
Towards More Scalable Mutual
Exclusion for Multicore Architectures���

 ���

Vers des mécanismes d’exclusion mutuelle plus
efficaces pour les architectures multi-cœur���

���
���

Jean-Pierre Lozi ���
to appear at USENIX ATC’	

PhD thesis defense, Universite ́ Pierre et Marie Curie	

Regal/Whisper team, LIP6/INRIA	

Outline	

•  Context: multicore architectures!
•  State of the art: locks	

•  Contribution: Remote Core Locking	

•  Evaluation	

•  Perspectives and conclusion	

2	

Context: multicore architectures	

•  Decades of increasing CPU clock speeds	

•  Since early 2000’s, problems with power consumption/dissipation 	

•  Increasing numbers of cores to keep increasing processing power	

–  Possible because number of transistors keeps increasing	

# transistors	

Clock speed	

Power Consumption	

Ratio power/speed	

3	

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 6 12 18 22

Sp
ee

du
p

threads

Problem with multicore: scalability	

•  Many legacy applications don’t scale well on multicore architectures	

•  For instance, Memcached (Get/Set requests):	

 	

H
ig

he
r i

s
be

tte
r!

Memcached/Get Memcached/Set

Experiments run on a 48-core, “magny-cours” x86 AMD machine	
 4	

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 6 12 18 22

Sp
ee

du
p

threads

Problem with multicore: scalability	

•  Many legacy applications don’t scale well on multicore architectures	

•  For instance, Memcached (Get/Set requests):	

 	

Collapses!

Collapses!

H
ig

he
r i

s
be

tte
r!

Memcached/Get Memcached/Set

Experiments run on a 48-core, “magny-cours” x86 AMD machine	
 5	

•  Bottleneck = critical sections, protected by locks	

•  High contention ⇒ lock acquisition is costly	

–  More cores ⇒ higher contention	

0%	

20%	

40%	

60%	

80%	

100%	

1	 4	 8	 16	 22	 32	 48	

SPLASH-‐2/Radiosity	

SPLASH-‐2/Raytrace	

Phoenix	 2/LG	

Phoenix	 2/SM	

Phoenix	 2/MM	

Memcached/Get	

Memcached/Set	

Berkeley	 DB/OS	

Berkeley	 DB/SL	

Why?	

Number of cores"

%
 o

f t
im

e
sp

en
t i

n
cr

iti
ca

l s
ec

tio
ns

*

* Including lock acquisition time"
6	

•  Bottleneck = critical sections, protected by locks	

•  High contention ⇒ lock acquisition is costly	

–  More cores ⇒ higher contention	

•  Two possible solutions : 	

–  Redesign applications (fine-grained locking)	

–  Costly (millions of lines of legacy code)	

–  Design better locks	

Why?	

7	

•  Two possible solutions : 	

–  Redesign applications (fine-grained locking)	

–  Costly (millions of lines of legacy code)	

–  Design better locks !

•  Bottleneck = critical sections, protected by locks	

•  High contention ⇒ lock acquisition is costly	

–  More cores ⇒ higher contention	

Why?	

8	

100 1,000 10,000 1e+05 1e+06
1,000

10,000

1e+05

1e+06

Ex
ec

ut
io

n
tim

e
(c

yc
le

s)

Delay

Spinlock MCS

•  No need to redesign the application	

•  Better resistance to contention	

•  Custom microbenchmark to compare locks:	

	

 	

Designing better locks	

ç Higher contention" Lower contention è"

MCS è"

CAS spinlock è"

Critical sections access 5 cache lines each"

Lo
w

er
 is

 b
et

te
r!

9	

[Mellor-Crummey ASPLOS’91] 	

100 1,000 10,000 1e+05 1e+06
1,000

10,000

1e+05

1e+06

Ex
ec

ut
io

n
tim

e
(c

yc
le

s)

Delay

Spinlock MCS

•  No need to redesign the application	

•  Better resistance to contention	

•  Custom microbenchmark to compare locks:	

	

 	

Improvement!

Designing better locks	

ç Higher contention" Lower contention è"

MCS è"

CAS spinlock è"

Critical sections access 5 cache lines each"

Lo
w

er
 is

 b
et

te
r!

10	

[Mellor-Crummey ASPLOS’91] 	

Outline	

•  Context: multicore architectures	

•  State of the art: locks!
•  Contribution: Remote Core Locking	

•  Evaluation	

•  Perspectives and conclusion	

11	

State of the art	

•  Spinlocks	

•  Blocking locks	

•  Queue locks (MCS, CLH) ���

[Mellor-Crummey ASPLOS’91, Craig TR’93, Hagersten IPPS’94]	

•  Flat combining ���
[Hendler SPAA’10]	

12	

•  Spinlocks	

–  Busy-wait, trying to set a lock variable with an atomic instruction	

–  Contention when all threads try to set that variable concurrently!	

Spinlocks	

function lock(boolean *lock)
 while !compare_and_swap(lock, false, true) do
 ;

function unlock(boolean *lock)

 *lock = false;

13	

•  Spinlocks	

–  Busy-wait, trying to set a lock variable with an atomic instruction	

–  Contention when all threads try to set that variable concurrently!	

Spinlocks	

function lock(boolean *lock)
 while !compare_and_swap(lock, false, true) do
 ;

function unlock(boolean *lock)

 *lock = false;

14	

•  Spinlocks	

–  Busy-wait, trying to set a lock variable with an atomic instruction	

–  Contention when all threads try to set that variable concurrently!	

Spinlocks	

function lock(boolean *lock)
 while !compare_and_swap(lock, false, true) do
 ;

function unlock(boolean *lock)

 *lock = false;

15	

•  Cost of all threads concurrently writing to a single variable:	

–  Up to 125 times slower when all hardware threads used!	

•  Spinlocks	

–  Busy-wait, trying to set a lock variable with an atomic instruction	

–  Contention when all threads try to set that variable concurrently!	

0	

2000	

4000	

6000	

8000	

10000	

12000	

1	 2	 24	 48	

Store	

CAS	

Spinlocks	

14,000	
12,000	
10,000	
8,000	
6,000	
4,000	
2,000	

0	

Ti
m
e	
in
	 n
s	

threads	 16	

•  Try to acquire lock; in case of failure, sleep	

•  Does not waste CPU resources	

•  Context switches needed between each acquisition:���

not very reactive	

Blocking locks	

function lock(boolean *lock)
 while !compare_and_swap(lock, false, true) do
 yield();

function unlock(boolean *lock)

 *lock = false;

17	

•  Try to acquire lock; in case of failure, sleep	

•  Does not waste CPU resources	

•  Context switches needed between each acquisition:���

not very reactive	

•  Very frequently used because works with only one core	

–  The “legacy” lock	

–  POSIX locks are blocking locks	

Blocking locks	

18	

Queue locks	

•  Example: MCS [Mellor-Crummey ASPLOS’91]	

•  Idea: threads enqueue themselves in a list	

–  One synchronization variable per thread instead of global	

tail	
19	

Queue locks	

•  Example: MCS [Mellor-Crummey ASPLOS’91]	

•  Idea: threads enqueue themselves in a list	

–  One synchronization variable per thread instead of global	

tail	

Atomic"

Thread	 1’s	 node	

Ignored	
next	 spin?	

20	

Queue locks	

•  Example: MCS [Mellor-Crummey ASPLOS’91]	

•  Idea: threads enqueue themselves in a list	

–  One synchronization variable per thread instead of global	

tail	

Thread 1 executes"
critical section"

Thread	 1’s	 node	

Ignored	
next	 spin?	

21	

Thread	 2’s	 node	

True	
next	 spin?	

