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Context: multicore architectures	

•  Decades of increasing CPU clock speeds	

•  Since early 2000’s, problems with power consumption/dissipation 	

•  Increasing numbers of cores to keep increasing processing power	


–  Possible because number of transistors keeps increasing	
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Problem with multicore: scalability	

•  Many legacy applications don’t scale well on multicore architectures	

•  For instance, Memcached (Get/Set requests):	
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Experiments run on a 48-core, “magny-cours” x86 AMD machine	
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Problem with multicore: scalability	

•  Many legacy applications don’t scale well on multicore architectures	

•  For instance, Memcached (Get/Set requests):	
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•  Bottleneck = critical sections, protected by locks	

•  High contention ⇒ lock acquisition is costly	


–  More cores ⇒ higher contention	
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•  Bottleneck = critical sections, protected by locks	

•  High contention ⇒ lock acquisition is costly	


–  More cores ⇒ higher contention	


•  Two possible solutions : 	

–  Redesign applications (fine-grained locking)	


–  Costly (millions of lines of legacy code)	


–  Design better locks	


Why?	
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•  No need to redesign the application	

•  Better resistance to contention	

•  Custom microbenchmark to compare locks:	


	

 	


Designing better locks	
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•  No need to redesign the application	

•  Better resistance to contention	

•  Custom microbenchmark to compare locks:	
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Designing better locks	


ç Higher contention" Lower contention è"

MCS è"

CAS spinlock è"

Critical sections access 5 cache lines each"

Lo
w

er
 is

 b
et

te
r!

10	


[Mellor-Crummey ASPLOS’91] 	  



Outline	


•  Context: multicore architectures	

•  State of the art: locks!
•  Contribution: Remote Core Locking	

•  Evaluation	

•  Perspectives and conclusion	


11	




State of the art	

•  Spinlocks	

•  Blocking locks	

•  Queue locks (MCS, CLH) ���

[Mellor-Crummey ASPLOS’91, Craig TR’93, Hagersten IPPS’94]	


•  Flat combining ���
[Hendler SPAA’10]	
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•  Spinlocks	

–  Busy-wait, trying to set a lock variable with an atomic instruction	

–  Contention when all threads try to set that variable concurrently!	


Spinlocks	


function lock(boolean *lock) 
 while !compare_and_swap(lock, false, true) do  
  ; 

 
 
function unlock(boolean *lock)  

 *lock = false;  
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•  Cost of all threads concurrently writing to a single variable:	

–  Up to 125 times slower when all hardware threads used!	


•  Spinlocks	

–  Busy-wait, trying to set a lock variable with an atomic instruction	

–  Contention when all threads try to set that variable concurrently!	
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•  Try to acquire lock; in case of failure, sleep	

•  Does not waste CPU resources	

•  Context switches needed between each acquisition:���

not very reactive	


Blocking locks	


function lock(boolean *lock) 
 while !compare_and_swap(lock, false, true) do  
  yield(); 

 
 
function unlock(boolean *lock)  

 *lock = false;  
 

17	




•  Try to acquire lock; in case of failure, sleep	

•  Does not waste CPU resources	

•  Context switches needed between each acquisition:���

not very reactive	


•  Very frequently used because works with only one core	

–  The “legacy” lock	

–  POSIX locks are blocking locks	


Blocking locks	
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Queue locks	

•  Example: MCS [Mellor-Crummey ASPLOS’91]	


•  Idea: threads enqueue themselves in a list	

–  One synchronization variable per thread instead of global	


tail	  
19	




Queue locks	

•  Example: MCS [Mellor-Crummey ASPLOS’91]	


•  Idea: threads enqueue themselves in a list	

–  One synchronization variable per thread instead of global	
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Thread	  1’s	  node	  

Ignored	  
next	  spin?	  
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Queue locks	

•  Example: MCS [Mellor-Crummey ASPLOS’91]	
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Thread	  2’s	  node	  

True	  
next	  spin?	  
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Thread	  3’s	  node	  
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Queue locks	

•  Example: MCS [Mellor-Crummey ASPLOS’91]	


•  Idea: threads enqueue themselves in a list	

–  One synchronization variable per thread instead of global	


tail	  

Thread 1 executes"
critical section"

Thread	  1’s	  node	  

Ignored	  
next	  spin?	  

