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Context: multicore architectures

* Decades of increasing CPU clock speeds
* Since early 2000's, problems with power consumption/dissipation

* Increasing numbers of cores to keep increasing processing power
— Possible because number of transistors keeps increasing
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Problem with multicore: scalability

* Many legacy applications don't scale well on multicore architectures
* Forinstance, Memcached (Get/Set requests):
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Why?

* Bottleneck = critical sections, protected by locks

* High contention = lock acquisition is costly
— More cores = higher contention
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* Bottleneck = critical sections, protected by locks

* High contention = lock acquisition is costly
— More cores = higher contention

* Two possible solutions :

— Redesign applications (fine-grained locking)

- Costly (millions of lines of legacy code)

— Design better locks
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esigning better locks

* No need to redesign the application
e Better resistance to contention

¢ Custom microbenchmark to compare locks:

CAS spinlock = +

[Mellor-Crummey ASPLOS’91]
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State of the art

Spinlocks
Blocking locks

Queue locks (MCS, CLH)
‘Mellor-Crummey ASPLOS'9 |, Craig TR'93, Hagersten IPPS'94]

-lat combining
‘Hendler SPAA’10]




Spinlocks

Spinlocks
— Busy-wait, trying to set a lock variable with an atomic instruction

— Contention when all threads try to set that variable concurrently!

function lock (boolean *lock)
while !compare and swap(lock, false, true) do

.
14

function unlock (boolean *lock)
*lock = false;
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Spinlocks

Spinlocks
— Busy-wait, trying to set a lock variable with an atomic instruction

— Contention when all threads try to set that variable concurrently!

function lock (boolean *lock)
while !compare and swap(lock, false, true) do
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function unlock (boolean *lock)

*lock = false;




Time in ns

Spinlocks

Spinlocks

— Busy-wait, trying to set a lock variable with an atomic instruction

— Contention when all threads try to set that variable concurrently!

Cost of all threads concurrently writing to a single variable:

— Up to 125 times slower when all hardware threads used!
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Blocking locks

Try to acquire lock; in case of failure, sleep

Does not waste CPU resources

Context switches needed between each acquisition:
not very reactive

function lock (boolean *lock)

while !compare and swap (lock, false, true)
yield();

function unlock (boolean *lock)
*lock = false;

do



Blocking locks

Try to acquire lock; in case of failure, sleep
Does not waste CPU resources

Context switches needed between each acquisition:
not very reactive

Very frequently used because works with only one core
— The"legacy” lock
— POSIX locks are blocking locks



Queue locks

Example: MCS [Mellor-Crummey ASPLOS9 1]

|dea: threads enqueue themselves in a list

— One synchronization variable per thread instead of global

tail
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Queue locks

* Example: MCS [Mellor-Crummey ASPLOS9 1]
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Example: MCS [Mellor-Crummey ASPLOS'9 ]

|dea: threads enqueue themselves in a list

Queue locks

— One synchronization variable per thread instead of global

Thread 1’s node

Thread 1 executes
critical section

Thread 2’s node

Atomic

tail
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True

Thread 3’s node
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Queue locks

* Example: MCS [Mellor-Crummey ASPLOS9 1]

* |dea:threads enqueue themselves in a list

— One synchronization variable per thread instead of global

spin? next

Thread 2’s node

Thread 2 executes
critical section

tail

CTrue | _—

Thread 3’s node
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Queue locks

Example: MCS [Mellor-Crummey ASPLOS9 1]

|dea: threads enqueue themselves in a list

— One synchronization variable per thread instead of global

spin?

| Fale | —

Thread 3’s node

Thread 3 executes
critical section

/

tail
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Queue locks

Example: MCS [Mellor-Crummey ASPLOS9 1]

|dea: threads enqueue themselves in a list

— One synchronization variable per thread instead of global

tail
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Flat Combining [Hendler SPAA’10]

* Threads enqueue critical sections (functions) In list

* Occasionally, a thread becomes a “combiner”

— Executes all pending critical sections

— Possibly merging critical sections with fast sequential algorithm

* Uses a global spinlock, need to clean up the list

__

—  —

<« |

T1 waiting T2 waiting T3 waiting T4 waiting T5 waiting

$T1 $72

§T3 §T4

$ 15
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* Occasionally, a thread becomes a “combiner”

— Executes all pending critical sections

— Possibly merging critical sections with fast sequential algorithm
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Flat Combining [Hendler SPAA’10]

* Threads enqueue critical sections (functions) In list

* Occasionally, a thread becomes a “combiner”
— Executes all pending critical sections