Queue locks	

•  Example: MCS [Mellor-Crummey ASPLOS’91]	

•  Idea: threads enqueue themselves in a list	

–  One synchronization variable per thread instead of global	

tail	

Thread 1 executes"
critical section"

Atomic"

Thread	 1’s	 node	

Ignored	
next	 spin?	

22	

Thread	 2’s	 node	

True	
next	 spin?	

Queue locks	

•  Example: MCS [Mellor-Crummey ASPLOS’91]	

•  Idea: threads enqueue themselves in a list	

–  One synchronization variable per thread instead of global	

tail	

Thread 1 executes"
critical section"

Atomic"

Thread	 1’s	 node	

Ignored	
next	 spin?	

23	

Thread	 3’s	 node	

True	
next	 spin?	

Thread	 2’s	 node	

True	
next	 spin?	

Queue locks	

•  Example: MCS [Mellor-Crummey ASPLOS’91]	

•  Idea: threads enqueue themselves in a list	

–  One synchronization variable per thread instead of global	

tail	

Thread 1 executes"
critical section"

Thread	 1’s	 node	

Ignored	
next	 spin?	

Atomic"

24	

Thread	 3’s	 node	

True	
next	 spin?	

Thread	 2’s	 node	

True	
next	 spin?	

Queue locks	

•  Example: MCS [Mellor-Crummey ASPLOS’91]	

•  Idea: threads enqueue themselves in a list	

–  One synchronization variable per thread instead of global	

tail	

Thread 1 executes"
critical section"

Thread	 1’s	 node	

Ignored	
next	 spin?	

25	

Thread	 3’s	 node	

True	
next	 spin?	

Thread	 2’s	 node	

True	
next	 spin?	

Queue locks	

•  Example: MCS [Mellor-Crummey ASPLOS’91]	

•  Idea: threads enqueue themselves in a list	

–  One synchronization variable per thread instead of global	

tail	

False	

Thread 2 executes"
critical section"

26	

Thread	 3’s	 node	

True	
next	 spin?	

Queue locks	

•  Example: MCS [Mellor-Crummey ASPLOS’91]	

•  Idea: threads enqueue themselves in a list	

–  One synchronization variable per thread instead of global	

tail	

False	

Thread 3 executes"
critical section"

27	

Queue locks	

•  Example: MCS [Mellor-Crummey ASPLOS’91]	

•  Idea: threads enqueue themselves in a list	

–  One synchronization variable per thread instead of global	

tail	
28	

T3	 waiRng	

Flat Combining	

•  Threads enqueue critical sections (functions) in list	

•  Occasionally, a thread becomes a “combiner”	

–  Executes all pending critical sections	

–  Possibly merging critical sections with fast sequential algorithm	

•  Uses a global spinlock, need to clean up the list	

T4n	 T5n	 T3n	 T2n	 T1n	

T1	 waiRng	 T2	 waiRng	 T4	 waiRng	 T5	 waiRng	

[Hendler SPAA’10]	

	

	 T3	 	 	 T2	 	 	 T1	 	 	 T4	 	 	 T5	 	

29	

T3	 waiRng	

Flat Combining	

•  Threads enqueue critical sections (functions) in list	

•  Occasionally, a thread becomes a “combiner”	

–  Executes all pending critical sections	

–  Possibly merging critical sections with fast sequential algorithm	

•  Uses a global spinlock, need to clean up the list	

T4n	 T5n	 T3n	 T2n	 T1n	

T1	 waiRng	 T2	 waiRng	 T4	 waiRng	 T5	 waiRng	

T3	 acquires	 the	 global	 lock	

[Hendler SPAA’10]	

	

	 T2	 	 	 T1	 	 	 T4	 	 	 T5	 	

	 T3	 	

30	

T3	 waiRng	

Flat Combining	

•  Threads enqueue critical sections (functions) in list	

•  Occasionally, a thread becomes a “combiner”	

–  Executes all pending critical sections	

–  Possibly merging critical sections with fast sequential algorithm	

•  Uses a global spinlock, need to clean up the list	

T4n	 T5n	 T3n	 T2n	 T1n	

T1	 waiRng	 T2	 waiRng	 T4	 waiRng	 T5	 waiRng	

T3	 executes	 its	 CS	 and	 the	 following	 ones	

	 T3	 done	 	

[Hendler SPAA’10]	

	

	 T2	 	 	 T1	 	 	 T4	 	 	 T5	 	

	 T3	 	

31	

T3	 waiRng	

Flat Combining	

•  Threads enqueue critical sections (functions) in list	

•  Occasionally, a thread becomes a “combiner”	

–  Executes all pending critical sections	

–  Possibly merging critical sections with fast sequential algorithm	

•  Uses a global spinlock, need to clean up the list	

T4n	 T5n	 T3n	 T2n	 T1n	

T1	 waiRng	 T2	 waiRng	 T4	 waiRng	 T5	 waiRng	

T3	 executes	 its	 CS	 and	 the	 following	 ones	

T2n	

	 T3	 done	 	 	 T2	 done	 	

[Hendler SPAA’10]	

	

	 T1	 	 	 T4	 	 	 T5	 	

	 T3	 	

32	

T3	 waiRng	

Flat Combining	

•  Threads enqueue critical sections (functions) in list	

•  Occasionally, a thread becomes a “combiner”	

–  Executes all pending critical sections	

–  Possibly merging critical sections with fast sequential algorithm	

•  Uses a global spinlock, need to clean up the list	

T4n	 T5n	 T3n	 T2n	 T1n	

T1	 waiRng	 T2	 waiRng	 T4	 waiRng	 T5	 waiRng	

T3	 executes	 its	 CS	 and	 the	 following	 ones	

T2n	 T1n	

	 T3	 done	 	 	 T2	 done	 	 	 T1	 done	 	

[Hendler SPAA’10]	

	

	 T4	 	 	 T5	 	

	 T3	 	

33	

Flat Combining	

•  Threads enqueue critical sections (functions) in list	

•  Occasionally, a thread becomes a “combiner”	

–  Executes all pending critical sections	

–  Possibly merging critical sections with fast sequential algorithm	

•  Uses a global spinlock, need to clean up the list	

T4n	 T5n	

T4	 waiRng	 T5	 waiRng	

[Hendler SPAA’10]	

	

	 T4	 	 	 T5	 	

34	

Lock performance assessment	

100 1,000 10,000 1e+05 1e+06
1,000

10,000

1e+05

1e+06

Ex
ec

ut
io

n
tim

e
(c

yc
le

s)

Delay

POSIX
Spinlock

MCS
Flat Comb.

ç Higher contention" Lower contention è"

CAS spinlock è"

MCS è"

Flat Combining ì"
Blocking locks è"

Lo
w

er
 is

 b
et

te
r!

35	

Outline	

•  Context: multicore architectures	

•  State of the art: locks	

•  Contribution: Remote Core Locking !
•  Evaluation	

•  Perspectives and conclusion	

36	

Objective: create the fastest possible lock algorithm under contention	

	

	

Contribution: Remote Core Locking	

37	

Objective: create the fastest possible lock algorithm under contention	

	

	

Contribution: Remote Core Locking	

How?	

38	

Objective: create the fastest possible lock algorithm under contention	

	

	

Contribution: Remote Core Locking	

T

im
e	

T1	
 T2	
 T3	

CS1	

CS2	

CS3	

How?	

39	

Objective: create the fastest possible lock algorithm under contention	

	

	

Contribution: Remote Core Locking	

T

im
e	

T1	
 T2	
 T3	

CS1	

CS2	

CS3	

Tr

an
sf

er
s

of
 lo

ck
 o

w
ne

rs
hi

p	

How?	

