
PhD Thesis, Université Pierre et Marie Curie
Whisper team, LIP6/INRIA

Subject: Computer Science
Option: Distributed Systems

Presented by: Jean-Pierre Lozi

Towards More Scalable Mutual Exclusion
for Multicore Architectures

Vers des mécanismes d’exclusion mutuelle
plus efficaces pour les architectures multi-cœur

Presented on 16/07/14 in front of the following jury:

M. Luc Bouganim INRIA Paris-Rocquencourt Paris, France Examiner
M. Tim Harris Oracle Labs Cambridge, UK Examiner
M. Maurice Herlihy Brown University Providence, RI, USA Examiner
M. Gilles Muller Univ. Pierre et Marie Curie (LIP6/INRIA) Paris, France Advisor
M. Vivien Quéma INP / ENSIMAG (LIG) Grenoble, France Reviewer
M. Wolfgang Schröder-Preikschat Friedrich-Alexander-Universität Erlangen, Germany Reviewer
M. Gaël Thomas Univ. Pierre et Marie Curie (LIP6/INRIA) Paris, France Advisor

Abstract

The scalability of multithreaded applications on current multicore systems is hampered by the
performance of lock algorithms, due to the costs of access contention and cache misses. The
main contribution presented in this thesis is a new lock algorithm, Remote Core Locking (RCL),
that aims to improve the performance of critical sections in legacy applications on multicore
architectures. The idea of RCL is to replace lock acquisitions by optimized remote procedure calls
to a dedicated hardware thread, which is referred to as the server. RCL limits the performance
collapse observed with other lock algorithms when many threads try to acquire a lock concurrently
and removes the need to transfer lock-protected shared data to the hardware thread acquiring
the lock because such data can typically remain in the server’s cache.

Other contributions presented in this thesis include a profiler that identifies the locks that are
the bottlenecks in multithreaded applications and that can thus benefit from RCL, and a reengi-
neering tool developed with Julia Lawall that transforms POSIX locks into RCL locks. Eighteen
applications were used to evaluate RCL: the nine applications of the SPLASH-2 benchmark suite,
the seven applications of the Phoenix 2 benchmark suite, Memcached, and Berkeley DB with
a TPC-C client. Eight of these applications are unable to scale because of locks and benefit from
RCL on an x86 machine with four AMD Opteron processors and 48 hardware threads. Using RCL
locks, performance is improved by up to 2.5 times with respect to POSIX locks on Memcached,
and up to 11.6 times with respect to Berkeley DB with the TPC-C client. On an SPARC machine
with two Sun Ultrasparc T2+ processors and 128 hardware threads, three applications benefit
from RCL. In particular, performance is improved by up to 1.3 times with respect to POSIX
locks on Memcached, and up to 7.9 times with respect to Berkeley DB with the TPC-C client.

Keywords. Multicore, synchronization, lock, combining, RPC, locality, busy-waiting, memory
contention, profiling, reengineering.

i

Acknowledgments

I would like to thank my advisors Gilles Muller and Gaël Thomas, as well as Julia Lawall for
their help, support and reactivity during all of my PhD. Working with them has been a pleasure
and a very positive experience. I would also like to thank the rest of the Regal and Whisper
teams. In particular, I would like to thank other PhD students from room 25-26/231 without
whom Paris would not have been such an enjoyable experience during my PhD years.

A big thanks Michael Scott for having kindly let me use the Niagara2-128 machine at the
University of Rochester for more than a year, as well as Oracle, from which the machine was a
gift. I would also like to thank James Roche for having been so quick to reboot it when needed.

A special thanks to Alexandra Fedorova from Simon Fraser University for her insight without
which publishing a paper to USENIX ATC [71] would have been impossible, and to Vivien Quéma
and Wolfgang Schröder-Preikschat for their constructive comments that helped improve this thesis.

Finally, finishing this PhD would not have been possible without the incredible support I
received from my family during the past four years.

iii

Preface

This thesis presents the main research that I conducted in the Whisper (formerly Regal) team at
Laboratoire d’Informatique de Paris 6 (LIP6), to pursue a PhD in Computer Science from the
doctoral school “École Doctorale Informatique, Télécommunications et Électronique” (EDITE)
in Paris. My PhD advisors were Gilles Muller and Gaël Thomas (LIP6/INRIA).

