view the full state of the thread: preemption address + register contents

⇒ We can 100% tell whether we are in a critical section!

Lower is better

FlexGuard: the best of both worlds!

5

• Goal: get the best of both worlds!

• When # threads ≤ available # hw ctxts, spinlock perf.

• When # threads > available # hw ctxts, blocking lock perf.

• Idea: use a spinlock, when critical section preempted, switch to a blocking lock!

• Can we do this?

• Insight: nowadays, with eBPF we can!

• We can instrument context switches to see all preemptions

• We can view the full state of the thread: preemption address + register contents

⇒ We can 100% tell whether we are in a critical section!

Lower is better

FlexGuard: the best of both worlds!

• Wait… Didn’t others try to do this before?!

• I.e., switch between spinning and blocking?

• Answer: yes, but they used unreliable heuristics!

• Spin-then-park: spin a little before blocking

• Actually POSIX uses this, sometimes worse than just blocking in our experiments

• Heuristic: how long do you spin?

• Malthusian locks: spin-then-park + some threads in a "passive" list

• Few active threads in the "spin" phase (fairness tradeoff)

• Heuristic: how long do you spin?

• Time-published locks: store timestamps, guess preemption if "stale" timestamp

• Heuristic: what timeout do you pick?

• I-Spinlocks: only take the lock if enough time left in Xen timeslice (kernel locks in VMs)

• Heuristic: how much is "enough time"?

6

FlexGuard: the best of both worlds!

• Wait… Didn’t others try to do this before?!

• I.e., switch between spinning and blocking?

• Answer: yes, but they used unreliable heuristics!

• Spin-then-park: spin a little before blocking

• Actually POSIX uses this, sometimes worse than just blocking in our experiments

• Heuristic: how long do you spin?

• Malthusian locks: spin-then-park + some threads in a "passive" list

• Few active threads in the "spin" phase (fairness tradeoff)

• Heuristic: how long do you spin?

• Time-published locks: store timestamps, guess preemption if "stale" timestamp

• Heuristic: what timeout do you pick?

• I-Spinlocks: only take the lock if enough time le# in Xen timeslice (kernel locks in VMs)

• Heuristic: how much is "enough time"?

6

FlexGuard: the best of both worlds!

• Wait… Didn’t others try to do this before?!

• I.e., switch between spinning and blocking?

• Answer: yes, but they used unreliable heuristics!

• Spin-then-park: spin a little before blocking

• Actually POSIX uses this, sometimes worse than just blocking in our experiments

• Heuristic: how long do you spin?

• Malthusian locks: spin-then-park + some threads in a "passive" list

• Few active threads in the "spin" phase (fairness tradeoff)

• Heuristic: how long do you spin?

• Time-published locks: store timestamps, guess preemption if "stale" timestamp

• Heuristic: what timeout do you pick?

• I-Spinlocks: only take the lock if enough time le# in Xen timeslice (kernel locks in VMs)

• Heuristic: how much is "enough time"?

6

FlexGuard: the best of both worlds!

• Wait… Didn’t others try to do this before?!

• I.e., switch between spinning and blocking?

• Answer: yes, but they used unreliable heuristics!

• Spin-then-park: spin a little before blocking

• Actually POSIX uses this, sometimes worse than just blocking in our experiments

• Heuristic: how long do you spin?

• Malthusian locks: spin-then-park + some threads in a "passive" list

• Few active threads in the "spin" phase (fairness tradeoff)

• Heuristic: how long do you spin?

• Time-published locks: store timestamps, guess preemption if "stale" timestamp

• Heuristic: what timeout do you pick?

• I-Spinlocks: only take the lock if enough time le# in Xen timeslice (kernel locks in VMs)

• Heuristic: how much is "enough time"?

6

Active Passive

S
S

S

B

B B

B

B

B

[Dice, 2017]

FlexGuard: the best of both worlds!

• Wait… Didn’t others try to do this before?!

• I.e., switch between spinning and blocking?

• Answer: yes, but they used unreliable heuristics!

• Spin-then-park: spin a little before blocking

• Actually POSIX uses this, sometimes worse than just blocking in our experiments

• Heuristic: how long do you spin?

• Malthusian locks: spin-then-park + some threads in a "passive" list

• Few active threads in the "spin" phase (fairness tradeoff)

• Heuristic: how long do you spin?

• Time-published locks: store timestamps, guess preemption if "stale" timestamp

• Heuristic: what timeout do you pick?

• I-Spinlocks: only take the lock if enough time left in Xen timeslice (kernel locks in VMs)

• Heuristic: how much is "enough time"?

6

Active Passive

S
S

S

B

B B

B

B

B

⌛⌛ ⌛

[He et al., 2005]

[Dice, 2017]

FlexGuard: the best of both worlds!

• Wait… Didn’t others try to do this before?!

• I.e., switch between spinning and blocking?

• Answer: yes, but they used unreliable heuristics!

• Spin-then-park: spin a little before blocking

• Actually POSIX uses this, sometimes worse than just blocking in our experiments

• Heuristic: how long do you spin?

• Malthusian locks: spin-then-park + some threads in a "passive" list

• Few active threads in the "spin" phase (fairness tradeoff)

• Heuristic: how long do you spin?

• Time-published locks: store timestamps, guess preemption if "stale" timestamp

• Heuristic: what timeout do you pick?

• I-Spinlocks: only take the lock if enough time le# in Xen timeslice (kernel locks in VMs)

• Heuristic: how much is "enough time"?

6

Active Passive

S
S

S

B

B B

B

B

B

⌛⌛ ⌛

CS

lock()

❌[Teabe et al., 2017]

[He et al., 2005]

[Dice, 2017]

FlexGuard: the best of both worlds!

• Wait… Didn’t others try to do this before?!

• I.e., switch between spinning and blocking?

• Answer: yes, but they used unreliable heuristics!

• Spin-then-park: spin a little before blocking

• Actually POSIX uses this, sometimes worse than just blocking in our experiments

• Heuristic: how long do you spin?

• Malthusian locks: spin-then-park + some threads in a "passive" list

• Few active threads in the "spin" phase (fairness tradeoff)

• Heuristic: how long do you spin?

• Time-published locks: store timestamps, guess preemption if "stale" timestamp

• Heuristic: what timeout do you pick?

• I-Spinlocks: only take the lock if enough time le# in Xen timeslice (kernel locks in VMs)

• Heuristic: how much is "enough time"?

6

Active Passive

S
S

S

B

B B

B

B

B

⌛⌛ ⌛

CS

lock()

❌

FlexGuard: first completely deterministic approach!

• Switches to blocking precisely when a critical section preemption happens

• Thanks to eBPF!