40	

Objective: create the fastest possible lock algorithm under contention	

	

	

Contribution: Remote Core Locking	

T

im
e	

T1	
 T2	
 T3	

CS1	

CS2	

CS3	

Tr

an
sf

er
s

of
 lo

ck
 o

w
ne

rs
hi

p	

C
ri

tic
al

 p
at

h
=

 n
 +

 n
 	

How?	

41	

Objective: create the fastest possible lock algorithm under contention	

	

	

Contribution: Remote Core Locking	

T

im
e	

T1	
 T2	
 T3	

CS1	

CS2	

CS3	

Tr

an
sf

er
s

of
 lo

ck
 o

w
ne

rs
hi

p	

C
ri

tic
al

 p
at

h
=

 n
 +

 n
 	

How?	
 By shortening the critical path as much as possible	

42	

Contribution: Remote Core Locking	

43	

What makes the critical path longer	

than needed?	

Contribution: Remote Core Locking	

T

im
e	

T1	
 T2	
 T3	

CS1	

CS2	

CS3	
 Tr
an

sf
er

s
of

 lo
ck

 o
w

ne
rs

hi
p	

C
ri

tic
al

 p
at

h	

What lengthens the critical path?	

"1) Long transfers of lock ownership!

44	

Contribution: Remote Core Locking	

T

im
e	

T1	
 T2	
 T3	

CS1	

CS2	

CS3	
 Tr
an

sf
er

s
of

 lo
ck

 o
w

ne
rs

hi
p	

C
ri

tic
al

 p
at

h	

Global spin (Spinlock),"
context switch (Blocking lock),"
remote thread wakeup (MCS),
global lock acq. (Flat Comb.),

…"

What lengthens the critical path?	

"1) Long transfers of lock ownership!

45	

What lengthens the critical path?	

	
2) Poor data locality in critical sections!

Contribution: Remote Core Locking	

T

im
e	

T1	
 T2	
 T3	

CS1	

CS3	

CS2	

Shared variable 2	

Shared variable 1	

46	

What lengthens the critical path?	

	
2) Poor data locality in critical sections!

Contribution: Remote Core Locking	

T

im
e	

T1	
 T2	
 T3	

CS1	

CS3	

CS2	

Shared variable 2	

Shared variable 1	

C
ri

tic
al

 p
at

h	

47	

Solution: Remote Core Locking	

Dedicate a core for executing critical sections !
	

Contribution: Remote Core Locking	

48	

Solution: Remote Core Locking	

Dedicate a core for executing critical sections !
	

Contribution: Remote Core Locking	

T

im
e	

T1	
 T2	
 T3	

CS1	

CS2	

CS3	

Server core	

49	

Solution: Remote Core Locking	

Dedicate a core for executing critical sections !
	

Contribution: Remote Core Locking	

T

im
e	

T1	
 T2	
 T3	

CS1	

CS2	

CS3	

Server core	

Shared variable 2	

Shared variable 1	

50	

Solution: Remote Core Locking	

Dedicate a core for executing critical sections !
	

Contribution: Remote Core Locking	

T

im
e	

T1	
 T2	
 T3	

C
ri

tic
al

 p
at

h	
CS1	

CS2	

CS3	

Server core	

Shared variable 2	

Shared variable 1	

51	

•  Problem: what to do when using several locks?	

–  False serialization, bad for performance	

•  If too much contention: simply add more servers	

–  Not a problem, because RCL only targets contended locks	

–  Typically only a handful of them	

False serialization	

…	

52	

•  Problem: what to do when using several locks?	

–  False serialization, bad for performance	

•  If too much contention: simply add more servers	

–  Not a problem, because RCL only targets contended locks	

–  Typically only a handful of them	

False serialization	

…	

53	

•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	

Implementation: general idea	

54	

•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	

&lock4!

Implementation: general idea	

Client thread 2 wants to execute a critical section protected by “lock4”!

cache	
miss	

55	

•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	

&lock4! 0xa0dc5f3a!

Implementation: general idea	

Client thread 2 wants to execute a critical section protected by “lock4”!

cache	
miss	

56	

•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

Client thread 2 wants to execute a critical section protected by “lock4”!

cache	
miss	

57	

•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

Client thread 2 wants to execute a critical section protected by “lock4”!

cache	
miss	

58	

•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

cache	
miss	

59	

•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

cache	
miss	

60	

•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

cache	
miss	

61	

•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

cache	
miss	

cache	
miss	

62	

•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

Server executes critical section"cache	
miss	

cache	
miss	

63	

•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

NULL! Server executes critical section"cache	
miss	

cache	
miss	

64	

•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

NULL!cache	
miss	

cache	
miss	

cache	
miss	

65	

•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

NULL! Client resumes execution"cache	
miss	

cache	
miss	

cache	
miss	

66	

•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

NULL!cache	
miss	

cache	
miss	

cache	
miss	

67	

•  Communication based on cache line-sized mailboxes	

•  Three fields: lock, context, function	

	

•  Client fills the field and waits for the function to be reset	

•  Server loops across the fields (fair)	

&foo!&lock4! 0xa0dc5f3a!

Implementation: general idea	

Client thread 2 wants to execute a critical section protected by “lock4”!
Server continuously checks mailboxes and executes critical sections!

NULL!cache	
miss	

cache	
miss	

cache	
miss	

Total = 1 server cache miss!
No atomic instruction!

68	

RCL Performance	

100 1,000 10,000 1e+05 1e+06
1,000

10,000

1e+05

1e+06

Ex
ec

ut
io

n
tim

e
(c

yc
le

s)

Delay

POSIX
Spinlock

MCS
Flat Comb.

RCL

ç Higher contention" Lower contention è"

CAS spinlock è"

MCS è"

RCL è"

Lo
w

er
 is

 b
et

te
r!

Flat Combining ì"
Blocking locks è"

69	

70	

RCL Performance	

100 1,000 10,000 1e+05 1e+06
1,000

10,000

1e+05

1e+06

Ex
ec

ut
io

n
tim

e
(c

yc
le

s)

Delay

POSIX
Spinlock

MCS

Flat Comb.
CC-Synch

DSM-Synch

RCL

ç Higher contention" Lower contention è"

CAS spinlock è"

RCL è"

Combining locks {"
ç Blocking locks"

Lo
w

er
 is

 b
et

te
r!

CC/DSM-Synch = Improved Flat Combining,	

without global lock or queue cleanup, developed���
in parallel with RCL [Fatourou PPoPP’12]	

MCS è"

Using RCL in legacy applications	

Three components : !
	

•  RCL runtime	

–  Library that makes it possible to write RCL applications	

	

•  Profiler	

–  To find out which applications / locks can potentially benefit from RCL	

•  Reengineering	

–  To transform code for traditional locks into code that can use RCL	

71	

Using RCL in legacy applications	

RCL Runtime: !
	

•  Handles blocking in critical sections (I/O, page faults…)	

–  Pool of servicing threads on server	

–  Able to service other (independent) critical sections when blocked	

	

•  Makes it possible to use condition variables (cond/wait)	

–  Used by ~50% of applications that use POSIX locks in Debian 6.0.3	

–  Not possible with combining locks	

72	

Using RCL in legacy applications	

Profiler: !
	

•  Detects which applications / locks benefit from RCL	

•  Uses two metrics: 	

–  % of time spent in critical sections (measures contention)	

–  Avg. # of cache misses in critical sections (measures data locality)	

!

73	

74	

Reengineering:
	

•  Critical sections must be encapsulated into functions	

–  Local variables sent as parameters (context)	

Using RCL in legacy applications (2)	

75	

Reengineering:
	

•  Critical sections must be encapsulated into functions	

–  Local variables sent as parameters (context)	

Using RCL in legacy applications (2)	

void func(void) {!
 int a, b, x;!
 …!
 a = …;!
 …!
 pthread_mutex_lock();!
 a = f(a);!
 f(b);!
 pthread_mutex_unlock();!
 …!
}!

struct context { int a, b };!
!
void func(void) {!