Atomic"
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Queue locks	

•  Example: MCS [Mellor-Crummey ASPLOS’91]	


•  Idea: threads enqueue themselves in a list	

–  One synchronization variable per thread instead of global	
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Thread	  3’s	  node	  

True	  
next	  spin?	  

Thread	  2’s	  node	  

True	  
next	  spin?	  

Queue locks	

•  Example: MCS [Mellor-Crummey ASPLOS’91]	


•  Idea: threads enqueue themselves in a list	

–  One synchronization variable per thread instead of global	


tail	  

False	  

Thread 2 executes"
critical section"
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Thread	  3’s	  node	  

True	  
next	  spin?	  

Queue locks	

•  Example: MCS [Mellor-Crummey ASPLOS’91]	


•  Idea: threads enqueue themselves in a list	

–  One synchronization variable per thread instead of global	


tail	  

False	  

Thread 3 executes"
critical section"
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Queue locks	

•  Example: MCS [Mellor-Crummey ASPLOS’91]	


•  Idea: threads enqueue themselves in a list	

–  One synchronization variable per thread instead of global	


tail	  
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T3	  waiRng	  

Flat Combining	

•  Threads enqueue critical sections (functions) in list	

•  Occasionally, a thread becomes a “combiner”	


–  Executes all pending critical sections	

–  Possibly merging critical sections with fast sequential algorithm	


•  Uses a global spinlock, need to clean up the list	


T4n	   T5n	  T3n	  T2n	  T1n	  

T1	  waiRng	   T2	  waiRng	   T4	  waiRng	   T5	  waiRng	  

[Hendler SPAA’10]	

	  

	  T3	  	  	  T2	  	  	  T1	  	   	  T4	  	   	  T5	  	  
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T3	  waiRng	  

Flat Combining	

•  Threads enqueue critical sections (functions) in list	

•  Occasionally, a thread becomes a “combiner”	


–  Executes all pending critical sections	

–  Possibly merging critical sections with fast sequential algorithm	


•  Uses a global spinlock, need to clean up the list	


T4n	   T5n	  T3n	  T2n	  T1n	  

T1	  waiRng	   T2	  waiRng	   T4	  waiRng	   T5	  waiRng	  

T3	  acquires	  the	  global	  lock	  

[Hendler SPAA’10]	
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	  T3	  	  
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Flat Combining	

•  Threads enqueue critical sections (functions) in list	
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–  Executes all pending critical sections	
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	  T1	  	   	  T4	  	   	  T5	  	  

	  T3	  	  

32	




T3	  waiRng	  

Flat Combining	

•  Threads enqueue critical sections (functions) in list	

•  Occasionally, a thread becomes a “combiner”	


–  Executes all pending critical sections	

–  Possibly merging critical sections with fast sequential algorithm	


•  Uses a global spinlock, need to clean up the list	
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[Hendler SPAA’10]	
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Flat Combining	

•  Threads enqueue critical sections (functions) in list	

•  Occasionally, a thread becomes a “combiner”	


–  Executes all pending critical sections	

–  Possibly merging critical sections with fast sequential algorithm	


•  Uses a global spinlock, need to clean up the list	


T4n	   T5n	  

T4	  waiRng	   T5	  waiRng	  

[Hendler SPAA’10]	
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34	




Lock performance assessment	
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Outline	


•  Context: multicore architectures	

•  State of the art: locks	

•  Contribution: Remote Core Locking !
•  Evaluation	

•  Perspectives and conclusion	
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Objective: create the fastest possible lock algorithm under contention	

	

	


Contribution: Remote Core Locking	
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How?	
 By shortening the critical path as much as possible	
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Contribution: Remote Core Locking	
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What makes the critical path longer	

than needed?	