[Teabe et al., 2017]

[He et al., 2005]

[Dice, 2017]

FlexGuard’s Preemption Monitor

• FlexGuard’s Preemption Monitor detects critical section (CS) preemptions

• eBPF handler that hooks to the sched_switch event

• How to detect thread in a critical section?

• Example with a simple TATAS spinlock

• Idea: use a flag!

• Set it at the end of lock()
• Unset it at the beginning of unlock()
• If flag set, we’re in a critical section!

• Actually, need to use a counter for nested CSs

• If cs_counter > 0, we’re in a critical section

• Is that enough to be accurate?

7

FlexGuard’s Preemption Monitor

• FlexGuard’s Preemption Monitor detects critical section (CS) preemptions

• eBPF handler that hooks to the sched_switch event

• How to detect thread in a critical section?

• Example with a simple TATAS spinlock

• Idea: use a flag!

• Set it at the end of lock()
• Unset it at the beginning of unlock()
• If flag set, we’re in a critical section!

• Actually, need to use a counter for nested CSs

• If cs_counter > 0, we’re in a critical section

• Is that enough to be accurate?

7

CS

FlexGuard’s Preemption Monitor

• FlexGuard’s Preemption Monitor detects critical section (CS) preemptions

• eBPF handler that hooks to the sched_switch event

• How to detect thread in a critical section?

• Example with a simple TATAS spinlock

• Idea: use a flag!

• Set it at the end of lock()
• Unset it at the beginning of unlock()
• If flag set, we’re in a critical section!

• Actually, need to use a counter for nested CSs

• If cs_counter > 0, we’re in a critical section

• Is that enough to be accurate?

7

CS

FlexGuard’s Preemption Monitor

• FlexGuard’s Preemption Monitor detects critical section (CS) preemptions

• eBPF handler that hooks to the sched_switch event

• How to detect thread in a critical section?

• Example with a simple TATAS spinlock

• Idea: use a flag!

• Set it at the end of lock()
• Unset it at the beginning of unlock()
• If flag set, we’re in a critical section!

• Actually, need to use a counter for nested CSs

• If cs_counter > 0, we’re in a critical section

• Is that enough to be accurate?

7

CS

FlexGuard’s Preemption Monitor

• FlexGuard’s Preemption Monitor detects critical section (CS) preemptions

• eBPF handler that hooks to the sched_switch event

• How to detect thread in a critical section?

• Example with a simple TATAS spinlock

• Idea: use a flag!

• Set it at the end of lock()
• Unset it at the beginning of unlock()
• If flag set, we’re in a critical section!

• Actually, need to use a counter for nested CSs

• If cs_counter > 0, we’re in a critical section

• Is that enough to be accurate?

7

FlexGuard’s Preemption Monitor

• Answer: no, the counter is not enough.

• lock() function: when are we in the critical section?

• Right a!er XCHG succeeded in changing the lock value, already in the CS!

• There could be instructions until the actual cs_counter increment!

• I.e., if we’ve been preempted between at_break and the end of the lock function

• unlock() function: when are we in the critical section?

• Until the store at line 16 actually completed, still in the CS!

• There could be instructions between the cs_counter decrement and that!

• I.e., if we’ve been preempted between the beginning of the unlock function and at_store
• Assuming at_store is the final MOV that changes the lock variable’s value

• Can we take care of these cases?

• Yes, since the eBPF handler has access to the preemption address!

8

CS

FlexGuard’s Preemption Monitor

• Answer: no, the counter is not enough.

• lock() function: when are we in the critical section?

• Right a!er XCHG succeeded in changing the lock value, already in the CS!

• There could be instructions until the actual cs_counter increment!

• I.e., if we’ve been preempted between at_break and the end of the lock function

• unlock() function: when are we in the critical section?

• Until the store at line 16 actually completed, still in the CS!

• There could be instructions between the cs_counter decrement and that!

• I.e., if we’ve been preempted between the beginning of the unlock function and at_store
• Assuming at_store is the final MOV that changes the lock variable’s value

• Can we take care of these cases?

• Yes, since the eBPF handler has access to the preemption address!

8

CS

FlexGuard’s Preemption Monitor

• Answer: no, the counter is not enough.

• lock() function: when are we in the critical section?

• Right a!er XCHG succeeded in changing the lock value, already in the CS!

• There could be instructions until the actual cs_counter increment!

• I.e., if we’ve been preempted between at_break and the end of the lock function

• unlock() function: when are we in the critical section?

• Until the store at line 16 actually completed, still in the CS!

• There could be instructions between the cs_counter decrement and that!

• I.e., if we’ve been preempted between the beginning of the unlock function and at_store
• Assuming at_store is the final MOV that changes the lock variable’s value

• Can we take care of these cases?

• Yes, since the eBPF handler has access to the preemption address!

8

CS

FlexGuard’s Preemption Monitor

• Answer: no, the counter is not enough.

• lock() function: when are we in the critical section?

• Right a!er XCHG succeeded in changing the lock value, already in the CS!

• There could be instructions until the actual cs_counter increment!

• I.e., if we’ve been preempted between at_break and the end of the lock function

• unlock() function: when are we in the critical section?

• Until the store at line 16 actually completed, still in the CS!

• There could be instructions between the cs_counter decrement and that!

• I.e., if we’ve been preempted between the beginning of the unlock function and at_store
• Assuming at_store is the final MOV that changes the lock variable’s value

• Can we take care of these cases?

• Yes, since the eBPF handler has access to the preemption address!

8

CS

CS

FlexGuard’s Preemption Monitor

• Answer: no, the counter is not enough.

• lock() function: when are we in the critical section?

• Right a!er XCHG succeeded in changing the lock value, already in the CS!

• There could be instructions until the actual cs_counter increment!

• I.e., if we’ve been preempted between at_break and the end of the lock function

• unlock() function: when are we in the critical section?

• Until the store at line 16 actually completed, still in the CS!

• There could be instructions between the cs_counter decrement and that!

• I.e., if we’ve been preempted between the beginning of the unlock function and at_store
• Assuming at_store is the final MOV that changes the lock variable’s value

• Can we take care of these cases?

• Yes, since the eBPF handler has access to the preemption address!

8

CS

CS

FlexGuard’s Preemption Monitor

• Answer: no, the counter is not enough.

• lock() function: when are we in the critical section?

• Right a!er XCHG succeeded in changing the lock value, already in the CS!

• There could be instructions until the actual cs_counter increment!

• I.e., if we’ve been preempted between at_break and the end of the lock function

• unlock() function: when are we in the critical section?

• Until the store at line 16 actually completed, still in the CS!