— Possibly merging critical sections with fast sequential algorithm

* Uses a global spinlock, need to clean up the list

y I

T1 waiting T2 waiting T3 done T4 waiting T5 waiting

%Tl §T2 §T4 gTS

T3 executes its CS and the following ones
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Flat Combining [Hendler SPAA’10]

* Threads enqueue critical sections (functions) In list

* Occasionally, a thread becomes a “combiner”
— Executes all pending critical sections

— Possibly merging critical sections with fast sequential algorithm

* Uses a global spinlock, need to clean up the list

oo

T4 waiting T5 waiting

$ T4 $ 15
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Lock performance assessment
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Contribution: Remote Core Locking

Objective: create the fastest possible lock algorithm under contention
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Contribution: Remote Core Locking

Objective: create the fastest possible lock algorithm under contention
How?
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Contribution: Remote Core Locking

Objective: create the fastest possible lock algorithm under contention

How?
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Contribution: Remote Core Locking

Objective: create the fastest possible lock algorithm under contention

How? By shortening the critical path as much as possible
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Contribution: Remote Core Locking

What makes the critical path longer
than needed?

43



Contribution: Remote Core Locking

What lengthens the critical path?

|) Long transfers of lock ownership
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Contribution: Remote Core Locking

What lengthens the critical path?

|) Long transfers of lock ownership
TI T2 T3

CSI“ J_ j
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Global spin (Spinlock),
context switch (Blocking lock),
CS2 remote thread wakeup (MCS),
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Contribution: Remote Core Locking

What lengthens the critical path?

2) Poor data locality in critical sections

Shared variable | -IJ-ICSI T2 T3
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Contribution: Remote Core Locking

What lengthens the critical path?

2) Poor data locality in critical sections
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Contribution: Remote Core Locking

Solution: Remote Core Locking
Dedicate a core for executing critical sections
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Contribution: Remote Core Locking

Solution: Remote Core Locking
Dedicate a core for executing critical sections
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Contribution: Remote Core Locking

Solution: Remote Core Locking
Dedicate a core for executing critical sections
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Contribution: Remote Core Locking

Solution: Remote Core Locking
Dedicate a core for executing critical sections

Tl T2 T3  Server core
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False serialization

* Problem: what to do when using several locks?
— False serialization, bad for performance
* [f too much contention: simply add more servers

— Not a problem, because RCL only targets contended locks
— Typically only a handful of them

Core 1 Core 2 Core 3 Core N Server core
Shared variables B cSlockA B cslockB
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False serialization

* Problem: what to do when using several locks?
— False serialization, bad for performance

* [f too much contention: simply add more servers

— Not a problem, because RCL only targets contended locks
— Typically only a handful of them

Core 1 Core 2 Core 3 Core N Server core 1 Server core 2
Shared variables b cSlockA B cslockB
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Implementation: general idea

e Communication based on cache line-sized mailboxes
* Three fields: lock, context, function

lock

context

function

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

A'ATA

Server loop

1
«
NULL
|

NULL

NULL

Hardware cache line size (L)

reqo
req1

req,

req,.

e (lient fills the field and waits for the function to be reset

* Server loops across the fields (fair)
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Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”

lock context function
C NULL NULL NULL req 0
NULL NULL NULL req 1
Q —mme
O &lock4 NULL NULL req,
[ --a- o
> v - ;
() ] :
N ' !
C '
NULL NULL NULL req,

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)
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* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
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Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”

lock context function
C NULL NULL NULL req 0
NULL NULL NULL req,
o -
O &lock4 O0xa0dc5f3a &foo req,
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Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”

lock context function
C NULL NULL NULL req,
NULL NULL NULL req,
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Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

lock context function
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n ' ,
C '
NULL NULL NULL req,

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)
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Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections
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Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

lock context function
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Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

lock context function
C NULL NULL NULL req,
NULL NULL NULL req,
Q
o
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NULL NULL NULL req,

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)
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Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

lock context function
C NULL NULL NULL req 0
NULL NULL NULL req 1
o
3 slockd |0xa0dc5f3a &foo @
N Server executes critical section
> : ;
() ] :
n : '
C NULL NULL NULL req,

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)
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Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

lock context function
C NULL NULL NULL req 0
NULL NULL NULL req 1
o
3 &lock4 | 0xa0dc5f3a NULL @
- || Server executes critical section
o . o )
c . 1
() ] :
o : '
C NULL NULL NULL req,

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)
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Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

lock context function
C NULL NULL NULL req,
NULL NULL NULL req,
Q
O
ke &locks |oxao0dcsf3a nurt O req
E 1
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— 1
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NULL NULL NULL req,

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)
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Implementation: general idea

