PhD thesis defense, Université Pierre et Marie Curie
Regal/Whisper team, LIP6/INRIA

owards More Scalable Mutual
Exclusion for Multicore Architectures

Vers des mécanismes d'exclusion mutuelle plus
efficaces pour les architectures multi-ceeur

Jean-Pierre Lozi

Qutline

Context: multicore architectures
State of the art: locks

Contribution: Remote Core Locking
Evaluation

Perspectives and conclusion

Context: multicore architectures

* Decades of increasing CPU clock speeds
* Since early 2000's, problems with power consumption/dissipation

* Increasing numbers of cores to keep increasing processing power
— Possible because number of transistors keeps increasing

10,000,000

‘ Dual-Core Itanium 2
1,000,000
[|

Intel CPU Trends /)

(sources: Intel, Wikipedia, K. Olukotun) 7

./ —> # transistors

100,000

10,000

+t+ —> Clock speed

1,000

100

=+~ —> Power Consumption

10

~— — Ratio power/speed

1 f A g ot TSl 000) —
o / . @ Clock Speed (MHz)
X APower (W)
@ Perf/Clock (ILP)
I

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

Problem with multicore: scalability

* Many legacy applications don't scale well on multicore architectures
* Forinstance, Memcached (Get/Set requests):

Memcached/Get -.-g3--- Memcached/Set - -3--

4.5 .
4 1 _,E'E-Elﬂ e N
e E"EIE_ :
35 I — = e - SRS D |
BB ...y
g_ 3L 'w —
3 25
D L '4' ...]
& B
2 L N
1.5 ~....e.EI.‘.:.EI.._.Ee-..-..ﬂe.....El_.,_.E;.; B TP |
'o"' - --E--E—-E__E__E
44 : : --E-'E-'E--
1 ?? E'E-E-E
1 i 1
1 6 12 18 22
threads

Experiments run on a 48-core, “magny-cours’’ x86 AMD machine

Higher is better

=

Problem with multicore: scalability

* Many legacy applications don't scale well on multicore architectures
* Forinstance, Memcached (Get/Set requests):

Memcached/Get -.-g3--- Memcached/Set - -3--

~m, .]
o
o
©
()]
(b]
o
w .
...]
12 18 22
threads

Experiments run on a 48-core, “magny-cours’’ x86 AMD machine

Higher is better

Why?

* Bottleneck = critical sections, protected by locks

* High contention = lock acquisition is costly
— More cores = higher contention

100% =+-SPLASH-2/Radiosity
0 -#-SPLASH-2/Raytrace
S 80% —— ~
*g QJ —*Phoenix 2/LG
(7))
T 60% 7 / Phoenix 2/SM
= y / 7 /
2 20% s // // —*-Phoenix 2/MM
= —
§ // / // Memcac:e:;Get
20% . ~ Memcached/Set
o i 7 ;(/
£ ~ Berkeley DB/OS
55 0% - | I T : T | T
2 1 4 8§ 16 22 32 48 Berkeley DB/SL
Number of cores 4

* Including lock acquisition time

Why!

* Bottleneck = critical sections, protected by locks

* High contention = lock acquisition is costly
— More cores = higher contention

* Two possible solutions :

— Redesign applications (fine-grained locking)

- Costly (millions of lines of legacy code)

— Design better locks

Why?

* Bottleneck = critical sections, protected by locks

* High contention = lock acquisition is costly
— More cores = higher contention

* Two possible solutions :

— Redesign applications (fine-grained locking)

- Costly (millions of lines of legacy code)

— Design better locks

D

esigning better locks

* No need to redesign the application
e Better resistance to contention

¢ Custom microbenchmark to compare locks:

CAS spinlock = +

[Mellor-Crummey ASPLOS’91]

L ! ! L T R ! R

100 1,000 10,000 1e+05
€ Higher contention Delay Lower contention =

L L L L

1e+06

Critical sections access 5 cache lines each

1e+06

1e+05

| 10,000

1,000

Execution time (cycles)

Lower is better

Designing better locks

* No need to redesign the application
e Better resistance to contention

¢ Custom microbenchmark to compare locks:

CAS spinlock = +

[Mellor-Crummey ASPLOS’91]

MCS » xXﬁéxxﬁéx$ﬁex%aexx§e§*$@
z X

100 1,000 10,000 1e+05

L ! ! L T R ! R

1 1 |
1e+06
€ Higher contention Delay Lower contention =

L L L

Critical sections access 5 cache lines each

1e+06

1e+05

| 10,000

1,000

Execution time (cycles)

Lower is better

Qutline

Context: multicore architectures
State of the art: locks
Contribution: Remote Core Locking
Evaluation

Perspectives and conclusion

State of the art

Spinlocks
Blocking locks

Queue locks (MCS, CLH)
‘Mellor-Crummey ASPLOS'9 |, Craig TR'93, Hagersten IPPS'94]

-lat combining
‘Hendler SPAA’10]

Spinlocks

Spinlocks
— Busy-wait, trying to set a lock variable with an atomic instruction

— Contention when all threads try to set that variable concurrently!

function lock (boolean *lock)
while !compare and swap(lock, false, true) do

.
14

function unlock (boolean *lock)
*lock = false;