• There could be instructions between the cs_counter decrement and that!

• I.e., if we’ve been preempted between the beginning of the unlock function and at_store
• Assuming at_store is the final MOV that changes the lock variable’s value

• Can we take care of these cases?

• Yes, since the eBPF handler has access to the preemption address!

8

CS

CS

FlexGuard’s Preemption Monitor

• Answer: no, the counter is not enough.

• lock() function: when are we in the critical section?

• Right a!er XCHG succeeded in changing the lock value, already in the CS!

• There could be instructions until the actual cs_counter increment!

• I.e., if we’ve been preempted between at_break and the end of the lock function

• unlock() function: when are we in the critical section?

• Until the store at line 16 actually completed, still in the CS!

• There could be instructions between the cs_counter decrement and that!

• I.e., if we’ve been preempted between the beginning of the unlock function and at_store
• Assuming at_store is the final MOV that changes the lock variable’s value

• Can we take care of these cases?

• Yes, since the eBPF handler has access to the preemption address!

8

CS

CS

CS

FlexGuard’s Preemption Monitor

• Answer: no, the counter is not enough.

• lock() function: when are we in the critical section?

• Right a!er XCHG succeeded in changing the lock value, already in the CS!

• There could be instructions until the actual cs_counter increment!

• I.e., if we’ve been preempted between at_break and the end of the lock function

• unlock() function: when are we in the critical section?

• Until the store at line 16 actually completed, still in the CS!

• There could be instructions between the cs_counter decrement and that!

• I.e., if we’ve been preempted between the beginning of the unlock function and at_store
• Assuming at_store is the final MOV that changes the lock variable’s value

• Can we take care of these cases?

• Yes, since the eBPF handler has access to the preemption address!

8

CS

CS

CS

FlexGuard’s Preemption Monitor

• Answer: no, the counter is not enough.

• lock() function: when are we in the critical section?

• Right a!er XCHG succeeded in changing the lock value, already in the CS!

• There could be instructions until the actual cs_counter increment!

• I.e., if we’ve been preempted between at_break and the end of the lock function

• unlock() function: when are we in the critical section?

• Until the store at line 16 actually completed, still in the CS!

• There could be instructions between the cs_counter decrement and that!

• I.e., if we’ve been preempted between the beginning of the unlock function and at_store
• Assuming at_store is the final MOV that changes the lock variable’s value

• Can we take care of these cases?

• Yes, since the eBPF handler has access to the preemption address!

8

CS

CS

CS

FlexGuard’s Preemption Monitor

• Is it finally accurate?

• No, still one problematic case:

• What if preeemption right a!er the XCHG?

• Then we are in a critical section iff the return value is UNLOCKED!

• Can we take care of this case?

• Yes, we can force the return value of XCHG to be in a specific register (w/ asm volatile)

• In the eBPF handler, we can access dumped register value (through the task_struct)!

⇒ Preemptions detected with 100% accuracy!

• Is it important to be fully accurate?

• Yes application critical sections only a few lines long, preemptions likely in lock()/unlock()
• Sufficient to cause performance collapse!

9

CS

CS

CS

FlexGuard’s Preemption Monitor

• Is it finally accurate?

• No, still one problematic case:

• What if preeemption right a!er the XCHG?

• Then we are in a critical section iff the return value is UNLOCKED!

• Can we take care of this case?

• Yes, we can force the return value of XCHG to be in a specific register (w/ asm volatile)

• In the eBPF handler, we can access dumped register value (through the task_struct)!

⇒ Preemptions detected with 100% accuracy!

• Is it important to be fully accurate?

• Yes application critical sections only a few lines long, preemptions likely in lock()/unlock()
• Sufficient to cause performance collapse!

9

CS

CS?

CS

CS

FlexGuard’s Preemption Monitor

• Is it finally accurate?

• No, still one problematic case:

• What if preeemption right a!er the XCHG?

• Then we are in a critical section iff the return value is UNLOCKED!

• Can we take care of this case?

• Yes, we can force the return value of XCHG to be in a specific register (w/ asm volatile)

• In the eBPF handler, we can access dumped register value (through the task_struct)!

⇒ Preemptions detected with 100% accuracy!

• Is it important to be fully accurate?

• Yes application critical sections only a few lines long, preemptions likely in lock()/unlock()
• Sufficient to cause performance collapse!

9

CS

CS?

CS

CS

FlexGuard’s Preemption Monitor

• Is it finally accurate?

• No, still one problematic case:

• What if preeemption right a!er the XCHG?

• Then we are in a critical section iff the return value is UNLOCKED!

• Can we take care of this case?

• Yes, we can force the return value of XCHG to be in a specific register (w/ asm volatile)

• In the eBPF handler, we can access dumped register value (through the task_struct)!

⇒ Preemptions detected with 100% accuracy!

• Is it important to be fully accurate?

• Yes application critical sections only a few lines long, preemptions likely in lock()/unlock()
• Sufficient to cause performance collapse!

9

CS

CS?

CS

CS

FlexGuard’s Preemption Monitor

10

CS

CS

CS

CS?

FlexGuard’s Preemption Monitor

10

CS

CS

CS

CS?

For communication w/ the lock

FlexGuard’s Preemption Monitor

10

CS

CS

CS

CS?

next rescheduled in CS

FlexGuard’s Preemption Monitor

10

CS

CS

CS

CS?

FlexGuard’s Preemption Monitor

10

CS

CS

CS

CS?

FlexGuard’s Preemption Monitor

10

CS

CS

CS

CS?

FlexGuard’s Preemption Monitor

10

CS

CS

CS

CS?

FlexGuard’s Preemption Monitor

10

CS

CS

CS

CS?

prev preempted in CS

FlexGuard’s lock algorithm

• We now have a reliable way to detect critical section preemptions

• We need an efficient hybrid spin/blocking lock algorithm to go with it

• For this, we need a bit of background on efficient lock algorithms

• Focus: efficient spinlock algorithms

• Blocking locks simply call the FUTEX syscall, can’t be improved

• Unless you spin…

11

FlexGuard’s lock algorithm

• We now have a reliable way to detect critical section preemptions

• We need an efficient hybrid spin/blocking lock algorithm to go with it

• For this, we need a bit of background on efficient lock algorithms

• Focus: efficient spinlock algorithms

• Blocking locks simply call the FUTEX syscall, can’t be improved

• Unless you spin…

11

FlexGuard’s lock algorithm

• We now have a reliable way to detect critical section preemptions

• We need an efficient hybrid spin/blocking lock algorithm to go with it

• For this, we need a bit of background on efficient lock algorithms

• Focus: efficient spinlock algorithms

• Blocking locks simply call the FUTEX syscall, can’t be improved

• Unless you spin…

11

FlexGuard’s lock algorithm

• We now have a reliable way to detect critical section preemptions

• We need an efficient hybrid spin/blocking lock algorithm to go with it

• For this, we need a bit of background on efficient lock algorithms

• Focus: efficient spinlock algorithms

• Blocking locks simply call the FUTEX syscall, can’t be improved

• Unless you spin…

11

Previous work on spinlocks

• Basic spinlock:

• In theory, transitions between critical sections fast: one cache miss!