Contribution: Remote Core Locking	
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What lengthens the critical path?	

"1) Long transfers of lock ownership!
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Contribution: Remote Core Locking	
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Global spin (Spinlock),"
context switch (Blocking lock),"
remote thread wakeup (MCS), 
global lock acq. (Flat Comb.), 

…"

What lengthens the critical path?	

"1) Long transfers of lock ownership!
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What lengthens the critical path?	

	
2) Poor data locality in critical sections!

Contribution: Remote Core Locking	
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Solution: Remote Core Locking	

Dedicate a core for executing critical sections !
	


Contribution: Remote Core Locking	
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•  Problem: what to do when using several locks?	

–  False serialization, bad for performance	


•  If too much contention: simply add more servers	

–  Not a problem, because RCL only targets contended locks	

–  Typically only a handful of them	


False serialization	


…	
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•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	


	


•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	


Implementation: general idea	
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•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	
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&lock4!

Implementation: general idea	


Client thread 2 wants to execute a critical section protected by “lock4”!

cache	  
miss	  
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•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	


	


•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	


&foo!&lock4! 0xa0dc5f3a!
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Server continuously checks mailboxes and executes critical sections!
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•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	


	


•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	


&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	


Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

NULL! Server executes critical section"cache	  
miss	  

cache	  
miss	  
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•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	


	


•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	


&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	


Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

NULL!cache	  
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•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	


	


•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	


&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	


Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

NULL! Client resumes execution"cache	  
miss	  

cache	  
miss	  

cache	  
miss	  
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•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	


	


•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	


&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	


Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

NULL!cache	  
miss	  

cache	  
miss	  

cache	  
miss	  
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•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	


	


•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	


&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	


Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

NULL!cache	  
miss	  

cache	  
miss	  

cache	  
miss	  

Total = 1 server cache miss!
No atomic instruction!
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RCL Performance	
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RCL Performance	
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Using RCL in legacy applications	


Three components : !
	

•  RCL runtime	


–  Library that makes it possible to write RCL applications	

	

•  Profiler	


–  To find out which applications / locks can potentially benefit from RCL	


•  Reengineering	

–  To transform code for traditional locks into code that can use RCL	
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Using RCL in legacy applications	


RCL Runtime: !
	

•  Handles blocking in critical sections (I/O, page faults…)	


–  Pool of servicing threads on server	

–  Able to service other (independent) critical sections when blocked	


	

•  Makes it possible to use condition variables (cond/wait)	


–  Used by ~50% of applications that use POSIX locks in Debian 6.0.3	

–  Not possible with combining locks	
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Using RCL in legacy applications	


Profiler: !
	

•  Detects which applications / locks benefit from RCL	


•  Uses two metrics: 	

–  % of time spent in critical sections (measures contention)	

–  Avg. # of cache misses in critical sections (measures data locality)	


!
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Reengineering: 
	


•  Critical sections must be encapsulated into functions	

–  Local variables sent as parameters (context)	


Using RCL in legacy applications (2)	
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Reengineering: 
	


•  Critical sections must be encapsulated into functions	

–  Local variables sent as parameters (context)	


Using RCL in legacy applications (2)	


void func(void) {!
  int a, b, x;!
  …!
  a = …;!
  …!
  pthread_mutex_lock();!
  a = f(a);!
  f(b);!
  pthread_mutex_unlock();!
  …!
}!

struct context { int a, b };!
!
void func(void) {!

!struct context c;!
!int x;!
!…!
!c.a = …;!
!…!
!execute_rcl(__cs, &c);!
!…!

}!
!
void __cs(struct context *c) {!

!c->a = f(c->a)!
!f(c->b)!