Spinlocks

Spinlocks
— Busy-wait, trying to set a lock variable with an atomic instruction

— Contention when all threads try to set that variable concurrently!

function lock (boolean *lock)

while !compare and swap(lock, false, true) do

.
4

function unlock (boolean *lock)
*lock = false;

Spinlocks

Spinlocks
— Busy-wait, trying to set a lock variable with an atomic instruction

— Contention when all threads try to set that variable concurrently!

function lock (boolean *lock)
while !compare and swap(lock, false, true) do

.
14

function unlock (boolean *lock)

*lock = false;

Time in ns

Spinlocks

Spinlocks

— Busy-wait, trying to set a lock variable with an atomic instruction

— Contention when all threads try to set that variable concurrently!

Cost of all threads concurrently writing to a single variable:

— Up to 125 times slower when all hardware threads used!

14,000
12,000

10,000

8,000

6,000

4,000

2,000

0

48

threads

« Store
“ CAS

|6

Blocking locks

Try to acquire lock; in case of failure, sleep

Does not waste CPU resources

Context switches needed between each acquisition:
not very reactive

function lock (boolean *lock)

while !compare and swap (lock, false, true)
yield();

function unlock (boolean *lock)
*lock = false;

do

Blocking locks

Try to acquire lock; in case of failure, sleep
Does not waste CPU resources

Context switches needed between each acquisition:
not very reactive

Very frequently used because works with only one core
— The"legacy” lock
— POSIX locks are blocking locks

Queue locks

Example: MCS [Mellor-Crummey ASPLOS9 1]

|dea: threads enqueue themselves in a list

— One synchronization variable per thread instead of global

tail

Queue locks

Example: MCS [Mellor-Crummey ASPLOS9 1]

|dea: threads enqueue themselves in a list

— One synchronization variable per thread instead of global

spin? next

lgnored |_——

Thread 1’s node

Atomic

tail

20

Queue locks

* Example: MCS [Mellor-Crummey ASPLOS9 1]

* |dea:threads enqueue themselves in a list

— One synchronization variable per thread instead of global

lgnored |_——

Thread 1’s node

Thread 1 executes

critical section \

tail

Queue locks

* Example: MCS [Mellor-Crummey ASPLOS9 1]

* |dea:threads enqueue themselves in a list

— One synchronization variable per thread instead of global

lgnored |_——

Thread 1’s node

Thread 1 executes
critical section

CTrue |_—

Thread 2’s node

Atomic

tail

22

Queue locks

* Example: MCS [Mellor-Crummey ASPLOS9 1]

* |dea:threads enqueue themselves in a list

— One synchronization variable per thread instead of global

CTrue |_—

Thread 1’s node Thread 2’s node

Thread 1 executes
critical section

Atomic

tail

Example: MCS [Mellor-Crummey ASPLOS'9]

|dea: threads enqueue themselves in a list

Queue locks

— One synchronization variable per thread instead of global

Thread 1’s node

Thread 1 executes
critical section

Thread 2’s node

Atomic

tail

spin?

True

Thread 3’s node

24

Queue locks

Example: MCS [Mellor-Crummey ASPLOS'9]

|dea: threads enqueue themselves in a list

— One synchronization variable per thread instead of global

Thread 1’s node

Thread 1 executes
critical section

Thread 2’s node

tail

Thread 3’s node

25

Queue locks

* Example: MCS [Mellor-Crummey ASPLOS9 1]

* |dea:threads enqueue themselves in a list

— One synchronization variable per thread instead of global

spin? next

Thread 2’s node

Thread 2 executes
critical section

tail

CTrue | _—

Thread 3’s node

26

Queue locks

Example: MCS [Mellor-Crummey ASPLOS9 1]

|dea: threads enqueue themselves in a list

— One synchronization variable per thread instead of global

spin?

| Fale | —

Thread 3’s node

Thread 3 executes
critical section

/

tail

27

Queue locks

Example: MCS [Mellor-Crummey ASPLOS9 1]

|dea: threads enqueue themselves in a list

— One synchronization variable per thread instead of global

tail

28

Flat Combining [Hendler SPAA’10]

* Threads enqueue critical sections (functions) In list

* Occasionally, a thread becomes a “combiner”

— Executes all pending critical sections

— Possibly merging critical sections with fast sequential algorithm

* Uses a global spinlock, need to clean up the list

__

— —

<« |

T1 waiting T2 waiting T3 waiting T4 waiting T5 waiting

$T1 $72

§T3 §T4

$ 15

29

Flat Combining [Hendler SPAA’10]

* Threads enqueue critical sections (functions) In list

* Occasionally, a thread becomes a “combiner”

— Executes all pending critical sections

— Possibly merging critical sections with fast sequential algorithm

* Uses a global spinlock, need to clean up the list

y I

__

— —

<« |

T1 waiting T2 waiting T3 waiting T4 waiting T5 waiting

$T1 $72

$ T4

T3 acquires the global lock

$ 15

30

Flat Combining [Hendler SPAA’10]

* Threads enqueue critical sections (functions) In list

* Occasionally, a thread becomes a “combiner”
— Executes all pending critical sections

— Possibly merging critical sections with fast sequential algorithm

* Uses a global spinlock, need to clean up the list

y I

T1 waiting T2 waiting T3 done T4 waiting T5 waiting

%Tl §T2 §T4 gTS

T3 executes its CS and the following ones

31

Flat Combining [Hendler SPAA’10]

* Threads enqueue critical sections (functions) In list

* Occasionally, a thread becomes a “combiner”

— Executes all pending critical sections

— Possibly merging critical sections with fast sequential algorithm

* Uses a global spinlock, need to clean up the list

T |

T1 waiting T2 done T3 done T4 waiting T5 waiting

$T1

$ T4

$ 15

T3 executes its CS and the following ones .