• lock = UNLOCKED invalidates lock’s cache line

• Another thread fetches it and instantly executes a successful CAS

• Much faster than waking up a thread

• In practice, spinlocks can be very fast, but you need smarter algorithms than that…

• Lots of write contention on the lock variable!

12

lock() {
 while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
 PAUSE; // Spinloop hint
}

unlock() { lock = UNLOCKED; }

Previous work on spinlocks

• Basic spinlock:

• In theory, transitions between critical sections fast: one cache miss!

• lock = UNLOCKED invalidates lock’s cache line

• Another thread fetches it and instantly executes a successful CAS

• Much faster than waking up a thread

• In practice, spinlocks can be very fast, but you need smarter algorithms than that…

• Lots of write contention on the lock variable!

12

lock() {
 while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
 PAUSE; // Spinloop hint
}

unlock() { lock = UNLOCKED; }

Previous work on spinlocks

• Basic spinlock:

• In theory, transitions between critical sections fast: one cache miss!

• lock = UNLOCKED invalidates lock’s cache line

• Another thread fetches it and instantly executes a successful CAS

• Much faster than waking up a thread

• In practice, spinlocks can be very fast, but you need smarter algorithms than that…

• Lots of write contention on the lock variable!

12

lock() {
 while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
 PAUSE; // Spinloop hint
}

unlock() { lock = UNLOCKED; }

Previous work on spinlocks

• Basic spinlock:

• In theory, transitions between critical sections fast: one cache miss!

• lock = UNLOCKED invalidates lock’s cache line

• Another thread fetches it and instantly executes a successful CAS

• Much faster than waking up a thread

• In practice, spinlocks can be very fast, but you need smarter algorithms than that…

• Lots of write contention on the lock variable!

12

lock() {
 while (compare_and_swap(&lock, UNLOCKED, LOCKED) != UNLOCKED)
 PAUSE; // Spinloop hint
}

unlock() { lock = UNLOCKED; }

Previous work on spinlocks

• Optimisation 1: spin in read mode on the lock variable

• Test-and-Test-and-Set (TATAS) lock: test the lock value without an atomic instruction first

• Not 100% in read mode, nothing ensures lock is still UNLOCKED when you do the XCHG…

• Ticket lock: current ticket defines who’s in CS

• Like at the post office ✉ (in some countries🇨🇭)

• Before acquiring the lock: get your ticket

• Atomic but not on the critical path

• Lock acquisition:

• Spin until the current ticket == your ticket value

• 100% in read mode!

• On CS exit: atomically increment the current ticket

13

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)

Previous work on spinlocks

• Optimisation 1: spin in read mode on the lock variable

• Test-and-Test-and-Set (TATAS) lock: test the lock value without an atomic instruction first

• Not 100% in read mode, nothing ensures lock is still UNLOCKED when you do the XCHG…

• Ticket lock: current ticket defines who’s in CS

• Like at the post office ✉ (in some countries🇨🇭)

• Before acquiring the lock: get your ticket

• Atomic but not on the critical path

• Lock acquisition:

• Spin until the current ticket == your ticket value

• 100% in read mode!

• On CS exit: atomically increment the current ticket

13

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)

Previous work on spinlocks

• Optimisation 1: spin in read mode on the lock variable

• Test-and-Test-and-Set (TATAS) lock: test the lock value without an atomic instruction first

• Not 100% in read mode, nothing ensures lock is still UNLOCKED when you do the XCHG…

• Ticket lock: current ticket defines who’s in CS

• Like at the post office ✉ (in some countries🇨🇭)

• Before acquiring the lock: get your ticket

• Atomic but not on the critical path

• Lock acquisition:

• Spin until the current ticket == your ticket value

• 100% in read mode!

• On CS exit: atomically increment the current ticket

13

// curr_tkt == 42, next_tkt == 43

my_tkt =
atomic_inc(&next_tkt);
// my_tkt == 43

atomic_inc(&curr_tkt);
// curr_tkt == 43

CS

CS

while (my_tkt != curr_tkt)
 PAUSE;

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)

Previous work on spinlocks

• Optimisation 1: spin in read mode on the lock variable

• Test-and-Test-and-Set (TATAS) lock: test the lock value without an atomic instruction first

• Not 100% in read mode, nothing ensures lock is still UNLOCKED when you do the XCHG…

• Ticket lock: current ticket defines who’s in CS

• Like at the post office ✉ (in some countries🇨🇭)

• Before acquiring the lock: get your ticket

• Atomic but not on the critical path

• Lock acquisition:

• Spin until the current ticket == your ticket value

• 100% in read mode!

• On CS exit: atomically increment the current ticket

13

// curr_tkt == 42, next_tkt == 43

my_tkt =
atomic_inc(&next_tkt);
// my_tkt == 43

atomic_inc(&curr_tkt);
// curr_tkt == 43

CS

CS

while (my_tkt != curr_tkt)
 PAUSE;

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)

Previous work on spinlocks

• Optimisation 1: spin in read mode on the lock variable

• Test-and-Test-and-Set (TATAS) lock: test the lock value without an atomic instruction first

• Not 100% in read mode, nothing ensures lock is still UNLOCKED when you do the XCHG…

• Ticket lock: current ticket defines who’s in CS

• Like at the post office ✉ (in some countries🇨🇭)

• Before acquiring the lock: get your ticket

• Atomic but not on the critical path

• Lock acquisition:

• Spin until the current ticket == your ticket value

• 100% in read mode!

• On CS exit: atomically increment the current ticket

13

// curr_tkt == 42, next_tkt == 43

my_tkt =
atomic_inc(&next_tkt);
// my_tkt == 43

atomic_inc(&curr_tkt);
// curr_tkt == 43

CS

CS

while (my_tkt != curr_tkt)
 PAUSE;

‹

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)

Previous work on spinlocks

• Optimisation 1: spin in read mode on the lock variable

• Test-and-Test-and-Set (TATAS) lock: test the lock value without an atomic instruction first

• Not 100% in read mode, nothing ensures lock is still UNLOCKED when you do the XCHG…

• Ticket lock: current ticket defines who’s in CS

• Like at the post office ✉ (in some countries🇨🇭)

• Before acquiring the lock: get your ticket

• Atomic but not on the critical path

• Lock acquisition:

• Spin until the current ticket == your ticket value

• 100% in read mode!