}!
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Reengineering: 
	


•  Critical sections must be encapsulated into functions	

–  Local variables sent as parameters (context)	


Using RCL in legacy applications (2)	


void func(void) {!
  int a, b, x;!
  …!
  a = …;!
  …!
  pthread_mutex_lock();!
  a = f(a);!
  f(b);!
  pthread_mutex_unlock();!
  …!
}!

struct context { int a, b };!
!
void func(void) {!

!struct context c;!
!int x;!
!…!
!c.a = …;!
!…!
!execute_rcl(__cs, &c);!
!…!

}!
!
void __cs(struct context *c) {!

!c->a = f(c->a)!
!f(c->b)!

}!
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Reengineering: 
	


•  Critical sections must be encapsulated into functions	

–  Local variables sent as parameters (context)	


Using RCL in legacy applications (2)	


void func(void) {!
  int a, b, x;!
  …!
  a = …;!
  …!
  pthread_mutex_lock();!
  a = f(a);!
  f(b);!
  pthread_mutex_unlock();!
  …!
}!

struct context { int a, b };!
!
void func(void) {!

!struct context c;!
!int x;!
!…!
!c.a = …;!
!…!
!execute_rcl(__cs, &c);!
!…!

}!
!
void __cs(struct context *c) {!

!c->a = f(c->a)!
!f(c->b)!

}!
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Reengineering: 
	


•  Critical sections must be encapsulated into functions	

–  Local variables sent as parameters (context)	


Using RCL in legacy applications (2)	


void func(void) {!
  int a, b, x;!
  …!
  a = …;!
  …!
  pthread_mutex_lock();!
  a = f(a);!
  f(b);!
  pthread_mutex_unlock();!
  …!
}!

struct context { int a, b };!
!
void func(void) {!

!struct context c;!
!int x;!
!…!
!c.a = …;!
!…!
!execute_rcl(__cs, &c);!
!…!

}!
!
void __cs(struct context *c) {!

!c->a = f(c->a)!
!f(c->b)!

}!
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Reengineering: 
	


•  Critical sections must be encapsulated into functions	

–  Local variables sent as parameters (context)	


 
	


 	


	

•  Tool to reengineer applications automatically	


–  Possible to pick which locks use RCL	

–  To avoid false serialization:���

possible to pick which server(s) handle which lock(s).	


Using RCL in legacy applications (2)	




Outline	


•  Context: multicore architectures	

•  State of the art: locks	

•  Contribution: Remote Core Locking	

•  Evaluation in legacy applications!

–  Methodology!
–  Main results	

–  Scalability	

–  More software threads than hardware threads	


•  Perspectives and conclusion	
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Methodology	

•  Evaluation on two different machines	


–  Different architectures and OSes	


•  Different application types	

–  Parallel computing	


•  Scientific computations (SPLASH-2), MapReduce (Phoenix 2)	

–  Server applications (Memcached, Berkeley DB)	


•  Different configurations	

–  One software thread per hardware thread	

–  More software threads than hardware threads (Berkeley DB)	
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Magnycours-48	

•  Four Opteron 6172, two dies per CPU, six cores per die	


–  No hardware multithreading: 48 hardware threads	


•  Non-complete interconnect graph	

–  Asymmetrical access times	
 Magnycours-‐48	  
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Niagara2-128	

•  Two UltraSPARC-T2+ CPUs, each with 8 cores	

•  Simultaneous hyperthreading: 8 hardware threads per core (!)	