* Communication based on cache line-sized mailboxes

* Three fields: lock, context, function
Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

lock context function
C NULL NULL NULL req 0
NULL NULL NULL req 1
3
(@) &lock4 O0xaOdc5f£3 NULL . . e
< °° raeesroe Client resumes execution €9
> ! :
(0] 1 :
n : .
C NULL NULL NULL req,

Hardware cache line size (L)

* Client fills the field and waits for the function to be reset
* Server loops across the fields (fair)
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e Communication based on cache line-sized mailboxes
* Three fields: lock, context, function

Implementation: general idea

Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

Server loop

lock

context

function

NULL

NULL

NULL

«

NULL

NULL

NULL

&lock4

Oxa0dc5f3a

NULL

NULL

NULL

NULL

Hardware cache line size (L)

req,
req.
req

req,.

e (lient fills the field and waits for the function to be reset

* Server loops across the fields (fair)

6/



Implementation: general idea

e Communication based on cache line-sized mailboxes
* Three fields: lock, context, function

Client thread 2 wants to execute a critical section protected by “lock4”
Server continuously checks mailboxes and executes critical sections

Server loop

lock context function
NULL NULL NULL
NULL NULL NULL
&lock4 Oxa0dc5f3a NULL
NULL NULL NULL

reqo
req1

req

Total = 1 server cache miss
No atomic instruction

Hardware cache line size (L)

e (lient fills the field and waits for the function to be reset

* Server loops across the fields (fair)
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RCL Performance
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RCL Performance

POSIX —s— Flat Comb. —e— RCL —e—
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Using RCL In legacy applications
Three components :

* RCL runtime
— Library that makes it possible to write RCL applications

* Profiler
— To find out which applications / locks can potentially benefit from RCL

* Reengineering
— To transform code for traditional locks into code that can use RCL

A



Using RCL In legacy applications

RCL Runtime:

* Handles blocking in critical sections (I/O, page faults...)
— Pool of servicing threads on server

— Able to service other (independent) critical sections when blocked

* Makes it possible to use condition variables (cond/wait)

— Used by ~50% of applications that use POSIX locks in Debian 6.0.3
— Not possible with combining locks
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Using RCL In legacy applications

Profiler:
* Detects which applications / locks benefit from RCL

* Uses two metrics:
— % of time spent in critical sections (measures contention)
— Avg. # of cache misses in critical sections (measures data locality)
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Using RCL In legacy applications (2)

Reengineering:

* Ciritical sections must be encapsulated into functions
— Local variables sent as parameters (context)
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Using RCL In legacy applications (2)

Reengineering:

void func(void) {
int a, b, x;

a = eee ;

pthread mutex lock();
a = f(a);

pthread mutex unlock();

struct context { int a, b };

void func(void) {
struct context c;
int x;

c.a = ..;

execute rcl(_cs, &c);

}

void _ cs(struct context *c) {
c->a = f(c->a)
f(c->b)

7




Using RCL In legacy applications (2)

Reengineering:
struct context { int a, b };
void func(void) ({ ———

int a, b, x; void func(void) {

struct context c;

] int x;

a = ..g [

c.a = ..;

pthread mutex lock();
A (a):

execute rcl(_cs, &c);

bV
pthread mutex unlock();

}

void _ cs(struct context *c) {
c->a = f(c->a)
} f(c->b)




Using RCL in

Reengineering:

legacy applications (2)

void func(void) {
int a, b, x;

struct context { int a, b };

P ————

void func(void) {
struct context c;

] int x;

c.a = ..;

execute rcl(_cs, &c);

}

void cs(struct context *c) {
S — c->a = f(c->a)

}
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Using RCL in

Reengineering:

legacy applications (2)

void func(void) {
int a, b, x;

struct context { int a, b };

P ————

void func(void) {
struct context c;
] int x;

c.a = ..;

execute rcl(_cs, &c);

}

void cs(struct context *c) {
S — c->a = f(c->a)

}
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Using RCL In legacy applications (2)

Reengineering:

* Ciritical sections must be encapsulated into functions
— Local variables sent as parameters (context)

* Tool to reengineer applications automatically
— Possible to pick which locks use RCL

— To avoid false serialization:
possible to pick which server(s) handle which lock(s).
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Methodology

* FEvaluation on two different machines
— Different architectures and OSes

* Different application types

— Parallel computing
* Scientific computations (SPLASH-2), MapReduce (Phoenix 2)

— Server applications (Memcached, Berkeley DB)

* Different configurations
— One software thread per hardware thread
— More software threads than hardware threads (Berkeley DB)
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Niagara2- 128

* Two UltraSPARC-T2+ CPUs, each with 8 cores
* Simultaneous hyperthreading: 8 hardware threads per core (!)