• On CS exit: atomically increment the current ticket

13

// curr_tkt == 42, next_tkt == 43

my_tkt =
atomic_inc(&next_tkt);
// my_tkt == 43

atomic_inc(&curr_tkt);
// curr_tkt == 43

CS

CS

while (my_tkt != curr_tkt)
 PAUSE;

while (lock == UNLOCKED && XCHG(&lock, LOCKED) != UNLOCKED)

Previous work on spinlocks

• Optimisation 2: use multiple lock variables

• Queue locks (MCS, CLH):

• One queue node/lock variable per thread

• Lock acquisition: enqueue the thread’s node (atomic, outside the critical path)

• On critical section exit: write local lock variable to signal the next thread we’re done

• Difference between MCS and CLH: direction of the queue

14

T2: waiting

next
waiting 1

tail

T1: in CS

next
waiting 0

[Mellor-Crummey et all., 1991] [Craig et al. 1993; Magnussen et al. 1994]

Previous work on spinlocks

• Optimisation 2: use multiple lock variables

• Queue locks (MCS, CLH):

• One queue node/lock variable per thread

• Lock acquisition: enqueue the thread’s node (atomic, outside the critical path)

• On critical section exit: write local lock variable to signal the next thread we’re done

• Difference between MCS and CLH: direction of the queue

14

T2: waiting

next
waiting 1

tail

T3: waiting

next
waiting 1

T1: in CS

next
waiting 0

[Mellor-Crummey et all., 1991] [Craig et al. 1993; Magnussen et al. 1994]

Previous work on spinlocks

• Optimisation 2: use multiple lock variables

• Queue locks (MCS, CLH):

• One queue node/lock variable per thread

• Lock acquisition: enqueue the thread’s node (atomic, outside the critical path)

• On critical section exit: write local lock variable to signal the next thread we’re done

• Difference between MCS and CLH: direction of the queue

14

tail

T3: waiting

next
waiting 1

T1: in CS

next
waiting 0

T2: in CS

next
waiting 0

[Mellor-Crummey et all., 1991] [Craig et al. 1993; Magnussen et al. 1994]

Previous work on spinlocks

• Optimisation 2: use multiple lock variables

• Queue locks (MCS, CLH):

• One queue node/lock variable per thread

• Lock acquisition: enqueue the thread’s node (atomic, outside the critical path)

• On critical section exit: write local lock variable to signal the next thread we’re done

• Difference between MCS and CLH: direction of the queue

14

tail

T3: waiting

next
waiting 1

T1: in CS

next
waiting 0

T2: in CS

next
waiting 0

[Mellor-Crummey et all., 1991] [Craig et al. 1993; Magnussen et al. 1994]

• Optimisation 3: NUMA-awareness

• Modern machines often have Non-Uniform Memory Architectures (NUMA)

• E.g., one NUMA node = one processor

• Faster to hand over the lock on the same NUMA node than to a remote NUMA node

• Idea: hand over the lock locally for a while before handing it over remotely

• Trades fairness for performance

Previous work on spinlocks

15

• Optimisation 3: NUMA-awareness

• Modern machines often have Non-Uniform Memory Architectures (NUMA)

• E.g., one NUMA node = one processor

• Faster to hand over the lock on the same NUMA node than to a remote NUMA node

• Idea: hand over the lock locally for a while before handing it over remotely

• Trades fairness for performance

Previous work on spinlocks

15

• Optimisation 3: NUMA-awareness

• Modern machines o"en have Non-Uniform Memory Architectures (NUMA)

• E.g., one NUMA node = one processor

• Faster to hand over the lock on the same NUMA node than to a remote NUMA node

• Idea: hand over the lock locally for a while before handing it over remotely

• Trades fairness for performance

Previous work on spinlocks

15

• Optimisation 3: NUMA-awareness

• Modern machines often have Non-Uniform Memory Architectures (NUMA)

• E.g., one NUMA node = one processor

• Faster to hand over the lock on the same NUMA node than to a remote NUMA node

• Idea: hand over the lock locally for a while before handing it over remotely

• Trades fairness for performance

NUMA node 1 NUMA node 2

Previous work on spinlocks

15

• Optimisation 3: NUMA-awareness

• Modern machines o"en have Non-Uniform Memory Architectures (NUMA)

• E.g., one NUMA node = one processor

• Faster to hand over the lock on the same NUMA node than to a remote NUMA node

• Idea: hand over the lock locally for a while before handing it over remotely

• Trades fairness for performance

NUMA node 1 NUMA node 2

Previous work on spinlocks

15

• Optimisation 3: NUMA-awareness

• Modern machines often have Non-Uniform Memory Architectures (NUMA)

• E.g., one NUMA node = one processor

• Faster to hand over the lock on the same NUMA node than to a remote NUMA node

• Idea: hand over the lock locally for a while before handing it over remotely

• Trades fairness for performance

NUMA node 1 NUMA node 2

Previous work on spinlocks

15

• Optimisation 3: NUMA-awareness

• Modern machines often have Non-Uniform Memory Architectures (NUMA)

• E.g., one NUMA node = one processor

• Faster to hand over the lock on the same NUMA node than to a remote NUMA node

• Idea: hand over the lock locally for a while before handing it over remotely

• Trades fairness for performance

NUMA node 1 NUMA node 2

Previous work on spinlocks

15

• Optimisation 3: NUMA-awareness

• Modern machines o"en have Non-Uniform Memory Architectures (NUMA)

• E.g., one NUMA node = one processor

• Faster to hand over the lock on the same NUMA node than to a remote NUMA node

• Idea: hand over the lock locally for a while before handing it over remotely

• Trades fairness for performance

NUMA node 1 NUMA node 2

Previous work on spinlocks

15

• Optimisation 3: NUMA-awareness

• Modern machines often have Non-Uniform Memory Architectures (NUMA)

• E.g., one NUMA node = one processor

• Faster to hand over the lock on the same NUMA node than to a remote NUMA node

• Idea: hand over the lock locally for a while before handing it over remotely

• Trades fairness for performance

NUMA node 1

Previous work on spinlocks

15

NUMA node 2

• Optimisation 3: NUMA-awareness

• Modern machines o"en have Non-Uniform Memory Architectures (NUMA)