–  128 hardware threads	


•  Less representative of current multicore machines	
 Niagara2-‐128	  
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Differences	

•  Magnycours-48 has much faster sequential speed	

•  Niagara2-128 has faster communication speed / sequential speed	

•  On SPLASH-2, parallel scientific applications:	
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Differences	

•  Magnycours-48 has much faster sequential speed	

•  Niagara2-128 has faster communication speed / sequential speed	

•  On SPLASH-2, parallel scientific applications:	
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Differences	

•  Magnycours-48 has much faster sequential speed	

•  Niagara2-128 has faster communication speed / sequential speed	

•  On SPLASH-2, parallel scientific applications:	
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Outline	


•  Context: multicore architectures	

•  State of the art: locks	

•  Contribution: Remote Core Locking	

•  Evaluation in legacy applications!

–  Methodology	

–  Main results!
–  Scalability	

–  More software threads than hardware threads	


•  Perspectives and conclusion	
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Profiling: !
•  Custom profiler to find good candidates	

•  Metric: time spent in critical sections	

•  Running the profiler on the microbenchmark shows that:	


–  If time spent in CS > 15%, RCL is more efficient than POSIX locks	

–  If time spent in CS > 60%, RCL is more efficient than all other locks	

	

	


Main results	
 Magnycours-‐48	  
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•  Better performance when time in CS > 60%	

–  Performance improvement correlated with time in CS	


•  Only one or two locks replaced each time	
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Main results	
 Niagara2-‐128	  

	

•  On Niagara2-128: profiler thresholds = 15% / 85%	
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Outline	


•  Context: multicore architectures	

•  State of the art: locks	

•  Contribution: Remote Core Locking	

•  Evaluation in legacy applications!

–  Methodology	

–  Main results	

–  Scalability!
–  More software threads than hardware threads	


•  Perspectives and conclusion	
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•  RCL not only improves performance, it also improves scalability	


•  Example: Memcached with Set requests	

–  On Magnycours-48 and Niagara2-128	


•  Memcached uses condition variables	

–  No results for combining locks	


when benchmarking other types of locks. The remaining 47
cores each run a client, i.e., a thread that executes critical
sections. Each client waits for a given delay between the
end of one critical section and the beginning of the next
one: the shorter the delay, the higher the contention. For
each delay value, 1000 critical sections are executed. In
each critical section, a client references and updates a given
number of shared cache lines by incrementing the values in
shared memory locations. These locations are scattered across
memory in such a way that two such locations are never
mapped to the same cache line: thus, to access n shared cache
lines, the microbenchmark simply accesses n shared memory
locations. In order to ensure that cache line accesses are
not pipelined, we construct the address of the next memory
location that is accessed using the value read from the current
memory location [32].

The results for critical section execution time are shown
in Figure 7(a). Under high contention (the left side of the
graph), RCL is always faster than all the other considered
types of locks. Flat combining is the best after RCL, but is
still 2.5 times slower. MCS is slower than flat combining.
Due to the fact that each critical section is executed locally,
its performance decreases significantly when 5 cache lines
are accessed. The traditional spinlock is the slowest of all
locks under high contention, due to the overhead of cache
coherency messages when all threads spin on a compare-and-
swap instruction. Finally, POSIX locks are as efficient as
MCS locks under very high contention, but their execution
time increases as contention decreases.

When contention is low (the right side of Figure 7(a)) and
the critical section only accesses one cache line, spinlocks,
MCS locks and RCL have similar performance. Spinlocks
are best with a critical section execution time of 1350 cycles;
RCL is the next best and is only 13% slower. However,
when critical sections access 5 cache lines, the execution
time of both traditional spinlocks and MCS locks increases
significantly, whereas that of RCL remains stable. This is due
to the fact that all critical sections are executed on the same
core, thus improving cache locality. The execution time of flat
combining also remains stable when the number of memory
accesses increases, but it is more than ten times higher than
that of RCL. POSIX locks perform better than flat combining
but not as well as spinlocks, MCS and RCL.