Research presented in this thesis. The main focus of the research presented in this thesis
was the design of better techniques to ensure mutual exclusion on multicore architectures. My
main contribution, presented in Chapter 4, is the design of a new lock algorithm, named Remote
Core Locking (RCL), that dedicates one or several hardware threads for the serial execution
of critical sections. This work led to the following publications, at a French conference and an
international one:

• Le Remote Core Lock (RCL) : une nouvelle technique de verrouillage pour les
architectures multi-cœur. Jean-Pierre Lozi. 8ème Conférence Française en Systemes
d’Exploitation (CFSE ’8). Saint-Malo, France, 2011. Best Paper award. [69]

• Remote Core Locking: Migrating Critical-section Execution to Improve the
Performance of Multithreaded Applications. Jean-Pierre Lozi, Florian David, Gaël
Thomas, Julia Lawall and Gilles Muller. In Proceedings of the 2012 USENIX Conference
on Annual Technical Conference (USENIX ATC ’12). Boston, USA, 2012. [71]

An INRIA research report [72] was also produced. Finally, my work was presented at
many occasions. In particular, I presented a poster at EuroSys 2011 in Salzburg, Austria, and
participated to the Work in Progress (WiP) session at SOSP’11 in Cascais, Portugal.

Other research. As a member of the Whisper team, I was also involved in other projects. In
particular, I worked on EHCtor/Hector, a tool that makes it possible to detect resource-release
omission faults in kernel and application code: I helped analyze the reports generated by the
tool, and I devised techniques to exploit some of the bugs it found. This research has led to the
two following publications:

• EHCtor: Detecting Resource-Release Omission Faults in Error-Handling Code
for Systems Software. Suman Saha and Jean-Pierre Lozi. 9ème Conférence Française
en Systemes d’Exploitation (CFSE ’9). Grenoble, 2013. [94]

• Hector: Detecting Resource-Release Omission Faults in Error-Handling Code
for Systems Software. Suman Saha, Jean-Pierre Lozi, Gaël Thomas, Julia Lawall, and
Gilles Muller. In Proceedings of the 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN ’13). Budapest, 2013. Best Paper award. [95]

v

PREFACE

In the context of that work, I submitted a bug report to the PHP developers [105, 70] that
describes a possible exploit for a memory leak that was found with Hector. I wrote a bug fix
that was accepted by the PHP team and is part of the codebase since PHP 5.4.5.

Since my work on EHCtor/Hector was only secondary to my main research, it is not described
further in this thesis: the reader is invited to refer to the aforementioned papers for more
information.

vi

Contents

1 Introduction 1

2 Multicore architectures 7
2.1 Overview . 7
2.2 Hardware threads . 8
2.3 Communication between hardware threads . 9

2.3.1 CPU caches . 10
2.3.1.1 Overview . 10
2.3.1.2 Cache-coherent architectures . 11

2.3.1.2.a Cache-coherence protocol 12
2.3.1.2.b Instructions used for synchronization 13
2.3.1.2.c Bottlenecks . 15

2.3.1.3 Non-cache-coherent architectures 15
2.3.2 NUMA architectures . 15

2.4 Hetereogeneous architectures . 17
2.5 Machines used in the evaluation . 18

2.5.1 Magnycours-48 . 18
2.5.2 Niagara2-128 . 19
2.5.3 Performance comparison . 19

2.5.3.1 Cache access latencies . 20
2.5.3.2 Contention overhead . 20
2.5.3.3 Application performance . 22
2.5.3.4 Summary . 23

2.6 Conclusion . 24

3 Lock algorithms 25
3.1 Blocking locks . 26
3.2 Basic spinlock . 27
3.3 CLH . 28
3.4 MCS . 29
3.5 Time-published locks . 31
3.6 Oyama . 32
3.7 Flat Combining . 35
3.8 CC-Synch and DSM-Synch . 37
3.9 Comparison of lock algorithms . 40
3.10 Other lock algorithms . 42