Flat Combining [Hendler SPAA’10]

* Threads enqueue critical sections (functions) In list

* Occasionally, a thread becomes a “combiner”
— Executes all pending critical sections

— Possibly merging critical sections with fast sequential algorithm

* Uses a global spinlock, need to clean up the list

i 1
———E—E-

T1 done T2 done T3 done T4 waiting T5 waiting
$ T4 $ 15

T3 executes its CS and the following ones 13

Flat Combining [Hendler SPAA’10]

* Threads enqueue critical sections (functions) In list

* Occasionally, a thread becomes a “combiner”
— Executes all pending critical sections

— Possibly merging critical sections with fast sequential algorithm

* Uses a global spinlock, need to clean up the list

oo

T4 waiting T5 waiting

$ T4 $ 15

34

Lock performance assessment

POSIX —s— MCS - -x-.
Spinlock —+— Flat Comb. —e—

CAS spinlock =» 4+t N A
MCS % X3 XA bR 26 X336 Ko oot g |]
Blocking locks »ee2"_ . | "xx z o
Flat Combining @[~ =~~~ "~ " " " " T " Neeet v @l
1 1 | 1 1 | 1 1 | 1 1 |
100 1,000 10,000 1e+05 1e+06
€ Higher contention Delay Lower contention =

1e+06

1e+05

10,000

1,000

»
Qo
S
&g
@
RS
= .0
S o
F=
30
o
P4
LLI
35

Qutline

Context: multicore architectures

State of the art: locks

Contribution: Remote Core Locking
Evaluation

Perspectives and conclusion

36

Contribution: Remote Core Locking

Objective: create the fastest possible lock algorithm under contention

37

Contribution: Remote Core Locking

Objective: create the fastest possible lock algorithm under contention
How?

38

Contribution: Remote Core Locking

Objective: create the fastest possible lock algorithm under contention

How?
TI T2 T3
CS| J
) _
-
= CS2
ICSS’
Y

39

Contribution: Remote Core Locking

Objective: create the fastest possible lock algorithm under contention
How?

TI T2 T3

CSI“ J- J

Time

(@)
%)
No
Transfers of lock ownership

40

Contribution: Remote Core Locking

Objective: create the fastest possible lock algorithm under contention
How?

TI T2 T3

CSI“ J- J

Time

(@)

%)

N
Transfers of lock ownership
Critical path = & + ©

N

Contribution: Remote Core Locking

Objective: create the fastest possible lock algorithm under contention

How? By shortening the critical path as much as possible

TI T2 T3

CSI“ J- J

Time

(@)

%)

N
Transfers of lock ownership
Critical path = & + ©

N
No

Contribution: Remote Core Locking

What makes the critical path longer
than needed?

43

Contribution: Remote Core Locking

What lengthens the critical path?

|) Long transfers of lock ownership
TI T2 T3

csl J o I

e T g !
v <« 3 - §
E| | e 1 ° &
- CS2 E: 3
..................................... T 95 E
_______________________ [|

1cs3 =
Y 44

Contribution: Remote Core Locking

What lengthens the critical path?

|) Long transfers of lock ownership
TI T2 T3

CSI“ J_ j

Ao T
Global spin (Spinlock),
context switch (Blocking lock),
CS2 remote thread wakeup (MCS),
NN EEEEEEEEEEEEEEEEEEEEEEE(gIObaI IOCk acq (Flat Comb),

nership

4

Time

Critical path

Contribution: Remote Core Locking

What lengthens the critical path?

2) Poor data locality in critical sections

Shared variable | -IJ-ICSI T2 T3
Shared variable 2 - _I_ J-
- CS2
| T 1
I
=
=
| - CS3
\ T+

46

Contribution: Remote Core Locking

What lengthens the critical path?