Figure 7(b) shows the number of L2 cache misses per
critical section for each lock. The execution time of each
lock is directly correlated with its number of cache misses,
except for the POSIX locks, whose overhead is mainly
due to the high cost of context switches. Even though the
number of cache misses increases as the contention increases
for both spinlocks and MCS locks, it remains stable for
RCL, which shows how well RCL suited is for highly-
contended locks. The number of cache misses when using
flat combining increases as the contention decreases, which
directly reflects the high execution time of flat combining

under low contention. These cache misses are caused by the
server when it scans the linked list of requests: accessing
each element of this linked list typically incurs a cache
miss. This scan also occurs at high contention, but several
critical sections are also executed simultaneously, while at
low contention, only one critical section is executed for the
same number of cache misses.

4.3 SPLASH-2
SPLASH-2 is a classic benchmark suite consisting of a num-
ber of legacy multithreaded applications and application ker-
nels. It has been previously used to evaluate locking algo-
rithms [11, 14]. We use SPLASH-2 both to evaluate our
reengineering tool and to evaluate the accuracy of our profiler
and the performance of RCL. The nine applications and five
application kernels included in the SPLASH-2 benchmark
suite contain a total of 137 critical sections. All of these criti-
cal sections are correctly transformed by our reengineering
tool. The reengineering process takes around 20 minutes on
a 8-core 3GHz machine with 16GB memory.
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Figure 8. SPLASH-2 results. Each data point is the average
of 30 runs.

As presented in Section 3.1, among all the locks used in
SPLASH-2, we have identified only three as having high
enough contention to be interesting candidates for RCL:
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•  Memcached, Set requests:	


when benchmarking other types of locks. The remaining 47
cores each run a client, i.e., a thread that executes critical
sections. Each client waits for a given delay between the
end of one critical section and the beginning of the next
one: the shorter the delay, the higher the contention. For
each delay value, 1000 critical sections are executed. In
each critical section, a client references and updates a given
number of shared cache lines by incrementing the values in
shared memory locations. These locations are scattered across
memory in such a way that two such locations are never
mapped to the same cache line: thus, to access n shared cache
lines, the microbenchmark simply accesses n shared memory
locations. In order to ensure that cache line accesses are
not pipelined, we construct the address of the next memory
location that is accessed using the value read from the current
memory location [32].

The results for critical section execution time are shown
in Figure 7(a). Under high contention (the left side of the
graph), RCL is always faster than all the other considered
types of locks. Flat combining is the best after RCL, but is
still 2.5 times slower. MCS is slower than flat combining.
Due to the fact that each critical section is executed locally,
its performance decreases significantly when 5 cache lines
are accessed. The traditional spinlock is the slowest of all
locks under high contention, due to the overhead of cache
coherency messages when all threads spin on a compare-and-
swap instruction. Finally, POSIX locks are as efficient as
MCS locks under very high contention, but their execution
time increases as contention decreases.

When contention is low (the right side of Figure 7(a)) and
the critical section only accesses one cache line, spinlocks,
MCS locks and RCL have similar performance. Spinlocks
are best with a critical section execution time of 1350 cycles;
RCL is the next best and is only 13% slower. However,
when critical sections access 5 cache lines, the execution
time of both traditional spinlocks and MCS locks increases
significantly, whereas that of RCL remains stable. This is due
to the fact that all critical sections are executed on the same
core, thus improving cache locality. The execution time of flat
combining also remains stable when the number of memory
accesses increases, but it is more than ten times higher than
that of RCL. POSIX locks perform better than flat combining
but not as well as spinlocks, MCS and RCL.

Figure 7(b) shows the number of L2 cache misses per
critical section for each lock. The execution time of each
lock is directly correlated with its number of cache misses,
except for the POSIX locks, whose overhead is mainly
due to the high cost of context switches. Even though the
number of cache misses increases as the contention increases
for both spinlocks and MCS locks, it remains stable for
RCL, which shows how well RCL suited is for highly-
contended locks. The number of cache misses when using
flat combining increases as the contention decreases, which
directly reflects the high execution time of flat combining

under low contention. These cache misses are caused by the
server when it scans the linked list of requests: accessing
each element of this linked list typically incurs a cache
miss. This scan also occurs at high contention, but several
critical sections are also executed simultaneously, while at
low contention, only one critical section is executed for the
same number of cache misses.