— 128 hardware threads
* Less representative of current multicore machines 1gara2-128

Latency (cycles)

128

Hardware thread #

300

200

100

0
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Differences

speed

Magnycours-48 has much faster sequential

Niagara2-128 has faster communication speed / sequential speed

* On SPLASH-2, parallel scientific applications:
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Differences
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Magnycours-48 has much faster sequential
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Main results

Profiling:
* Custom profiler to find good candidates
* Metric: time spent in critical sections

* Running the profiler on the microbenchmark shows that:

— Iftime spent in CS > |5%, RCL is more efficient than POSIX locks
— If time spent in CS > 60%, RCL is more efficient than all other locks

Collapse of MCS (60,000 cycles): 60%
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Main results

* Better performance when time in CS > 60%
— Performance improvement correlated with time in CS

* Only one or two locks replaced each time
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Main results

* Better performance when time in CS > 60%
— Performance improvement correlated with time in CS

* Only one or two locks replaced each time
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Main results

* Better performance when time in CS > 60%
— Performance improvement correlated with time in CS

* Only one or two locks replaced each time

POSIX MCS CC-Synch

Spinlock Flat Combining DSM-Synch
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% of time in CS

Main results I

On Niagara2-128: profiler thresholds = 5% / 85%
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Main results S Nagaraz 138

* On Niagara2-128, no bench > 85%

— Faster communication / sequential speed, less issues with contention

* Still some performance gains when time in CS > 5%
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* On Niagara2-128, no bench > 85%

— Faster communication / sequential speed, less issues with contention

 Still some performance gains when time in CS > |5%
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Main results S Nagaraz 138

* On Niagara2-128, no bench > 85%

— Faster communication / sequential speed, less issues with contention

 Still some performance gains when time in CS > |5%
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Scalability of RCL

* RCL not only improves performance, it also improves scalability

* Example: Memcached with Set requests
— On Magnycours-48 and Niagara2-128

e Memcached uses condition variables
— No results for combining locks
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Speedup

Scalability of RCL

* Memcached, Set requests:

POSIX —5— Spinlock —+— MCS - -<-- RCL —e—
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Speedup

Scalability of RCL
« Memcached, Set requests:
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More sw threads than hw threads

* Many locks perform poorly when many software threads
— Some spinning threads get woken up
— Possible interference with scheduling: convoy effect (very slow)

* RCL dedicates a core: it always makes progress on the critical path

102



More SWV threads than HW threads

* Berkeley DB / TPC-C, Stock Level requests:
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More SWV threads than HW threads
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More SWV threads than HW threads

* Berkeley DB / TPC-C, Stock Level requests:
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More SWV threads than HW threads

\NId& d C O
O

* Berkeley DB / TPC-C, Stock Level requests:

Original —o— Spinlock —— MCS-TP ... CC-Synch - -¢--
POSIX —5— MCS --x--  Flat Combining —e— DSM-Synch .-.-xz.-.-
RCL —e—
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Yielding the processor

Was that a fair comparison?
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Yielding the processor

Was that a fair comparison?

* What if locks yield the CPU instead of spinning?

* Less reactive, but threads no longer woken up just to spin?

* Added calls to yield() in MCS, MCS-TR Combining Locks
— ...and RCL clients
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Yielding the processor

* Berkeley DB / TPC-C, Stock Level requests, yield():

Original Spinlock MCS-TP ... CC-Synch --¢--
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Yielding the processor

* Berkeley DB / TPC-C, Stock Level requests, yield():

Original Spinlock MCS-TP ....3g---- CC-Synch --¢--
POSIX MCS --x--  Flat Combining —e— DSM-Synch .-..57----
RCL —e—
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Higher is better
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Perspectives

* Modified RCL implementations
— Dynamic RCL runtime
— Hierarchical RCL
— RCL for embedded architectures

* HTMs: supported by Haswell
— What can RCL do for transactional memories?
— Hassan et al. [IPDPS "[4] propose a STM algorithm...

e . ..that runs commit and invalidation on dedicated remote server threads

* ...with cache-alighed communication
* ...and uses RCL for locks

112



Perspectives

 Non-cache-coherent architectures

— Could RCL provide performance improvements
on non-cache-coherent architectures?

— Petrovi€ et al. [PPoPP '14] propose an algorithm inspired by RCL
for partially cache-coherent architectures

— Major performance improvements on TILE-Gx CPUs.
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Conclusion

RCL reduces lock acquisition time and improves data locality
— Cost: uses a few cores and may perform worse with few threads

Profiler to detect when RCL can be useful
Tool to ease the transformation of legacy code

Future work:

— Modified RCL implementations

— Applying ideas from RCL to HTMs and NCC architectures
— Started by others
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