2) Poor data locality in critical sections

. Tl T2 T3
Shared variable |
Shared variable 2 } CS1 .I. J_
T CS2
ul-‘~-__--~~-- .. I
iatzeabeeesnaeeeteaneeteansoheee deeseeeeeseeeeeeeeseeeereee et eeee et reereee et e e eeeererereees
o T e 1
£ T
a B —
_L__._.;.;.................::lﬁ:::ﬁ:fﬁ::IIIIIIIZI
! -]___I_

Critical path

Contribution: Remote Core Locking

Solution: Remote Core Locking
Dedicate a core for executing critical sections

48

Contribution: Remote Core Locking

Solution: Remote Core Locking
Dedicate a core for executing critical sections

Tl T2 T3 Server core
Lo |- i

_____________ CS|

________________ CS2

________ CS3

-
— -
—
p— e
—
—
—

-
-
= =

Time
1

49

Contribution: Remote Core Locking

Solution: Remote Core Locking
Dedicate a core for executing critical sections

Tl T2 T3 Server core
. J: _______ i Shared variable |
il Pl Shared variable 2
_____ CS|
_______________ Cs2°
__________ CS37

-
—
[
—-— =
—
= ==
=

Time
]
1

= =
— —
= =

Contribution: Remote Core Locking

Solution: Remote Core Locking
Dedicate a core for executing critical sections

Tl T2 T3 Server core

. J: . Shared variable |
---_--C e, Shared variable 2

"""" CS| <

<

____________ CS2] a

""""""""" CS3] S

o T - B

£ T : 5

= . O

False serialization

* Problem: what to do when using several locks?
— False serialization, bad for performance
* [f too much contention: simply add more servers

— Not a problem, because RCL only targets contended locks
— Typically only a handful of them

Core 1 Core 2 Core 3 Core N Server core
Shared variables B cSlockA B cslockB

52

False serialization

* Problem: what to do when using several locks?
— False serialization, bad for performance

* [f too much contention: simply add more servers

— Not a problem, because RCL only targets contended locks
— Typically only a handful of them

Core 1 Core 2 Core 3 Core N Server core 1 Server core 2
Shared variables b cSlockA B cslockB

53

Implementation: general idea

e Communication based on cache line-sized mailboxes
* Three fields: lock, context, function

lock

context

function

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

A'ATA

Server loop

1
«
NULL
|

NULL

NULL

Hardware cache line size (L)

reqo
req1

req,

req,.

e (lient fills the field and waits for the function to be reset

* Server loops across the fields (fair)

54

Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”

lock context function
C NULL NULL NULL req 0
NULL NULL NULL req 1
Q —mme
O &lock4 NULL NULL req,
[--a- o
> v - ;
()] :
N ' !
C '
NULL NULL NULL req,

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)

55

Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”

lock context function
C NULL NULL NULL req 0
NULL NULL NULL req 1
o -
O &lock4 OxaOdc5f3a NULL req,
[--a- o
> ' N :
(¢D) 1 :
() 1 :
C '
NULL NULL NULL req,

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)

56

Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”

lock context function
C NULL NULL NULL req 0
NULL NULL NULL req,
o -
O &lock4 O0xa0dc5f3a &foo req,
[--a- o
> ' ¥ :
(¢D) 1 :
() 1 :
C '
NULL NULL NULL req.

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)

S5/

Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”

lock context function
C NULL NULL NULL req,
NULL NULL NULL req,
Q -
o)
oS slockd | Oxa0dc5f3a sfoo (O req,
o -t »
> -]
[- 1
(¢D) 1 :
n ' ,
C '
NULL NULL NULL req,

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)

58

Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

lock context function
C NULL NULL NULL req,
NULL NULL NULL req,
Q -
o)
Je! &lock4 | 0Oxa0dc5f3a sfoo (O req,
o -t »
> -]
[- 1
(¢D) 1 :
n ' ,
C '
NULL NULL NULL req,

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)

59

Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

lock context function
C NULL NULL NULL req,
NULL NULL NULL req,
Q -
o)
oS &lock4 | 0Oxa0dc5f3a sfoo (O req,
o) "ees .
> -]
[- 1
(¢D) 1 :
&) ' ,
C '
NULL NULL NULL req,

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)

60

Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

lock context function
C NULL NULL NULL req,
NULL NULL NULL req,
o
o)
oS &lock4 | 0Oxa0dc5f3a sfoo (O req,
o) "ees .
> -]
[- 1
(¢D) 1 :
&) ' ,
C '
NULL NULL NULL req,

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)

61

Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

lock context function
C NULL NULL NULL req,
NULL NULL NULL req,
Q
o
oS &lock4 | 0Oxa0dc5f3a sfoo (O req,
E 1
e : :
) ' !
w ' :
G i
NULL NULL NULL req,

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)

62

Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

lock context function
C NULL NULL NULL req 0
NULL NULL NULL req 1
o
3 slockd |0xa0dc5f3a &foo @
N Server executes critical section
> : ;
()] :
n : '
C NULL NULL NULL req,

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)

63

Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

lock context function
C NULL NULL NULL req 0
NULL NULL NULL req 1
o
3 &lock4 | 0xa0dc5f3a NULL @
- || Server executes critical section
o . o)
c . 1
()] :
o : '
C NULL NULL NULL req,

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)

64

Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

lock context function
C NULL NULL NULL req,
NULL NULL NULL req,
Q
O
ke &locks |oxao0dcsf3a nurt O req
E 1
> ! 1
— 1
) ' :
w ' .
Gl i
NULL NULL NULL req,

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)

65

Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

lock context function
C NULL NULL NULL req 0
NULL NULL NULL req 1
3
(@) &lock4 O0xaOdc5f£3 NULL . . e
< °° raeesroe Client resumes execution €9
> ! :
(0] 1 :
n : .
C NULL NULL NULL req,

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)

66

e Communication based on cache line-sized mailboxes
* Three fields: lock, context, function