!struct context c;!
!int x;!
!…!
!c.a = …;!
!…!
!execute_rcl(__cs, &c);!
!…!

}!
!
void __cs(struct context *c) {!

!c->a = f(c->a)!
!f(c->b)!

}!

76	

Reengineering:
	

•  Critical sections must be encapsulated into functions	

–  Local variables sent as parameters (context)	

Using RCL in legacy applications (2)	

void func(void) {!
 int a, b, x;!
 …!
 a = …;!
 …!
 pthread_mutex_lock();!
 a = f(a);!
 f(b);!
 pthread_mutex_unlock();!
 …!
}!

struct context { int a, b };!
!
void func(void) {!

!struct context c;!
!int x;!
!…!
!c.a = …;!
!…!
!execute_rcl(__cs, &c);!
!…!

}!
!
void __cs(struct context *c) {!

!c->a = f(c->a)!
!f(c->b)!

}!

77	

Reengineering:
	

•  Critical sections must be encapsulated into functions	

–  Local variables sent as parameters (context)	

Using RCL in legacy applications (2)	

void func(void) {!
 int a, b, x;!
 …!
 a = …;!
 …!
 pthread_mutex_lock();!
 a = f(a);!
 f(b);!
 pthread_mutex_unlock();!
 …!
}!

struct context { int a, b };!
!
void func(void) {!

!struct context c;!
!int x;!
!…!
!c.a = …;!
!…!
!execute_rcl(__cs, &c);!
!…!

}!
!
void __cs(struct context *c) {!

!c->a = f(c->a)!
!f(c->b)!

}!

78	

Reengineering:
	

•  Critical sections must be encapsulated into functions	

–  Local variables sent as parameters (context)	

Using RCL in legacy applications (2)	

void func(void) {!
 int a, b, x;!
 …!
 a = …;!
 …!
 pthread_mutex_lock();!
 a = f(a);!
 f(b);!
 pthread_mutex_unlock();!
 …!
}!

struct context { int a, b };!
!
void func(void) {!

!struct context c;!
!int x;!
!…!
!c.a = …;!
!…!
!execute_rcl(__cs, &c);!
!…!

}!
!
void __cs(struct context *c) {!

!c->a = f(c->a)!
!f(c->b)!

}!

79	

Reengineering:
	

•  Critical sections must be encapsulated into functions	

–  Local variables sent as parameters (context)	

	

 	

	

•  Tool to reengineer applications automatically	

–  Possible to pick which locks use RCL	

–  To avoid false serialization:���

possible to pick which server(s) handle which lock(s).	

Using RCL in legacy applications (2)	

Outline	

•  Context: multicore architectures	

•  State of the art: locks	

•  Contribution: Remote Core Locking	

•  Evaluation in legacy applications!

–  Methodology!
–  Main results	

–  Scalability	

–  More software threads than hardware threads	

•  Perspectives and conclusion	

80	

Methodology	

•  Evaluation on two different machines	

–  Different architectures and OSes	

•  Different application types	

–  Parallel computing	

•  Scientific computations (SPLASH-2), MapReduce (Phoenix 2)	

–  Server applications (Memcached, Berkeley DB)	

•  Different configurations	

–  One software thread per hardware thread	

–  More software threads than hardware threads (Berkeley DB)	

81	

Magnycours-48	

•  Four Opteron 6172, two dies per CPU, six cores per die	

–  No hardware multithreading: 48 hardware threads	

•  Non-complete interconnect graph	

–  Asymmetrical access times	
 Magnycours-‐48	

82	

Niagara2-128	

•  Two UltraSPARC-T2+ CPUs, each with 8 cores	

•  Simultaneous hyperthreading: 8 hardware threads per core (!)	

–  128 hardware threads	

•  Less representative of current multicore machines	
 Niagara2-‐128	

83	

Differences	

•  Magnycours-48 has much faster sequential speed	

•  Niagara2-128 has faster communication speed / sequential speed	

•  On SPLASH-2, parallel scientific applications:	

 0

 5

 10

 15

 20

 25

 30

Radiosity

Raytrace/Balls4

Raytrace/Car

Barnes

FMM
Ocean Contiguous

Ocean Non-Cont.

Volrend

Water-nsquared

Water-spatial

Ex
ec

ut
io

n
tim

e
(s

)

 0

 5

 10

 15

 20

 25

 30

Radiosity

Raytrace/Balls4

Raytrace/Car

Barnes

FM
M

O
cean Contiguous

O
cean Non-Cont.

Volrend

W
ater-nsquared

W
ater-spatial

 0

 2

 4

 6

 8

 10

 12

 14

Radiosity

Raytrace/Balls4

Raytrace/Car

Barnes

FMM
Ocean Contiguous

Ocean Non-Cont.

Volrend

Water-nsquared

Water-spatial

Ex
ec

ut
io

n
tim

e
(s

)

 0

 2

 4

 6

 8

 10

 12

 14

Radiosity

Raytrace/Balls4

Raytrace/Car

Barnes

FM
M

O
cean Contiguous

O
cean Non-Cont.

Volrend

W
ater-nsquared

W
ater-spatial

 0

 2

 4

 6

 8

 10

 12

 14

Radiosity

Raytrace/Balls4

Raytrace/Car

Barnes

FMM
Ocean Contiguous

Ocean Non-Cont.

Volrend

Water-nsquared

Water-spatial

Magnycours-48 Niagara2-128

 0

 2

 4

 6

 8

 10

 12

 14

Radiosity

Raytrace/Balls4

Raytrace/Car

Barnes

FM
M

O
cean Contiguous

O
cean Non-Cont.

Volrend

W
ater-nsquared

W
ater-spatial

Magnycours-48 Niagara2-128

Se
qu

en
tia

l e
xe

cu
tio

n"

12
8

th
re

ad
s"

84	

Lo
w

er
 is

 b
et

te
r!

Lo
w

er
 is

 b
et

te
r!

Differences	

•  Magnycours-48 has much faster sequential speed	

•  Niagara2-128 has faster communication speed / sequential speed	

•  On SPLASH-2, parallel scientific applications:	

 0

 5

 10

 15

 20

 25

 30

Radiosity

Raytrace/Balls4

Raytrace/Car

Barnes

FMM
Ocean Contiguous

Ocean Non-Cont.

Volrend

Water-nsquared

Water-spatial

Ex
ec

ut
io

n
tim

e
(s

)

 0

 5

 10

 15

 20

 25

 30

Radiosity

Raytrace/Balls4

Raytrace/Car

Barnes

FM
M

O
cean Contiguous

O
cean Non-Cont.

Volrend

W
ater-nsquared

W
ater-spatial

 0

 2

 4

 6

 8

 10

 12

 14

Radiosity

Raytrace/Balls4

Raytrace/Car

Barnes

FMM
Ocean Contiguous

Ocean Non-Cont.

Volrend

Water-nsquared

Water-spatial

Ex
ec

ut
io

n
tim

e
(s

)

 0

 2

 4

 6

 8

 10

 12

 14

Radiosity

Raytrace/Balls4

Raytrace/Car

Barnes

FM
M

O
cean Contiguous

O
cean Non-Cont.

Volrend

W
ater-nsquared

W
ater-spatial

 0

 2

 4

 6

 8

 10

 12

 14

Radiosity

Raytrace/Balls4

Raytrace/Car

Barnes

FMM
Ocean Contiguous

Ocean Non-Cont.