4.3 SPLASH-2
SPLASH-2 is a classic benchmark suite consisting of a num-
ber of legacy multithreaded applications and application ker-
nels. It has been previously used to evaluate locking algo-
rithms [11, 14]. We use SPLASH-2 both to evaluate our
reengineering tool and to evaluate the accuracy of our profiler
and the performance of RCL. The nine applications and five
application kernels included in the SPLASH-2 benchmark
suite contain a total of 137 critical sections. All of these criti-
cal sections are correctly transformed by our reengineering
tool. The reengineering process takes around 20 minutes on
a 8-core 3GHz machine with 16GB memory.
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Figure 8. SPLASH-2 results. Each data point is the average
of 30 runs.

As presented in Section 3.1, among all the locks used in
SPLASH-2, we have identified only three as having high
enough contention to be interesting candidates for RCL:
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•  Memcached, Set requests:	


when benchmarking other types of locks. The remaining 47
cores each run a client, i.e., a thread that executes critical
sections. Each client waits for a given delay between the
end of one critical section and the beginning of the next
one: the shorter the delay, the higher the contention. For
each delay value, 1000 critical sections are executed. In
each critical section, a client references and updates a given
number of shared cache lines by incrementing the values in
shared memory locations. These locations are scattered across
memory in such a way that two such locations are never
mapped to the same cache line: thus, to access n shared cache
lines, the microbenchmark simply accesses n shared memory
locations. In order to ensure that cache line accesses are
not pipelined, we construct the address of the next memory
location that is accessed using the value read from the current
memory location [32].

The results for critical section execution time are shown
in Figure 7(a). Under high contention (the left side of the
graph), RCL is always faster than all the other considered
types of locks. Flat combining is the best after RCL, but is
still 2.5 times slower. MCS is slower than flat combining.
Due to the fact that each critical section is executed locally,
its performance decreases significantly when 5 cache lines
are accessed. The traditional spinlock is the slowest of all
locks under high contention, due to the overhead of cache
coherency messages when all threads spin on a compare-and-
swap instruction. Finally, POSIX locks are as efficient as
MCS locks under very high contention, but their execution
time increases as contention decreases.

When contention is low (the right side of Figure 7(a)) and
the critical section only accesses one cache line, spinlocks,
MCS locks and RCL have similar performance. Spinlocks
are best with a critical section execution time of 1350 cycles;
RCL is the next best and is only 13% slower. However,
when critical sections access 5 cache lines, the execution
time of both traditional spinlocks and MCS locks increases
significantly, whereas that of RCL remains stable. This is due
to the fact that all critical sections are executed on the same
core, thus improving cache locality. The execution time of flat
combining also remains stable when the number of memory
accesses increases, but it is more than ten times higher than
that of RCL. POSIX locks perform better than flat combining
but not as well as spinlocks, MCS and RCL.

Figure 7(b) shows the number of L2 cache misses per
critical section for each lock. The execution time of each
lock is directly correlated with its number of cache misses,
except for the POSIX locks, whose overhead is mainly
due to the high cost of context switches. Even though the
number of cache misses increases as the contention increases
for both spinlocks and MCS locks, it remains stable for
RCL, which shows how well RCL suited is for highly-
contended locks. The number of cache misses when using
flat combining increases as the contention decreases, which
directly reflects the high execution time of flat combining

under low contention. These cache misses are caused by the
server when it scans the linked list of requests: accessing
each element of this linked list typically incurs a cache
miss. This scan also occurs at high contention, but several
critical sections are also executed simultaneously, while at
low contention, only one critical section is executed for the
same number of cache misses.