vii

CONTENTS

3.11 Conclusion . 44

4 Contribution 45
4.1 Remote Core Lock . 45

4.1.1 Core algorithm . 46
4.1.2 Implementation of the RCL Runtime . 47

4.1.2.1 Ensuring liveness and responsiveness 47
4.1.2.2 Algorithm details . 50

4.1.3 Comparison with other locks . 52
4.2 Tools . 54

4.2.1 Profiler . 54
4.2.2 Reengineering legacy applications . 57

4.3 Conclusion . 59

5 Evaluation 61
5.1 Liblock . 61
5.2 Microbenchmark . 63
5.3 Applications . 67

5.3.1 Profiling . 67
5.3.2 Performance overview . 70
5.3.3 Performance of SPLASH-2 and Phoenix applications 74
5.3.4 Performance of Memcached . 77
5.3.5 Performance of Berkeley DB with TpccOverBkDb 79

5.3.5.1 Experimental setup . 79
5.3.5.2 Performance analysis . 82
5.3.5.3 Yielding the processor in busy-wait loops 84

5.4 Conclusion . 86

6 Conclusion 89

A French summary of the thesis 93
A.1 Introduction . 95
A.2 Contribution . 99

A.2.1 Algorithme de RCL . 99
A.2.2 Outils . 100

A.3 Évaluation . 101
A.3.1 Microbenchmark . 101
A.3.2 Applications . 103

A.4 Conclusion . 108

List of Illustrations 119
Figures . 119
Algorithms . 121
Listings . 122

viii

Chapter 1

Introduction

Until the early 2000’s, the performance of Central Processing Units (CPUs) had been steadily
improving for decades thanks to rising hardware clock frequencies. However, due to physical
limitations, CPU manufacturers have now found it impossible to keep increasing clock frequencies
and instead focus on embedding several execution units in the same CPU. These execution units
are referred to as cores, and technologies such as Simultaneous Hyper-Threading (SMT) replicate
some parts of these cores in order to make them run several hardware threads simultaneously. The
number of hardware threads in consumer CPUs keeps increasing for all computing devices, from
servers to mobile phones. It is not uncommon nowadays for multiprocessor servers to include
dozens of hardware threads.

The main downside of manufacturers increasing the number of hardware threads in CPUs in-
stead of increasing their frequency is that applications do not see their performance automatically
improve as newer and faster CPUs are released. Harvesting the performance of modern multicore
architectures is difficult because most programs cannot be fully parallelized, and Amdahl’s
Law [4] shows that as the number of hardware threads increases, the critical path, i.e., portions of
the application’s source code that cannot be parallelized, ends up being the limiting factor. This
is why, in order to use multicore architectures efficiently, it is important to focus on shortening
the critical path. In most legacy applications, a large part of the critical path consists of critical
sections, i.e., sections of code that are to be run in mutual exclusion.1 Critical sections are usually
protected by locks, i.e., synchronization mechanisms that make it possible for several threads
to ensure mutual exclusion for the execution of sections of code that access the same resources.

In order to fully exploit the processing power of recent multicore machines, legacy applications
must be optimized to exploit parallelism efficiently, which can be extremely complex and requires
a lot of work: while making legacy applications scale up to a few hardware threads is relatively
simple with naïve, coarse-grained parallelization, getting them to scale on newer multicore
architectures with dozens of hardware threads remains a challenge. Since a large number of
very complex applications has been developed over the previous decades without taking these
architectures into account, rewriting large parts of the legacy codebase in order to harvest the
performance of modern multicore architectures is a very costly task that will take several years.

One way of getting legacy applications to scale on multicore architectures is to shorten the
critical path by reducing the size of critical sections, i.e., to use fine-grained locking [6, 55]:

1The critical path can also contain other parts such as program initialization and finalization as well as
transitions between loop-parallel program sections. These parts are identified as data management housekeeping
and problem irregularities by Amdahl [4].