Implementation: general idea

Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

Server loop

lock

context

function

NULL

NULL

NULL

«

NULL

NULL

NULL

&lock4

Oxa0dc5f3a

NULL

NULL

NULL

NULL

Hardware cache line size (L)

req,
req.
req

req,.

e (lient fills the field and waits for the function to be reset

* Server loops across the fields (fair)

6/

Implementation: general idea

e Communication based on cache line-sized mailboxes
* Three fields: lock, context, function

Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

Server loop

lock context function
NULL NULL NULL
NULL NULL NULL
&lock4 Oxa0dc5f3a NULL
NULL NULL NULL

reqo
req1

req

Total = 1 server cache miss
No atomic instruction

Hardware cache line size (L)

e (lient fills the field and waits for the function to be reset

* Server loops across the fields (fair)

68

RCL Performance

POSIX —a— MCS - -x-. RCL —e—
Spinlock —+— Flat Comb. —e—

CAS spinlock =

MCS = %.X36% X% 4 E

YRS 0 DU T O et W aae

...

=0

F-2€ 33636 3236 K ¢

Xeagsy

= = = = = = = = = = e

\ :

T A R |~ e

k x ‘5!%2- ==

1e+06

1e+05

" 10,000

100 1,000 10,000 1e+05 1e+06

€ Higher contention Delay Lower contention =

1,000

Execution time (cycles)

Lower is better

69

RCL Performance

POSIX —s— Flat Comb. —e— RCL —e—
Spinlock —+— CC-Synch --¢ --
MCS --x-. DSM-Synch ...

- Tes0B

CAS spinlock =

...

- 1e+05

|\/|Cs.)_,__5_._____é vy 3 Blockmg Iodks

Combining locks { &

RCL-);;;;;;;~- -------------- g

Execution time (cycles)
Lower is better

; o CC/DSM- Synch Improved Flat Combining,
100 1,000 without global lock or queue cleanup, developed
€ Higher contentior in parallel with RCL [Fatourou PPoPP’ 2]

Using RCL In legacy applications
Three components :

* RCL runtime
— Library that makes it possible to write RCL applications

* Profiler
— To find out which applications / locks can potentially benefit from RCL

* Reengineering
— To transform code for traditional locks into code that can use RCL

A

Using RCL In legacy applications

RCL Runtime:

* Handles blocking in critical sections (I/O, page faults...)
— Pool of servicing threads on server

— Able to service other (independent) critical sections when blocked

* Makes it possible to use condition variables (cond/wait)

— Used by ~50% of applications that use POSIX locks in Debian 6.0.3
— Not possible with combining locks

72

Using RCL In legacy applications

Profiler:
* Detects which applications / locks benefit from RCL

* Uses two metrics:
— % of time spent in critical sections (measures contention)
— Avg. # of cache misses in critical sections (measures data locality)

/3

Using RCL In legacy applications (2)

Reengineering:

* Ciritical sections must be encapsulated into functions
— Local variables sent as parameters (context)

74

Using RCL In legacy applications (2)

Reengineering:

void func(void) {
int a, b, x;

a = eee ;

pthread mutex lock();
a = f(a);

pthread mutex unlock();

struct context { int a, b };

void func(void) {
struct context c;
int x;

c.a = ..;

execute rcl(_cs, &c);

}

void _ cs(struct context *c) {
c->a = f(c->a)
f(c->b)

7

Using RCL In legacy applications (2)

Reengineering:
struct context { int a, b };
void func(void) ({ ———

int a, b, x; void func(void) {

struct context c;

] int x;

a = ..g [

c.a = ..;

pthread mutex lock();
A (a):

execute rcl(_cs, &c);

bV
pthread mutex unlock();

}

void _ cs(struct context *c) {
c->a = f(c->a)
} f(c->b)

Using RCL in

Reengineering:

legacy applications (2)

void func(void) {
int a, b, x;

struct context { int a, b };

P ————

void func(void) {
struct context c;

] int x;

c.a = ..;

execute rcl(_cs, &c);

}

void cs(struct context *c) {
S — c->a = f(c->a)

}

77

Using RCL in

Reengineering:

legacy applications (2)

void func(void) {
int a, b, x;

struct context { int a, b };

P ————

void func(void) {
struct context c;
] int x;

c.a = ..;

execute rcl(_cs, &c);

}

void cs(struct context *c) {
S — c->a = f(c->a)

}

7O

Using RCL In legacy applications (2)

Reengineering:

* Ciritical sections must be encapsulated into functions
— Local variables sent as parameters (context)

* Tool to reengineer applications automatically
— Possible to pick which locks use RCL

— To avoid false serialization:
possible to pick which server(s) handle which lock(s).