Volrend

Water-nsquared

Water-spatial

Magnycours-48 Niagara2-128

 0

 2

 4

 6

 8

 10

 12

 14

Radiosity

Raytrace/Balls4

Raytrace/Car

Barnes

FM
M

O
cean Contiguous

O
cean Non-Cont.

Volrend

W
ater-nsquared

W
ater-spatial

Magnycours-48 Niagara2-128

Se
qu

en
tia

l e
xe

cu
tio

n"

12
8

th
re

ad
s"

85	

Lo
w

er
 is

 b
et

te
r!

Lo
w

er
 is

 b
et

te
r!

Differences	

•  Magnycours-48 has much faster sequential speed	

•  Niagara2-128 has faster communication speed / sequential speed	

•  On SPLASH-2, parallel scientific applications:	

 0

 5

 10

 15

 20

 25

 30

Radiosity

Raytrace/Balls4

Raytrace/Car

Barnes

FMM
Ocean Contiguous

Ocean Non-Cont.

Volrend

Water-nsquared

Water-spatial

Ex
ec

ut
io

n
tim

e
(s

)

 0

 5

 10

 15

 20

 25

 30

Radiosity

Raytrace/Balls4

Raytrace/Car

Barnes

FM
M

O
cean Contiguous

O
cean Non-Cont.

Volrend

W
ater-nsquared

W
ater-spatial

 0

 2

 4

 6

 8

 10

 12

 14

Radiosity

Raytrace/Balls4

Raytrace/Car

Barnes

FMM
Ocean Contiguous

Ocean Non-Cont.

Volrend

Water-nsquared

Water-spatial

Ex
ec

ut
io

n
tim

e
(s

)

 0

 2

 4

 6

 8

 10

 12

 14

Radiosity

Raytrace/Balls4

Raytrace/Car

Barnes

FM
M

O
cean Contiguous

O
cean Non-Cont.

Volrend

W
ater-nsquared

W
ater-spatial

 0

 2

 4

 6

 8

 10

 12

 14

Radiosity

Raytrace/Balls4

Raytrace/Car

Barnes

FMM
Ocean Contiguous

Ocean Non-Cont.

Volrend

Water-nsquared

Water-spatial

Magnycours-48 Niagara2-128

 0

 2

 4

 6

 8

 10

 12

 14

Radiosity

Raytrace/Balls4

Raytrace/Car

Barnes

FM
M

O
cean Contiguous

O
cean Non-Cont.

Volrend

W
ater-nsquared

W
ater-spatial

Magnycours-48 Niagara2-128

Se
qu

en
tia

l e
xe

cu
tio

n"

12
8

th
re

ad
s"

86	

Lo
w

er
 is

 b
et

te
r!

Lo
w

er
 is

 b
et

te
r!

Outline	

•  Context: multicore architectures	

•  State of the art: locks	

•  Contribution: Remote Core Locking	

•  Evaluation in legacy applications!

–  Methodology	

–  Main results!
–  Scalability	

–  More software threads than hardware threads	

•  Perspectives and conclusion	

87	

 0

 20

 40

 60

 80

 100

100 1000 10000 100000 1e+06

%
 o

f t
im

e
in

 C
S

Delay (cycles)

Collapse of POSIX (105,000 cycles): 15%

Collapse of MCS (60,000 cycles): 60%

Profiling: !
•  Custom profiler to find good candidates	

•  Metric: time spent in critical sections	

•  Running the profiler on the microbenchmark shows that:	

–  If time spent in CS > 15%, RCL is more efficient than POSIX locks	

–  If time spent in CS > 60%, RCL is more efficient than all other locks	

	

	

Main results	
 Magnycours-‐48	

88	

 0

 20

 40

 60

 80

 100

100 1000 10000 100000 1e+06

%
 o

f t
im

e
in

 C
S

Delay (cycles)

Collapse of POSIX (105,000 cycles): 15%

Collapse of MCS (60,000 cycles): 60%

89	

100 1,000 10,000 1e+05 1e+06
1,000

10,000

1e+05

1e+06

Ex
ec

ut
io

n
tim

e
(c

yc
le

s)

Delay

POSIX
Spinlock

MCS

MCS-TP
Flat Comb.
CC-Synch

DSM-Synch
RCL

 0

 0.5

 1

 1.5

 2

 2.5

 3

Memcached:
Set

String
Match

Raytrace:
Balls4

Memcached:
Get

Linear
Regression

Radiosity Raytrace:
Car

Matrix
Multiply

Be
st

 p
er

f.
/ b

es
t P

O
SI

X
pe

rf.

POSIX
Spinlock

MCS
Flat Combining

 D
oe

s
no

t r
un

 D
oe

s
no

t r
un

CC-Synch

 D
oe

s
no

t r
un

 D
oe

s
no

t r
un

DSM-Synch

 D
oe

s
no

t r
un

 D
oe

s
no

t r
un

RCL

 0

 0.5

 1

 1.5

 2

 2.5

 3

Memcached:
Set

String
Match

Raytrace:
Balls4

Memcached:
Get

Linear
Regression

Radiosity Raytrace:
Car

Matrix
Multiply

POSIX
Spinlock

MCS
Flat Combining

CC-Synch
DSM-Synch

RCL

•  Better performance when time in CS > 60%	

–  Performance improvement correlated with time in CS	

•  Only one or two locks replaced each time	

% in CS:! 44.7%  
(many DCMs)"

63.9%" 65.7%" 79.0%" 81.6%" 87.7%" 90.2%" 92.2%"

Main results	

H
ig

he
r i

s
be

tte
r!

Magnycours-‐48	

90	

 0

 0.5

 1

 1.5

 2

 2.5

 3

Memcached:
Set

String
Match

Raytrace:
Balls4

Memcached:
Get

Linear
Regression

Radiosity Raytrace:
Car

Matrix
Multiply

Be
st

 p
er

f.
/ b

es
t P

O
SI

X
pe

rf.

POSIX
Spinlock

MCS
Flat Combining

 D
oe

s
no

t r
un

 D
oe

s
no

t r
un

CC-Synch

 D
oe

s
no

t r
un

 D
oe

s
no

t r
un

DSM-Synch

 D
oe

s
no

t r
un

 D
oe

s
no

t r
un

RCL

 0

 0.5

 1

 1.5

 2

 2.5

 3

Memcached:
Set

String
Match

Raytrace:
Balls4

Memcached:
Get

Linear
Regression

Radiosity Raytrace:
Car

Matrix
Multiply

POSIX
Spinlock

MCS
Flat Combining

CC-Synch
DSM-Synch

RCL

•  Better performance when time in CS > 60%	

–  Performance improvement correlated with time in CS	

•  Only one or two locks replaced each time	

% in CS:! 44.7%  
(many DCMs)"

63.9%" 65.7%" 79.0%" 81.6%" 87.7%" 90.2%" 92.2%"

Main results	

H
ig

he
r i

s
be

tte
r!

Magnycours-‐48	

91	

 0

 0.5

 1

 1.5

 2

 2.5

 3

Memcached:
Set

String
Match

Raytrace:
Balls4

Memcached:
Get

Linear
Regression

Radiosity Raytrace:
Car

Matrix
Multiply

Be
st

 p
er

f.
/ b

es
t P

O
SI

X
pe

rf.