• E.g., one NUMA node = one processor

• Faster to hand over the lock on the same NUMA node than to a remote NUMA node

• Idea: hand over the lock locally for a while before handing it over remotely

• Trades fairness for performance

NUMA node 1

Previous work on spinlocks

15

NUMA node 2

• Optimisation 3: NUMA-awareness

• Modern machines often have Non-Uniform Memory Architectures (NUMA)

• E.g., one NUMA node = one processor

• Faster to hand over the lock on the same NUMA node than to a remote NUMA node

• Idea: hand over the lock locally for a while before handing it over remotely

• Trades fairness for performance

NUMA node 1

Previous work on spinlocks

15

NUMA node 2

• Optimisation 3: NUMA-awareness

• Modern machines often have Non-Uniform Memory Architectures (NUMA)

• E.g., one NUMA node = one processor

• Faster to hand over the lock on the same NUMA node than to a remote NUMA node

• Idea: hand over the lock locally for a while before handing it over remotely

• Trades fairness for performance

NUMA node 1

Previous work on spinlocks

15

NUMA node 2

• Optimisation 3: NUMA-awareness

• Lock cohorting: use a pair of spinlock algorithms (from TATAS, ticket, MCS, CLH…)

• One for local nodes, one to switch between nodes

• Shuffle lock: queue lock, move threads so that local waiters are next

• With one extra optimisation (unrelated to NUMA): TAS + MCS

• Fast path: just acquire the TAS lock if free (L1-2)

• Slow path: acquire the MCS, acquire the TAS lock, release the MCS (L4-7)

• Advantages:

• Fast acquisition when lock free; at most one spinner on the TAS lock

• At most one MCS acquired at a time, lower memory consumption for nested locks

• Only one MCS node per thread needed, instead of one per thread per lock

Previous work on spinlocks

16

[Dice et al., 2012]

• Optimisation 3: NUMA-awareness

• Lock cohorting: use a pair of spinlock algorithms (from TATAS, ticket, MCS, CLH…)

• One for local nodes, one to switch between nodes

• Shuffle lock: queue lock, move threads so that local waiters are next

• With one extra optimisation (unrelated to NUMA): TAS + MCS

• Fast path: just acquire the TAS lock if free (L1-2)

• Slow path: acquire the MCS, acquire the TAS lock, release the MCS (L4-7)

• Advantages:

• Fast acquisition when lock free; at most one spinner on the TAS lock

• At most one MCS acquired at a time, lower memory consumption for nested locks

• Only one MCS node per thread needed, instead of one per thread per lock

Previous work on spinlocks

16

1 shuffle_lock() {
2 if (lock == UNLOCKED)
3 locked = XCHG(&lock, LOCKED);
4 if (locked != UNLOCKED)
5 mcs_lock(&mcs_lock);
6 while (XCHG(&lock, LOCKED) != UNLOCKED)
7 PAUSE;
8 mcs_unlock(&mcs_lock);
9 ...

[Dice et al., 2012]

[Kashyap et al., 2019]

• Optimisation 3: NUMA-awareness

• Lock cohorting: use a pair of spinlock algorithms (from TATAS, ticket, MCS, CLH…)

• One for local nodes, one to switch between nodes

• Shuffle lock: queue lock, move threads so that local waiters are next

• With one extra optimisation (unrelated to NUMA): TAS + MCS

• Fast path: just acquire the TAS lock if free (L1-2)

• Slow path: acquire the MCS, acquire the TAS lock, release the MCS (L4-7)

• Advantages:

• Fast acquisition when lock free; at most one spinner on the TAS lock

• At most one MCS acquired at a time, lower memory consumption for nested locks

• Only one MCS node per thread needed, instead of one per thread per lock

Previous work on spinlocks

16

1 shuffle_lock() {
2 if (lock == UNLOCKED)
3 locked = XCHG(&lock, LOCKED);
4 if (locked != UNLOCKED)
5 mcs_lock(&mcs_lock);
6 while (XCHG(&lock, LOCKED) != UNLOCKED)
7 PAUSE;
8 mcs_unlock(&mcs_lock);
9 ...

[Dice et al., 2012]

[Kashyap et al., 2019]

• Optimisation 3: NUMA-awareness

• Lock cohorting: use a pair of spinlock algorithms (from TATAS, ticket, MCS, CLH…)

• One for local nodes, one to switch between nodes

• Shuffle lock: queue lock, move threads so that local waiters are next

• With one extra optimisation (unrelated to NUMA): TAS + MCS

• Fast path: just acquire the TAS lock if free (L1-2)

• Slow path: acquire the MCS, acquire the TAS lock, release the MCS (L4-7)

• Advantages:

• Fast acquisition when lock free; at most one spinner on the TAS lock

• At most one MCS acquired at a time, lower memory consumption for nested locks

• Only one MCS node per thread needed, instead of one per thread per lock

Previous work on spinlocks

16

1 shuffle_lock() {
2 if (lock == UNLOCKED)
3 locked = XCHG(&lock, LOCKED);
4 if (locked != UNLOCKED)
5 mcs_lock(&mcs_lock);
6 while (XCHG(&lock, LOCKED) != UNLOCKED)
7 PAUSE;
8 mcs_unlock(&mcs_lock);
9 ...

[Dice et al., 2012]

[Kashyap et al., 2019]

17

• Similar TAS+MCS optimization as the Shuffle lock

• But the TAS lock variable can also be used as the FUTEX lock variable

⇒ Possible to acquire the lock as spinning or blocking

⇒ No atomicity issues

• Spin mode ⇔ num_preempted_cs == 0
• In spin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling

• NUMA has little impact on recent x86 machines

• In blocking mode: MCS queue bypassed!

• Spinning→blocking transition: spin waiters exit the MCS queue

• Blocking→spinning transition: blocking waiters reenqueue themselves in the MCS queue

• One woken up at each unlock() if there are blocked waiters, TAS attempt then reenqueuing

FlexGuard’s lock algorithm

17

• Similar TAS+MCS optimization as the Shuffle lock

• But the TAS lock variable can also be used as the FUTEX lock variable

⇒ Possible to acquire the lock as spinning or blocking

⇒ No atomicity issues

• Spin mode ⇔ num_preempted_cs == 0
• In spin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling

• NUMA has little impact on recent x86 machines

• In blocking mode: MCS queue bypassed!

• Spinning→blocking transition: spin waiters exit the MCS queue

• Blocking→spinning transition: blocking waiters reenqueue themselves in the MCS queue

• One woken up at each unlock() if there are blocked waiters, TAS attempt then reenqueuing

FlexGuard’s lock algorithm

17

• Similar TAS+MCS optimization as the Shuffle lock

• But the TAS lock variable can also be used as the FUTEX lock variable

⇒ Possible to acquire the lock as spinning or blocking

⇒ No atomicity issues

• Spin mode ⇔ num_preempted_cs == 0
• In spin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling

• NUMA has little impact on recent x86 machines

• In blocking mode: MCS queue bypassed!