79

Qutline

Context: multicore architectures
State of the art: locks
Contribution: Remote Core Locking

Evaluation in legacy applications

— Methodology

— Main results

— Scalability

— More software threads than hardware threads

Perspectives and conclusion

80

Methodology

* FEvaluation on two different machines
— Different architectures and OSes

* Different application types

— Parallel computing
* Scientific computations (SPLASH-2), MapReduce (Phoenix 2)

— Server applications (Memcached, Berkeley DB)

* Different configurations
— One software thread per hardware thread
— More software threads than hardware threads (Berkeley DB)

e

d

SIX Cores per

48 hardware threads

1
2

Magnycours-48

terconnect graph

ST
W

82

X
N
OOQ
.om.o.»\“oi

Hardware thread #

16

)
.ﬂ

iy
AN

Y

Hardware thread #

(se)10A2) Aousie

Ll =

i

N

0 o

00

O O

0 O

— No hardware multithreading
X

— Asymmetrical access times

Four Opteron 6172, two dies per CPU

Non-complete

1/0

1/0

0 o
0 0

o0

00

0 o
0 0

1/0

Niagara2- 128

* Two UltraSPARC-T2+ CPUs, each with 8 cores
* Simultaneous hyperthreading: 8 hardware threads per core (!)

— 128 hardware threads
* Less representative of current multicore machines 1gara2-128

Latency (cycles)

128

Hardware thread #

300

200

100

0

83

Differences

speed

Magnycours-48 has much faster sequential

Niagara2-128 has faster communication speed / sequential speed

* On SPLASH-2, parallel scientific applications:

Niagara2-128

Magnycours-48

18))8q SI 18MOT

<
-

1 1
Al o [eo] © < A
— —

(s) swny uonnoax3

speaiy} 8z

18))8q SI 18MO7T

o

30

1 1 1 1
To] o n o n
(qV] (V] ~— -
(s) swn uonnoax3

uolnoaxa |enuanbag

o

4
00)

Water-spatial
Water-nsquared
Volrend

Ocean Non-Cont.
Ocean Contiguous
FMM

Barnes
Raytrace/Car
Raytrace/Balls4

Radiosity

Water-spatial
Water-nsquared
Volrend

Ocean Non-Cont.
Ocean Contiguous
FMM

Barnes
Raytrace/Car
Raytrace/Balls4

Radiosity

Differences

speed

Magnycours-48 has much faster sequential

Niagara2-128 has faster communication speed / sequential speed

* On SPLASH-2, parallel scientific applications:

Niagara2-128

Magnycours-48

18)]8q SI 18MOT

<
-

1 1
Al o [eo] © < A o
— —

(s) swny uonnoax3

speaiy} 8z

18))8q SI 18MO7T

o
[sp]

|
o Yol o
—

]]]
0 o 0
Al Al —

(s) swn uonnoax3

uolnoaxa |enuanbag

LN
00

Water-spatial
Water-nsquared
Volrend

Ocean Non-Cont.
Ocean Contiguous
FMM

Barnes
Raytrace/Car
Raytrace/Balls4

Radiosity

Water-spatial
Water-nsquared
Volrend

Ocean Non-Cont.
Ocean Contiguous
FMM

Barnes
Raytrace/Car
Raytrace/Balls4

Radiosity

Differences

speed

Magnycours-48 has much faster sequential

Niagara2-128 has faster communication speed / sequential speed

* On SPLASH-2, parallel scientific applications:

18)]8q SI 18MOT

Niagara2-128

<
-

1 1
Al o [eo] © < A o
— —

(s) swny uonnoax3

speaiy} 8z

18))8q SI 18MO7T

Magnycours-48

o
[sp]

1 1 1 1
To] o n o n o
(qV] (V] ~— -
(s) swn uonnoax3

uolnoaxa |enuanbag

Water-spatial

Water-nsquared
Volrend

Ocean Non-Cont.
Ocean Contiguous
FMM

Barnes

Raytrace/Car

Raytrace/Balls4

Radiosity

Water-spatial
Water-nsquared
Volrend

Ocean Non-Cont.
Ocean Contiguous
FMM

Barnes
Raytrace/Car
Raytrace/Balls4

Radiosity

Qutline

Context: multicore architectures
State of the art: locks
Contribution: Remote Core Locking

Evaluation in legacy applications

— Methodology
— Main results

— Scalability
— More software threads than hardware threads

Perspectives and conclusion

87/

Main results

Profiling:
* Custom profiler to find good candidates
* Metric: time spent in critical sections

* Running the profiler on the microbenchmark shows that:

— Iftime spent in CS > |5%, RCL is more efficient than POSIX locks
— If time spent in CS > 60%, RCL is more efficient than all other locks

Collapse of MCS (60,000 cycles): 60%

% of time in CS

40 1 N i
20 M...C.ol.l.apse..of..I?QSIX.?.(.1.Q5.,O.OQ..cyc_l.e.s.).:..j.s.‘g’/q .. i
0 |
100 1000 10000 100000 1e+06

Delay (cycles)

% of time in CS

100
80

50 Collapse of MCS (60,000 cycles): 60% |

40 Lo —)] I -
20 | Collapse of POSIX (105,000 cycles): 15% | .\ | I _—

: | NN

100 1000 10000 100000 1e+06
Delay (cycles) 89

Main results

* Better performance when time in CS > 60%
— Performance improvement correlated with time in CS

* Only one or two locks replaced each time

POSIX MCS CC-Synch RCL mm
Spinlock Flat Combining DSM-Synch
sl T S T E——]
8 25
%
<2
@) 2 L
o . . .
D
oy 5 5 S a4 W O NAZE $ aNZAZE . NN
g o N
- : \é
S 1 W NGO AN i o B INCE o ANGAE AN
& N
8 o5 FNA-:: RN B SNNAZE W N7
B By
o LENESSSH RIS @SS LIINZ% | NV
Memcached: String Raytrace: Memcached: Linear Radiosity =~ Raytrace: Matrix

Set Match Balls4 Get Regression Car Multiply
% in CS: 44.7% 63.9% 65.7% 79.0% 81.6% 87.7% 90.2% 92.2%90
(many DCMs)

Higher is better

Best perf. / best POSIX perf.