POSIX
Spinlock

MCS
Flat Combining

 D
oe

s
no

t r
un

 D
oe

s
no

t r
un

CC-Synch

 D
oe

s
no

t r
un

 D
oe

s
no

t r
un

DSM-Synch

 D
oe

s
no

t r
un

 D
oe

s
no

t r
un

RCL

 0

 0.5

 1

 1.5

 2

 2.5

 3

Memcached:
Set

String
Match

Raytrace:
Balls4

Memcached:
Get

Linear
Regression

Radiosity Raytrace:
Car

Matrix
Multiply

POSIX
Spinlock

MCS
Flat Combining

CC-Synch
DSM-Synch

RCL

•  Better performance when time in CS > 60%	

–  Performance improvement correlated with time in CS	

•  Only one or two locks replaced each time	

% in CS:! 44.7%  
(many DCMs)"

63.9%" 65.7%" 79.0%" 81.6%" 87.7%" 90.2%" 92.2%"

Main results	

H
ig

he
r i

s
be

tte
r!

Magnycours-‐48	

92	

 0

 20

 40

 60

 80

 100

100 1000 10000 100000 1e+06 1e+07

%
 o

f t
im

e
in

 C
S

Delay (cycles)

Collapse of POSIX (240,000 cycles): 15%

Collapse of MCS (60,000 cycles): 85%

Main results	
 Niagara2-‐128	

	

•  On Niagara2-128: profiler thresholds = 15% / 85%	

93	

 0.75

 1

 1.25

Memcached: Set Radiosity Memcached: Get Raytrace: Car

Be
st

 p
er

f.
/ b

es
t P

O
SI

X
pe

rf.

POSIX
Spinlock

MCS
Flat Combining

 D
oe

s
no

t r
un

 D
oe

s
no

t r
un

CC-Synch

 D
oe

s
no

t r
un

 D
oe

s
no

t r
un

DSM-Synch

 D
oe

s
no

t r
un

 D
oe

s
no

t r
un

RCL

 0.75

 1

 1.25

Memcached: Set Radiosity Memcached: Get Raytrace: Car

POSIX
Spinlock

MCS
Flat Combining

CC-Synch
DSM-Synch

RCL

•  On Niagara2-128, no bench > 85%	

–  Faster communication / sequential speed, less issues with contention	

•  Still some performance gains when time in CS > 15%	

% in CS:! 20.2%  
(many DCMs)"

38.7%" 69.2%" 79.1%"

H
ig

he
r i

s
be

tte
r!

Main results	
 Niagara2-‐128	

94	

 0.75

 1

 1.25

Memcached: Set Radiosity Memcached: Get Raytrace: Car

Be
st

 p
er

f.
/ b

es
t P

O
SI

X
pe

rf.

POSIX
Spinlock

MCS
Flat Combining

 D
oe

s
no

t r
un

 D
oe

s
no

t r
un

CC-Synch

 D
oe

s
no

t r
un

 D
oe

s
no

t r
un

DSM-Synch

 D
oe

s
no

t r
un

 D
oe

s
no

t r
un

RCL

 0.75

 1

 1.25

Memcached: Set Radiosity Memcached: Get Raytrace: Car

POSIX
Spinlock

MCS
Flat Combining

CC-Synch
DSM-Synch

RCL

•  On Niagara2-128, no bench > 85%	

–  Faster communication / sequential speed, less issues with contention	

•  Still some performance gains when time in CS > 15%	

% in CS:! 20.2%  
(many DCMs)"

38.7%" 69.2%" 79.1%"

H
ig

he
r i

s
be

tte
r!

Main results	
 Niagara2-‐128	

95	

 0.75

 1

 1.25

Memcached: Set Radiosity Memcached: Get Raytrace: Car

Be
st

 p
er

f.
/ b

es
t P

O
SI

X
pe

rf.

POSIX
Spinlock

MCS
Flat Combining

 D
oe

s
no

t r
un

 D
oe

s
no

t r
un

CC-Synch

 D
oe

s
no

t r
un

 D
oe

s
no

t r
un

DSM-Synch

 D
oe

s
no

t r
un

 D
oe

s
no

t r
un

RCL

 0.75

 1

 1.25

Memcached: Set Radiosity Memcached: Get Raytrace: Car

POSIX
Spinlock

MCS
Flat Combining

CC-Synch
DSM-Synch

RCL

•  On Niagara2-128, no bench > 85%	

–  Faster communication / sequential speed, less issues with contention	

•  Still some performance gains when time in CS > 15%	

% in CS:! 20.2%  
(many DCMs)"

38.7%" 69.2%" 79.1%"

H
ig

he
r i

s
be

tte
r!

Main results	
 Niagara2-‐128	

96	

Outline	

•  Context: multicore architectures	

•  State of the art: locks	

•  Contribution: Remote Core Locking	

•  Evaluation in legacy applications!

–  Methodology	

–  Main results	

–  Scalability!
–  More software threads than hardware threads	

•  Perspectives and conclusion	

97	

•  RCL not only improves performance, it also improves scalability	

•  Example: Memcached with Set requests	

–  On Magnycours-48 and Niagara2-128	

•  Memcached uses condition variables	

–  No results for combining locks	

when benchmarking other types of locks. The remaining 47
cores each run a client, i.e., a thread that executes critical
sections. Each client waits for a given delay between the
end of one critical section and the beginning of the next
one: the shorter the delay, the higher the contention. For
each delay value, 1000 critical sections are executed. In
each critical section, a client references and updates a given
number of shared cache lines by incrementing the values in
shared memory locations. These locations are scattered across
memory in such a way that two such locations are never
mapped to the same cache line: thus, to access n shared cache
lines, the microbenchmark simply accesses n shared memory
locations. In order to ensure that cache line accesses are
not pipelined, we construct the address of the next memory
location that is accessed using the value read from the current
memory location [32].

The results for critical section execution time are shown
in Figure 7(a). Under high contention (the left side of the
graph), RCL is always faster than all the other considered
types of locks. Flat combining is the best after RCL, but is
still 2.5 times slower. MCS is slower than flat combining.
Due to the fact that each critical section is executed locally,
its performance decreases significantly when 5 cache lines
are accessed. The traditional spinlock is the slowest of all
locks under high contention, due to the overhead of cache
coherency messages when all threads spin on a compare-and-
swap instruction. Finally, POSIX locks are as efficient as
MCS locks under very high contention, but their execution
time increases as contention decreases.

When contention is low (the right side of Figure 7(a)) and
the critical section only accesses one cache line, spinlocks,
MCS locks and RCL have similar performance. Spinlocks
are best with a critical section execution time of 1350 cycles;
RCL is the next best and is only 13% slower. However,
when critical sections access 5 cache lines, the execution
time of both traditional spinlocks and MCS locks increases
significantly, whereas that of RCL remains stable. This is due
to the fact that all critical sections are executed on the same
core, thus improving cache locality. The execution time of flat
combining also remains stable when the number of memory
accesses increases, but it is more than ten times higher than
that of RCL. POSIX locks perform better than flat combining
but not as well as spinlocks, MCS and RCL.

Figure 7(b) shows the number of L2 cache misses per
critical section for each lock. The execution time of each
lock is directly correlated with its number of cache misses,
except for the POSIX locks, whose overhead is mainly
due to the high cost of context switches. Even though the
number of cache misses increases as the contention increases
for both spinlocks and MCS locks, it remains stable for
RCL, which shows how well RCL suited is for highly-
contended locks. The number of cache misses when using
flat combining increases as the contention decreases, which
directly reflects the high execution time of flat combining

under low contention. These cache misses are caused by the
server when it scans the linked list of requests: accessing
each element of this linked list typically incurs a cache
miss. This scan also occurs at high contention, but several
critical sections are also executed simultaneously, while at
low contention, only one critical section is executed for the
same number of cache misses.

4.3 SPLASH-2
SPLASH-2 is a classic benchmark suite consisting of a num-
ber of legacy multithreaded applications and application ker-
nels. It has been previously used to evaluate locking algo-
rithms [11, 14]. We use SPLASH-2 both to evaluate our
reengineering tool and to evaluate the accuracy of our profiler
and the performance of RCL. The nine applications and five
application kernels included in the SPLASH-2 benchmark
suite contain a total of 137 critical sections. All of these criti-
cal sections are correctly transformed by our reengineering
tool. The reengineering process takes around 20 minutes on
a 8-core 3GHz machine with 16GB memory.