4.3 SPLASH-2
SPLASH-2 is a classic benchmark suite consisting of a num-
ber of legacy multithreaded applications and application ker-
nels. It has been previously used to evaluate locking algo-
rithms [11, 14]. We use SPLASH-2 both to evaluate our
reengineering tool and to evaluate the accuracy of our profiler
and the performance of RCL. The nine applications and five
application kernels included in the SPLASH-2 benchmark
suite contain a total of 137 critical sections. All of these criti-
cal sections are correctly transformed by our reengineering
tool. The reengineering process takes around 20 minutes on
a 8-core 3GHz machine with 16GB memory.
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Figure 8. SPLASH-2 results. Each data point is the average
of 30 runs.

As presented in Section 3.1, among all the locks used in
SPLASH-2, we have identified only three as having high
enough contention to be interesting candidates for RCL:
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Outline	


•  Context: multicore architectures	

•  State of the art: locks	

•  Contribution: Remote Core Locking	

•  Evaluation in legacy applications!

–  Methodology	

–  Main results	

–  Scalability	

–  More software threads than hardware threads!

•  Perspectives and conclusion	
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More sw threads than hw threads	


•  Many locks perform poorly when many software threads	

–  Some spinning threads get woken up	

–  Possible interference with scheduling: convoy effect (very slow)	


•  RCL dedicates a core: it always makes progress on the critical path	
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•  Berkeley DB / TPC-C, Stock Level requests:	
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•  Berkeley DB / TPC-C, Stock Level requests:	
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•  Berkeley DB / TPC-C, Stock Level requests:	
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•  Berkeley DB / TPC-C, Stock Level requests:	
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Yielding the processor	


Was that a fair comparison?	


107	




Yielding the processor	


Was that a fair comparison?	
	


•  What if locks yield the CPU instead of spinning?	


•  Less reactive, but threads no longer woken up just to spin?	


•  Added calls to yield() in MCS, MCS-TP, Combining Locks	

–  …and RCL clients	
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Yielding the processor	

•  Berkeley DB / TPC-C, Stock Level requests, yield():	


 100

 500

 1,000

 1,500

 2,000

 2,500

 1  48  96  128  256  384

G
lo

ba
l #

 re
qu

es
ts

 / 
se

co
nd

# clients

Original
POSIX

Spinlock
MCS

MCS-TP
Flat Combining

CC-Synch
DSM-Synch

H
ig

he
r i

s 
be

tte
r!

POSIX Spinlock MCS RCL

Magnycours-‐48	  

109	




Yielding the processor	

•  Berkeley DB / TPC-C, Stock Level requests, yield():	
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Outline	


•  Context: multicore architectures	

•  State of the art: locks	

•  Contribution: Remote Core Locking	

•  Evaluation in legacy applications	

•  Perspectives and conclusion!
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•  Modified RCL implementations	

–  Dynamic RCL runtime	

–  Hierarchical RCL	

–  RCL for embedded architectures	


•  HTMs:  supported by Haswell	

–  What can RCL do for transactional memories?	

–  Hassan et al. [IPDPS ’14] propose a STM algorithm…	


•  …that runs commit and invalidation on dedicated remote server threads 	

•  …with cache-aligned communication	

•  …and uses RCL for locks	


Perspectives	
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•  Non-cache-coherent architectures	

–  Could RCL provide performance improvements���

on non-cache-coherent architectures?	

–  Petrović et al. [PPoPP ’14] propose an algorithm inspired by RCL ���

for partially cache-coherent architectures	

–  Major performance improvements on TILE-Gx CPUs.	


Perspectives	
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•  RCL reduces lock acquisition time and improves data locality	

–  Cost: uses a few cores and may perform worse with few threads	


•  Profiler to detect when RCL can be useful	


•  Tool to ease the transformation of legacy code	


•  Future work:	

–  Modified RCL implementations	

–  Applying ideas from RCL to HTMs and NCC architectures	

–  Started by others	


Conclusion	
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