Main results

* Better performance when time in CS > 60%
— Performance improvement correlated with time in CS

* Only one or two locks replaced each time

POSIX MCS CC-Synch
Spinlock Flat Combining DSM-Synch

AN

'DOeS'nOtTUn"'”"””""”

INZ%
\/%4/

String Raytrace: Mmcached: Linear adiosity
Set Match Balls4 Get Regression

% in CS: 44.7% 63.9% 65.7% 79.0% 81.6% 87.7%
(many DCMs)

Does not run
Does not run

LSS
NN NN NN N

AN VZ 94

Raytrace:

Car
90.2%

Multiply
92.2%

9l

Higher is better

Main results

* Better performance when time in CS > 60%
— Performance improvement correlated with time in CS

* Only one or two locks replaced each time

POSIX MCS CC-Synch

Spinlock Flat Combining DSM-Synch

2.5

Best perf. / best POSIX perf.

15 NN E— v ..
1 o NG NG : s/ i
Ny
N4 5ss HEE
0.5 .g.g.g. . .g‘g% .
“HHE
o LENEssS @SS LIINZ% |
Memcached: String Raytrace: Memcached: Linear Radiosity
Set Match Balls4 Get Regression

% in CS: 44.7% 63.9% 65.7% 79.0% 81.6% 87.7%
(many DCMs)

Higher is better

Car Multipl

90.2% 92.2%

92

% of time in CS

Main results I

On Niagara2-128: profiler thresholds = 5% / 85%

100
80
60
40 E E : : :
20 M..C.o.l_l.apse..of..I?QESIX_..(.24.0.,0.0..0..cycie_s).:..1._5.°/.o. i
100 1000 10000 100000 1e+06 1e+07

Delay (cycles)

93

Main results S Nagaraz 138

* On Niagara2-128, no bench > 85%

— Faster communication / sequential speed, less issues with contention

* Still some performance gains when time in CS > 5%

1.25

Best perf. / best POSIX perf.

0.75

% in CS:

POSIX MCS CC-Synch RCL

Spinlock Flat Combining DSM-Synch

Memcached: Set

20.2% : 69.2%
(many DCMs)

Higher is better

Main results S Nagaraz 138

* On Niagara2-128, no bench > 85%

— Faster communication / sequential speed, less issues with contention

 Still some performance gains when time in CS > |5%

POSIX meee MCS CC-Synch RCL
Spinlock Flat Combining DSM-Synch

1.25

Higher is better

% in CS: : 69.2%
(many DCMs)

Main results S Nagaraz 138

* On Niagara2-128, no bench > 85%

— Faster communication / sequential speed, less issues with contention

 Still some performance gains when time in CS > |5%

POSIX meee MCS CC-Synch RCL
Spinlock Flat Combining DSM-Synch

é 1.25
> | 3
@) % N ..CT).
o o
= N N\% % Q
P N :
; . k/\?/ ... 8
2 §7\// S
7 \/ N //
8 N _

0.75 \ \4\\ //

emcached: Se adiosi emcache e c
M hed: Set Radiosity M hed: Get
% in CS: 20.2% 38.7% 69.2% 79.1%

(many DCMs)

Qutline

Context: multicore architectures
State of the art: locks
Contribution: Remote Core Locking

Evaluation in legacy applications

— Methodology

— Main results

— Scalability

— More software threads than hardware threads

Perspectives and conclusion

97

Scalability of RCL

* RCL not only improves performance, it also improves scalability

* Example: Memcached with Set requests
— On Magnycours-48 and Niagara2-128

e Memcached uses condition variables
— No results for combining locks

98

Speedup

Scalability of RCL

* Memcached, Set requests:

POSIX —5— Spinlock —+— MCS - -<-- RCL —e—

threads

Higher is better

Speedup

Scalability of RCL
« Memcached, Set requests:

POSIX —5— Spinlock —+— MCS - -x<-- RCL —e—
o
2
D
Q
L2
p
)
<
D
I
1 8 16 24 32 40 48 56 62

threads
100

Qutline

Context: multicore architectures
State of the art: locks
Contribution: Remote Core Locking

Evaluation in legacy applications

— Methodology
— Main results
— Scalability

— More software threads than hardware threads

Perspectives and conclusion

101

More sw threads than hw threads

* Many locks perform poorly when many software threads
— Some spinning threads get woken up
— Possible interference with scheduling: convoy effect (very slow)

* RCL dedicates a core: it always makes progress on the critical path

102

More SWV threads than HW threads

* Berkeley DB / TPC-C, Stock Level requests:

Original —o— Spinlock —— MCS-TP ... CC-Synch - -¢--
POSIX —3— MCS --x-- Flat Combining —e— DSM-Synch ...-5p---.-
RCL —e—
2,500
ge. ! ;
S 2,000 | ,.;,,....'.'.'. - e . 9
(&) ¥ H : : :
@ } : : :
2 ; - | | |
@ 1500 LV o B S e] i
n 3 B 5 : : :
) H : : :
>
8
S 1,000 HE sk i
**
‘®©
O
(—g 500 N\ O M e O .
100 L T i 1 e —
384

Higher is better

clients 103

More SWV threads than HW threads

* Berkeley DB / TPC-C, Stock Level requests:

Original —o— Spinlock —+— MCS-TP3g---- CC-Synch --¢--
POSIX —3— MCS --x-- Flat Combining —e— DSM-Synch ...z
RCL —e—
2,500 .
: : ——
© 5 5 5 —
S 2,000 |- A R A i S h
§ 2% [\ €—Quick collapse | .
2 1,500 e 1 B
g S
> 1 : : . (L)
3 i : : : '
= 1,000 g) ‘| R PP P _ _GQJ
hia Y. | | S
g W | T
o 500 .. ___.,“.(.‘..‘_‘_ ________ e i S _
N . .
100 \ ‘g\ 1 1 1
1 48 96 128 256 384

clients 104

More SWV threads than HW threads

* Berkeley DB / TPC-C, Stock Level requests:

Original —o— Spinlock —+— MCS-TP3g---- CC-Synch --¢--
POSIX —3— MCS --x-- Flat Combining —e— DSM-Synch ...z
2,500 Ret
o : : ;
S 2,000 - ,.i__f_ff__‘ ____________________ S e . 9
§ 2 ‘.‘ <€— Quick collapse ? .
- H : : ()
2 1,500 ‘| .. 1 B
) H Q
=) 1 : : : %)
3 H é é 5 o
:h 1,000 - S ‘| R PP P _ _GQJ
= & *‘{“‘Q : : 5 %
Q "% : : :
o 1 : 5 5
o 500 ... g .x‘_*_,.%_.;* _____ e S _
. % \ . --.* *
100 - | * S N
1 48 96 128 256 384

clients 105

More SWV threads than HW threads

\NId& d C O
O

* Berkeley DB / TPC-C, Stock Level requests:

Original —o— Spinlock —— MCS-TP ... CC-Synch - -¢--
POSIX —5— MCS --x-- Flat Combining —e— DSM-Synch .-.-xz.-.-
RCL —e—

2,500 !
2,000

1,500

1,000

500

Global # requests / second

1 48 96 128 256 384

Higher is better

clients 106

Yielding the processor

Was that a fair comparison?

107

Yielding the processor

Was that a fair comparison?

* What if locks yield the CPU instead of spinning?

* Less reactive, but threads no longer woken up just to spin?

* Added calls to yield() in MCS, MCS-TR Combining Locks
— ...and RCL clients

108

Yielding the processor

* Berkeley DB / TPC-C, Stock Level requests, yield():

Original Spinlock MCS-TP ... CC-Synch --¢--
POSIX MCS --x-- Flat Combining —e— DSM-Synch .-.-5z.----
RCL —e—
2,500
e
2 ' — —
§ 2,000 .": .',‘.‘; |
5 ' o 0———0 = o 5
L 1500 W O—d~ wo e e =
2 ' 3
> : RO)
E’- 1.000 1. T N IS
% | 1&"""&:\ S
g TR = Ty DO I
(—5 500 1 2t -_._._$
100 i
256 384

clients 109

Yielding the processor

* Berkeley DB / TPC-C, Stock Level requests, yield():

Original Spinlock MCS-TP3g---- CC-Synch --¢--
POSIX MCS --x-- Flat Combining —e— DSM-Synch .-..57----
RCL —e—

2,000

1,500

1,000

Higher is better

500

Global # requests / second

1004

clients 110

Qutline

Context: multicore architectures
State of the art: locks

Contribution: Remote Core Locking
Evaluation in legacy applications

Perspectives and conclusion

Perspectives

* Modified RCL implementations
— Dynamic RCL runtime
— Hierarchical RCL
— RCL for embedded architectures

* HTMs: supported by Haswell
— What can RCL do for transactional memories?
— Hassan et al. [IPDPS "[4] propose a STM algorithm...

e . ..that runs commit and invalidation on dedicated remote server threads

* ...with cache-alighed communication
* ...and uses RCL for locks

112

Perspectives

 Non-cache-coherent architectures

— Could RCL provide performance improvements
on non-cache-coherent architectures?

— Petrovi€ et al. [PPoPP '14] propose an algorithm inspired by RCL
for partially cache-coherent architectures

— Major performance improvements on TILE-Gx CPUs.

113

Conclusion

RCL reduces lock acquisition time and improves data locality
— Cost: uses a few cores and may perform worse with few threads

Profiler to detect when RCL can be useful
Tool to ease the transformation of legacy code

Future work:

— Modified RCL implementations

— Applying ideas from RCL to HTMs and NCC architectures
— Started by others

| 14