 0
 2
 4
 6
 8

 10
 12
 14

 5 10 15 20 25 30 35 40 45

Sp
ee

du
p

Number of cores

(a) Raytrace with the scene

 0
 5

 10
 15
 20
 25
 30
 35
 40

 5 10 15 20 25 30 35 40 45

Sp
ee

du
p

Number of cores

(b) Raytrace with the scene

 0
 5

 10
 15
 20
 25
 30

 5 10 15 20 25 30 35 40 45

Sp
ee

du
p

Number of cores

(c) Radiosity

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35 40 45

Sp
ee

du
p

Number of cores

posix spinlock mcs flat rcl

Figure 8. SPLASH-2 results. Each data point is the average
of 30 runs.

As presented in Section 3.1, among all the locks used in
SPLASH-2, we have identified only three as having high
enough contention to be interesting candidates for RCL:

9 2011/10/21

Scalability of RCL	

98	

•  Memcached, Set requests:	

when benchmarking other types of locks. The remaining 47
cores each run a client, i.e., a thread that executes critical
sections. Each client waits for a given delay between the
end of one critical section and the beginning of the next
one: the shorter the delay, the higher the contention. For
each delay value, 1000 critical sections are executed. In
each critical section, a client references and updates a given
number of shared cache lines by incrementing the values in
shared memory locations. These locations are scattered across
memory in such a way that two such locations are never
mapped to the same cache line: thus, to access n shared cache
lines, the microbenchmark simply accesses n shared memory
locations. In order to ensure that cache line accesses are
not pipelined, we construct the address of the next memory
location that is accessed using the value read from the current
memory location [32].

The results for critical section execution time are shown
in Figure 7(a). Under high contention (the left side of the
graph), RCL is always faster than all the other considered
types of locks. Flat combining is the best after RCL, but is
still 2.5 times slower. MCS is slower than flat combining.
Due to the fact that each critical section is executed locally,
its performance decreases significantly when 5 cache lines
are accessed. The traditional spinlock is the slowest of all
locks under high contention, due to the overhead of cache
coherency messages when all threads spin on a compare-and-
swap instruction. Finally, POSIX locks are as efficient as
MCS locks under very high contention, but their execution
time increases as contention decreases.

When contention is low (the right side of Figure 7(a)) and
the critical section only accesses one cache line, spinlocks,
MCS locks and RCL have similar performance. Spinlocks
are best with a critical section execution time of 1350 cycles;
RCL is the next best and is only 13% slower. However,
when critical sections access 5 cache lines, the execution
time of both traditional spinlocks and MCS locks increases
significantly, whereas that of RCL remains stable. This is due
to the fact that all critical sections are executed on the same
core, thus improving cache locality. The execution time of flat
combining also remains stable when the number of memory
accesses increases, but it is more than ten times higher than
that of RCL. POSIX locks perform better than flat combining
but not as well as spinlocks, MCS and RCL.

Figure 7(b) shows the number of L2 cache misses per
critical section for each lock. The execution time of each
lock is directly correlated with its number of cache misses,
except for the POSIX locks, whose overhead is mainly
due to the high cost of context switches. Even though the
number of cache misses increases as the contention increases
for both spinlocks and MCS locks, it remains stable for
RCL, which shows how well RCL suited is for highly-
contended locks. The number of cache misses when using
flat combining increases as the contention decreases, which
directly reflects the high execution time of flat combining

under low contention. These cache misses are caused by the
server when it scans the linked list of requests: accessing
each element of this linked list typically incurs a cache
miss. This scan also occurs at high contention, but several
critical sections are also executed simultaneously, while at
low contention, only one critical section is executed for the
same number of cache misses.

4.3 SPLASH-2
SPLASH-2 is a classic benchmark suite consisting of a num-
ber of legacy multithreaded applications and application ker-
nels. It has been previously used to evaluate locking algo-
rithms [11, 14]. We use SPLASH-2 both to evaluate our
reengineering tool and to evaluate the accuracy of our profiler
and the performance of RCL. The nine applications and five
application kernels included in the SPLASH-2 benchmark
suite contain a total of 137 critical sections. All of these criti-
cal sections are correctly transformed by our reengineering
tool. The reengineering process takes around 20 minutes on
a 8-core 3GHz machine with 16GB memory.

 0
 2
 4
 6
 8

 10
 12
 14

 5 10 15 20 25 30 35 40 45

Sp
ee

du
p

Number of cores

(a) Raytrace with the scene

 0
 5

 10
 15
 20
 25
 30
 35
 40

 5 10 15 20 25 30 35 40 45

Sp
ee

du
p

Number of cores

(b) Raytrace with the scene

 0
 5

 10
 15
 20
 25
 30

 5 10 15 20 25 30 35 40 45

Sp
ee

du
p

Number of cores

(c) Radiosity

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35 40 45

Sp
ee

du
p

Number of cores

posix spinlock mcs flat rcl

Figure 8. SPLASH-2 results. Each data point is the average
of 30 runs.

As presented in Section 3.1, among all the locks used in
SPLASH-2, we have identified only three as having high
enough contention to be interesting candidates for RCL:

9 2011/10/21

Scalability of RCL	

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 6 12 18 22

Sp
ee

du
p

threads

H
ig

he
r i

s
be

tte
r!

POSIX Spinlock MCS RCL

Magnycours-‐48	

99	

•  Memcached, Set requests:	

when benchmarking other types of locks. The remaining 47
cores each run a client, i.e., a thread that executes critical
sections. Each client waits for a given delay between the
end of one critical section and the beginning of the next
one: the shorter the delay, the higher the contention. For
each delay value, 1000 critical sections are executed. In
each critical section, a client references and updates a given
number of shared cache lines by incrementing the values in
shared memory locations. These locations are scattered across
memory in such a way that two such locations are never
mapped to the same cache line: thus, to access n shared cache
lines, the microbenchmark simply accesses n shared memory
locations. In order to ensure that cache line accesses are
not pipelined, we construct the address of the next memory
location that is accessed using the value read from the current
memory location [32].

The results for critical section execution time are shown
in Figure 7(a). Under high contention (the left side of the
graph), RCL is always faster than all the other considered
types of locks. Flat combining is the best after RCL, but is
still 2.5 times slower. MCS is slower than flat combining.
Due to the fact that each critical section is executed locally,
its performance decreases significantly when 5 cache lines
are accessed. The traditional spinlock is the slowest of all
locks under high contention, due to the overhead of cache
coherency messages when all threads spin on a compare-and-
swap instruction. Finally, POSIX locks are as efficient as
MCS locks under very high contention, but their execution
time increases as contention decreases.

When contention is low (the right side of Figure 7(a)) and
the critical section only accesses one cache line, spinlocks,
MCS locks and RCL have similar performance. Spinlocks
are best with a critical section execution time of 1350 cycles;
RCL is the next best and is only 13% slower. However,
when critical sections access 5 cache lines, the execution
time of both traditional spinlocks and MCS locks increases
significantly, whereas that of RCL remains stable. This is due
to the fact that all critical sections are executed on the same
core, thus improving cache locality. The execution time of flat
combining also remains stable when the number of memory
accesses increases, but it is more than ten times higher than
that of RCL. POSIX locks perform better than flat combining
but not as well as spinlocks, MCS and RCL.