• Spinning→blocking transition: spin waiters exit the MCS queue

• Blocking→spinning transition: blocking waiters reenqueue themselves in the MCS queue

• One woken up at each unlock() if there are blocked waiters, TAS attempt then reenqueuing

FlexGuard’s lock algorithm

17

• Similar TAS+MCS optimization as the Shuffle lock

• But the TAS lock variable can also be used as the FUTEX lock variable

⇒ Possible to acquire the lock as spinning or blocking

⇒ No atomicity issues

• Spin mode ⇔ num_preempted_cs == 0
• In spin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling

• NUMA has little impact on recent x86 machines

• In blocking mode: MCS queue bypassed!

• Spinning→blocking transition: spin waiters exit the MCS queue

• Blocking→spinning transition: blocking waiters reenqueue themselves in the MCS queue

• One woken up at each unlock() if there are blocked waiters, TAS attempt then reenqueuing

FlexGuard’s lock algorithm

17

• Similar TAS+MCS optimization as the Shuffle lock

• But the TAS lock variable can also be used as the FUTEX lock variable

⇒ Possible to acquire the lock as spinning or blocking

⇒ No atomicity issues

• Spin mode ⇔ num_preempted_cs == 0
• In spin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling

• NUMA has little impact on recent x86 machines

• In blocking mode: MCS queue bypassed!

• Spinning→blocking transition: spin waiters exit the MCS queue

• Blocking→spinning transition: blocking waiters reenqueue themselves in the MCS queue

• One woken up at each unlock() if there are blocked waiters, TAS attempt then reenqueuing

FlexGuard’s lock algorithm

17

• Similar TAS+MCS optimization as the Shuffle lock

• But the TAS lock variable can also be used as the FUTEX lock variable

⇒ Possible to acquire the lock as spinning or blocking

⇒ No atomicity issues

• Spin mode ⇔ num_preempted_cs == 0
• In spin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling

• NUMA has little impact on recent x86 machines

• In blocking mode: MCS queue bypassed!

• Spinning→blocking transition: spin waiters exit the MCS queue

• Blocking→spinning transition: blocking waiters reenqueue themselves in the MCS queue

• One woken up at each unlock() if there are blocked waiters, TAS attempt then reenqueuing

FlexGuard’s lock algorithm

17

• Similar TAS+MCS optimization as the Shuffle lock

• But the TAS lock variable can also be used as the FUTEX lock variable

⇒ Possible to acquire the lock as spinning or blocking

⇒ No atomicity issues

• Spin mode ⇔ num_preempted_cs == 0
• In spin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling

• NUMA has little impact on recent x86 machines

• In blocking mode: MCS queue bypassed!

• Spinning→blocking transition: spin waiters exit the MCS queue

• Blocking→spinning transition: blocking waiters reenqueue themselves in the MCS queue

• One woken up at each unlock() if there are blocked waiters, TAS attempt then reenqueuing

FlexGuard’s lock algorithm

17

• Similar TAS+MCS optimization as the Shuffle lock

• But the TAS lock variable can also be used as the FUTEX lock variable

⇒ Possible to acquire the lock as spinning or blocking

⇒ No atomicity issues

• Spin mode ⇔ num_preempted_cs == 0
• In spin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling

• NUMA has little impact on recent x86 machines

• In blocking mode: MCS queue bypassed!

• Spinning→blocking transition: spin waiters exit the MCS queue

• Blocking→spinning transition: blocking waiters reenqueue themselves in the MCS queue

• One woken up at each unlock() if there are blocked waiters, TAS attempt then reenqueuing

FlexGuard’s lock algorithm

17

• Similar TAS+MCS optimization as the Shuffle lock

• But the TAS lock variable can also be used as the FUTEX lock variable

⇒ Possible to acquire the lock as spinning or blocking

⇒ No atomicity issues

• Spin mode ⇔ num_preempted_cs == 0
• In spin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling

• NUMA has little impact on recent x86 machines

• In blocking mode: MCS queue bypassed!

• Spinning→blocking transition: spin waiters exit the MCS queue

• Blocking→spinning transition: blocking waiters reenqueue themselves in the MCS queue

• One woken up at each unlock() if there are blocked waiters, TAS attempt then reenqueuing

FlexGuard’s lock algorithm

17

• Similar TAS+MCS optimization as the Shuffle lock

• But the TAS lock variable can also be used as the FUTEX lock variable

⇒ Possible to acquire the lock as spinning or blocking

⇒ No atomicity issues

• Spin mode ⇔ num_preempted_cs == 0
• In spin mode: similar behavior as the Shuffle lock, except no NUMA reshuffling

• NUMA has little impact on recent x86 machines

• In blocking mode: MCS queue bypassed!

• Spinning→blocking transition: spin waiters exit the MCS queue

• Blocking→spinning transition: blocking waiters reenqueue themselves in the MCS queue

• One woken up at each unlock() if there are blocked waiters, TAS attempt then reenqueuing

Evaluation: microbenchmark (Intel)

18

Intel machine,

104 hardware contexts

Lower is better

Evaluation: microbenchmark (Intel)

18

Intel machine,

104 hardware contexts

Lower is better

With spin-then-park

Evaluation: microbenchmark (Intel)

18

Intel machine,

104 hardware contexts

Lower is better

Recently proposed patch for Linux

Applicable to our approach

Evaluation: microbenchmark (Intel)

18

Intel machine,

104 hardware contexts

Lower is better
FlexGuard performs similar to

MCS at low subscription

Evaluation: microbenchmark (Intel)

18

Intel machine,

104 hardware contexts

Lower is better

FlexGuard avoids the performance collapse at high subscription

Even greatly outperforms the blocking locks… but why?