Figure 7(b) shows the number of L2 cache misses per
critical section for each lock. The execution time of each
lock is directly correlated with its number of cache misses,
except for the POSIX locks, whose overhead is mainly
due to the high cost of context switches. Even though the
number of cache misses increases as the contention increases
for both spinlocks and MCS locks, it remains stable for
RCL, which shows how well RCL suited is for highly-
contended locks. The number of cache misses when using
flat combining increases as the contention decreases, which
directly reflects the high execution time of flat combining

under low contention. These cache misses are caused by the
server when it scans the linked list of requests: accessing
each element of this linked list typically incurs a cache
miss. This scan also occurs at high contention, but several
critical sections are also executed simultaneously, while at
low contention, only one critical section is executed for the
same number of cache misses.

4.3 SPLASH-2
SPLASH-2 is a classic benchmark suite consisting of a num-
ber of legacy multithreaded applications and application ker-
nels. It has been previously used to evaluate locking algo-
rithms [11, 14]. We use SPLASH-2 both to evaluate our
reengineering tool and to evaluate the accuracy of our profiler
and the performance of RCL. The nine applications and five
application kernels included in the SPLASH-2 benchmark
suite contain a total of 137 critical sections. All of these criti-
cal sections are correctly transformed by our reengineering
tool. The reengineering process takes around 20 minutes on
a 8-core 3GHz machine with 16GB memory.

 0
 2
 4
 6
 8

 10
 12
 14

 5 10 15 20 25 30 35 40 45

Sp
ee

du
p

Number of cores

(a) Raytrace with the scene

 0
 5

 10
 15
 20
 25
 30
 35
 40

 5 10 15 20 25 30 35 40 45

Sp
ee

du
p

Number of cores

(b) Raytrace with the scene

 0
 5

 10
 15
 20
 25
 30

 5 10 15 20 25 30 35 40 45

Sp
ee

du
p

Number of cores

(c) Radiosity

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35 40 45

Sp
ee

du
p

Number of cores

posix spinlock mcs flat rcl

Figure 8. SPLASH-2 results. Each data point is the average
of 30 runs.

As presented in Section 3.1, among all the locks used in
SPLASH-2, we have identified only three as having high
enough contention to be interesting candidates for RCL:

9 2011/10/21

Scalability of RCL	

 0

 1

 2

 3

 4

 5

 1 8 16 24 32 40 48 56 62

Sp
ee

du
p

threads

H
ig

he
r i

s
be

tte
r!

POSIX Spinlock MCS RCL

Niagara2-‐128	

100	

Outline	

•  Context: multicore architectures	

•  State of the art: locks	

•  Contribution: Remote Core Locking	

•  Evaluation in legacy applications!

–  Methodology	

–  Main results	

–  Scalability	

–  More software threads than hardware threads!

•  Perspectives and conclusion	

101	

More sw threads than hw threads	

•  Many locks perform poorly when many software threads	

–  Some spinning threads get woken up	

–  Possible interference with scheduling: convoy effect (very slow)	

•  RCL dedicates a core: it always makes progress on the critical path	

102	

•  Berkeley DB / TPC-C, Stock Level requests:	

 100

 500

 1,000

 1,500

 2,000

 2,500

 1 48 96 128 256 384

G
lo

ba
l #

 re
qu

es
ts

 /
se

co
nd

clients

Original
POSIX

Spinlock
MCS

MCS-TP
Flat Combining

CC-Synch
DSM-Synch

Magnycours-‐48	

H
ig

he
r i

s
be

tte
r!

More SW threads than HW threads	

POSIX Spinlock MCS RCL

103	

•  Berkeley DB / TPC-C, Stock Level requests:	

Original
POSIX

Spinlock
MCS

MCS-TP
Flat Combining

CC-Synch
DSM-Synch

 100

 500

 1,000

 1,500

 2,000

 2,500

 1 48 96 128 256 384

G
lo

ba
l #

 re
qu

es
ts

 /
se

co
nd

clients

Quick collapse!

Magnycours-‐48	

H
ig

he
r i

s
be

tte
r!

More SW threads than HW threads	

POSIX Spinlock MCS RCL

104	

•  Berkeley DB / TPC-C, Stock Level requests:	

Original
POSIX

Spinlock
MCS

MCS-TP
Flat Combining

CC-Synch
DSM-Synch

Quick collapse!

 100

 500

 1,000

 1,500

 2,000

 2,500

 1 48 96 128 256 384

G
lo

ba
l #

 re
qu

es
ts

 /
se

co
nd

clients

Magnycours-‐48	

H
ig

he
r i

s
be

tte
r!

More SW threads than HW threads	

POSIX Spinlock MCS RCL

105	

•  Berkeley DB / TPC-C, Stock Level requests:	

H
ig

he
r i

s
be

tte
r!

100

500

1,000

1,500

2,000

2,500

 1 48 96 128 256 384

G
lo

ba
l #

 re
qu

es
ts

 /
se

co
nd

clients

Original
POSIX

Spinlock
MCS

MCS-TP
Flat Combining

CC-Synch
DSM-Synch

Niagara2-‐128	

More SW threads than HW threads	

POSIX Spinlock MCS RCL

106	

Yielding the processor	

Was that a fair comparison?	

107	

Yielding the processor	

Was that a fair comparison?	
	

•  What if locks yield the CPU instead of spinning?	

•  Less reactive, but threads no longer woken up just to spin?	

•  Added calls to yield() in MCS, MCS-TP, Combining Locks	

–  …and RCL clients	

108	

Yielding the processor	

•  Berkeley DB / TPC-C, Stock Level requests, yield():	

 100

 500

 1,000

 1,500

 2,000

 2,500

 1 48 96 128 256 384

G
lo

ba
l #

 re
qu

es
ts

 /
se

co
nd

clients

Original
POSIX

Spinlock
MCS

MCS-TP
Flat Combining

CC-Synch
DSM-Synch

H
ig

he
r i

s
be

tte
r!

POSIX Spinlock MCS RCL

Magnycours-‐48	

109	

Yielding the processor	

•  Berkeley DB / TPC-C, Stock Level requests, yield():	

H
ig

he
r i

s
be

tte
r!

100

500

1,000

1,500

2,000

 1 48 96 128 256 384

G
lo

ba
l #

 re
qu

es
ts

 /
se

co
nd

clients

Original
POSIX

Spinlock
MCS

MCS-TP
Flat Combining

CC-Synch
DSM-Synch

POSIX Spinlock MCS RCL

Niagara2-‐128	

110	

Outline	

•  Context: multicore architectures	

•  State of the art: locks	

•  Contribution: Remote Core Locking	

•  Evaluation in legacy applications	

•  Perspectives and conclusion!

111	

•  Modified RCL implementations	

–  Dynamic RCL runtime	

–  Hierarchical RCL	

–  RCL for embedded architectures	

•  HTMs: supported by Haswell	

–  What can RCL do for transactional memories?	

–  Hassan et al. [IPDPS ’14] propose a STM algorithm…	

•  …that runs commit and invalidation on dedicated remote server threads 	

•  …with cache-aligned communication	

•  …and uses RCL for locks	

Perspectives	

112	

•  Non-cache-coherent architectures	

–  Could RCL provide performance improvements���

on non-cache-coherent architectures?	

–  Petrović et al. [PPoPP ’14] propose an algorithm inspired by RCL ���

for partially cache-coherent architectures	

–  Major performance improvements on TILE-Gx CPUs.	

Perspectives	

113	

•  RCL reduces lock acquisition time and improves data locality	

–  Cost: uses a few cores and may perform worse with few threads	

•  Profiler to detect when RCL can be useful	

•  Tool to ease the transformation of legacy code	

•  Future work:	

–  Modified RCL implementations	

–  Applying ideas from RCL to HTMs and NCC architectures	

–  Started by others	

Conclusion	

114	