Runnable threads

19

Microbenchmark with 140 threads

Intel machine, 104 hardware contexts

⇒ Oversubscribed case

Runnable threads

19

Microbenchmark with 140 threads

Intel machine, 104 hardware contexts

⇒ Oversubscribed case

MCS performs poorly because

spinning waiters > # hardware contexts

Runnable threads

19

Microbenchmark with 140 threads

Intel machine, 104 hardware contexts

⇒ Oversubscribed case

MCS performs poorly because

spinning waiters > # hardware contexts

The pure blocking lock performs better, but

o!en the next waiter is not running, because

 #spinning waiters = 0

Runnable threads

19

Microbenchmark with 140 threads

Intel machine, 104 hardware contexts

⇒ Oversubscribed case

MCS performs poorly because

spinning waiters > # hardware contexts

The pure blocking lock performs better, but

often the next waiter is not running, because

 #spinning waiters = 0

FlexGuard performs best because it has

0 < # spinning waiters ≤ # hardware contexts

Runnable threads

19

Microbenchmark with 140 threads

Intel machine, 104 hardware contexts

⇒ Oversubscribed case

MCS performs poorly because

spinning waiters > # hardware contexts

The pure blocking lock performs better, but

often the next waiter is not running, because

 #spinning waiters = 0

FlexGuard performs best because it has

0 < # spinning waiters ≤ # hardware contexts

Critical section preemptions

Evaluation: microbenchmark (AMD)

20

AMD machine,

512 hardware contexts

Lower is better

Evaluation: microbenchmark (AMD)

20

AMD machine,

512 hardware contexts

Lower is better

As compared to Intel, better

performance of POSIX,

Shuffle lock, and u-SCL.

Evaluation: microbenchmark (AMD)

20

AMD machine,

512 hardware contexts

Lower is better

FlexGuard almost always best

Evaluation: benchmarks

21Higher is better

Evaluation: benchmarks

21Higher is better

FlexGuard matches or outperforms

other locks on both low and

high subscription

Evaluation: benchmarks

21Higher is better

Benchmarks w/ concurrent workload: fixed number

of benchmark threads, varying number

of concurrent threads

In this case, timeslice extension helps because

the concurrent workload’s threads cannot be blocked

Evaluation: benchmarks

22Higher is better

Evaluation: benchmarks

22Higher is better

Poor performance of MCS, MCS-TP, and Malthusian,

due to the high number of locks (266K): one queue node

per thread and per lock, many cache misses

FlexGuard performs well due to the Shuffle lock optimization

23

L
e

v
e

lD
B

H
ig

h
e

r
is

 b
e

tt
e

r

23

L
e

v
e

lD
B

H
ig

h
e

r
is

 b
e

tt
e

r

Needs barrier support!

Conclusion

24

• FlexGuard = best of both worlds between spinning and blocking

• Preemption Monitor: accurate critical section preemption detection

• First non-heuristic approach, thanks to eBPF!

• FlexGuard’s lock algorithm: outperforms blocking locks when oversubscribed

• Good amount of spinning waiters

• Recently proposed Linux timeslice extension: complementary

• Where could FlexGuard be used?

• In standard libraries such as e.g., POSIX

• Spinlock performance, without sacrificing stability

• No performance collapse!

• In more synchronization primitives

• Read-write locks, condition variables, barriers,
optimistic locking, delegation locks…

• In the virtualized case (vCPU preemptions)

Conclusion

24

• FlexGuard = best of both worlds between spinning and blocking

• Preemption Monitor: accurate critical section preemption detection

• First non-heuristic approach, thanks to eBPF!

• FlexGuard’s lock algorithm: outperforms blocking locks when oversubscribed

• Good amount of spinning waiters

• Recently proposed Linux timeslice extension: complementary

• Where could FlexGuard be used?

• In standard libraries such as e.g., POSIX

• Spinlock performance, without sacrificing stability

• No performance collapse!

• In more synchronization primitives

• Read-write locks, condition variables, barriers,
optimistic locking, delegation locks…

• In the virtualized case (vCPU preemptions)

Conclusion

24

• FlexGuard = best of both worlds between spinning and blocking

• Preemption Monitor: accurate critical section preemption detection

• First non-heuristic approach, thanks to eBPF!

• FlexGuard’s lock algorithm: outperforms blocking locks when oversubscribed

• Good amount of spinning waiters

• Recently proposed Linux timeslice extension: complementary

• Where could FlexGuard be used?

• In standard libraries such as e.g., POSIX

• Spinlock performance, without sacrificing stability

• No performance collapse!

• In more synchronization primitives

• Read-write locks, condition variables, barriers,
optimistic locking, delegation locks…

• In the virtualized case (vCPU preemptions)

Conclusion

24

• FlexGuard = best of both worlds between spinning and blocking

• Preemption Monitor: accurate critical section preemption detection

• First non-heuristic approach, thanks to eBPF!

• FlexGuard’s lock algorithm: outperforms blocking locks when oversubscribed

• Good amount of spinning waiters

• Recently proposed Linux timeslice extension: complementary

• Where could FlexGuard be used?

• In standard libraries such as e.g., POSIX

• Spinlock performance, without sacrificing stability

• No performance collapse!

• In more synchronization primitives

• Read-write locks, condition variables, barriers,
optimistic locking, delegation locks…

• In the virtualized case (vCPU preemptions)

Conclusion

24

• FlexGuard = best of both worlds between spinning and blocking

• Preemption Monitor: accurate critical section preemption detection

• First non-heuristic approach, thanks to eBPF!

• FlexGuard’s lock algorithm: outperforms blocking locks when oversubscribed

• Good amount of spinning waiters

• Recently proposed Linux timeslice extension: complementary

• Where could FlexGuard be used?

• In standard libraries such as e.g., POSIX

• Spinlock performance, without sacrificing stability

• No performance collapse!

• In more synchronization primitives

• Read-write locks, condition variables, barriers,
optimistic locking, delegation locks…

• In the virtualized case (vCPU preemptions)

Conclusion

24

• FlexGuard = best of both worlds between spinning and blocking

• Preemption Monitor: accurate critical section preemption detection

• First non-heuristic approach, thanks to eBPF!

• FlexGuard’s lock algorithm: outperforms blocking locks when oversubscribed

• Good amount of spinning waiters

• Recently proposed Linux timeslice extension: complementary

• Where could FlexGuard be used?

• In standard libraries such as e.g., POSIX

• Spinlock performance, without sacrificing stability

• No performance collapse!

• In more synchronization primitives

• Read-write locks, condition variables, barriers,
optimistic locking, delegation locks…

• In the virtualized case (vCPU preemptions)

Conclusion

24

• FlexGuard = best of both worlds between spinning and blocking

• Preemption Monitor: accurate critical section preemption detection

• First non-heuristic approach, thanks to eBPF!

• FlexGuard’s lock algorithm: outperforms blocking locks when oversubscribed

• Good amount of spinning waiters

• Recently proposed Linux timeslice extension: complementary

• Where could FlexGuard be used?

• In standard libraries such as e.g., POSIX

• Spinlock performance, without sacrificing stability

• No performance collapse!

• In more synchronization primitives

• Read-write locks, condition variables, barriers,
optimistic locking, delegation locks…

• In the virtualized case (vCPU preemptions)