1

CHAPTER 1. INTRODUCTION

while this approach is generally regarded as being very efficient, it can be extremely complex
for programmers. There is no general technique that makes it possible to reduce the size of
critical sections, instead, developers must use different approaches for each one of them, thereby
increasing the complexity of the concurrent logic of the application and increasing the probability
of introducing hard-to-find concurrency bugs. It is also possible to avoid the use of critical sections
in some cases and to rely on atomic instructions for synchronization instead, by using lock-free
algorithms and data structures [56, 77, 52, 40, 62, 63]. While this approach can be very efficient in
some cases and efficient lock-free algorithms have been proposed for most standard data structures
such as stacks, queues, and skiplists, it is not possible to replace any set of critical sections
with an efficient lock-free algorithm. Finally, using transactional memory, either implemented in
software or hardware, has been proposed as an alternative to locks [61, 54, 98, 53, 45]. While
transactional memory can be easier to use than locks, it is currently not widely used due to
limited hardware support and weak performance of software implementations. Moreover, with
transactional memory, critical sections cannot perform any operation that cannot be undone,
including most I/O.

Other solutions have been proposed to harvest the performance of multicore architectures.
Some approaches simply focus on improving the implementation of one specific mechanism on
multicore architectures, like Remote Procedure Calls (RPC) [10, 11, 42], but these techniques
are too limited to make it possible to harvest the processing power of multicore machines by
legacy applications in the general case. Some specific improvements to parts of the operating
system such as the scheduler have been proposed for multicore architectures [64], but they do not
remove the need to modify applications. Whole new operating systems designs have also been
proposed, such as Opal [22], Corey [13], Multikernel [9], and Helios [78], but legacy operating
systems have become so complex and feature-rich that switching to completely new operating
systems now would come at a major redevelopment cost and legacy applications would need to
be completely rewritten. Some tools have been proposed to help with the redesign of applications
on multicore architectures, such as profilers [87, 65], which can be useful to detect bottlenecks.
Profilers do not aim to fix these bottlenecks however, other techniques have to be used once the
causes of the lack of scalability have been identified.

Another way to improve the performance of multithreaded applications on multicore architec-
tures is to improve the way locks are implemented. The main advantage of this approach is that
it does not require a complete redesign of applications. Over the last twenty years, a number
of studies [2, 8, 12, 49, 51, 59, 75, 96, 100, 102] have attempted to optimize the performance
of locks on multicore architectures, either by reducing access contention or by improving cache
locality. Access contention occurs when many threads simultaneously try to enter critical sections
that are protected by the same lock, thereby saturating the memory bus with messages from the
underlying cache-coherence protocol in order to reach an agreement as to which thread should
obtain the lock first. The lack of cache locality becomes a problem when a critical section accesses
shared data that has recently been written by another hardware thread, resulting in cache misses,
which greatly increase the critical section’s execution time. Addressing access contention and
cache locality together remains a challenge. These issues imply that some applications that work
well on a small number of hardware threads do not scale to the number of hardware threads
found in today’s multicore architectures.

Recently, several approaches have been proposed to execute a succession of critical sections
on a single server (or combiner) hardware thread to improve cache locality [51, 102, 39]. Such
approaches also incorporate a fast transfer of control from other client hardware threads to the
server, to reduce access contention. Suleman et al. [102] propose a hardware-based solution,

2

evaluated in simulation, that introduces new instructions to perform the transfer of control,
and uses a hardware thread from a special fast core to execute critical sections. Software-only
algorithms in which the server is an ordinary client thread and the role of server is handed off
between clients periodically have also been proposed [82, 51, 39]. These algorithms are referred
to as combining locks. Combining locks are faster than traditional locks, but they sometimes
incur an overhead for the management of the server role and the list of threads, and they are
vulnerable to preemption. Furthermore, neither Suleman et al.’s algorithm nor combining locks
propose a mechanism to handle condition variables, which makes them unable to support many
widely used applications.

The objective of the research presented in this thesis is to focus on decreasing the time spent
by applications in critical sections in such a way that avoids redesigning whole applications,
by focusing on reducing the time to enter critical sections and improving their memory access
locality. The main contribution presented in this thesis is a new locking technique, Remote Core
Locking (RCL), that aims to improve the performance of legacy multithreaded applications on
multicore hardware by executing critical sections that are protected by highly contended locks
on one or several dedicated server hardware threads. In particular, RCL targets legacy server
applications that run on modern multicore servers. It is entirely implemented in software and
supports x86 and SPARC multicore architectures. At the basis of RCL is the observation that
most applications do not scale to the number of hardware threads found in modern multicore
architectures, and thus it is possible to dedicate the hardware threads that do not contribute
to improving the performance of the application to serving critical sections. It is therefore not
necessary to burden the application threads with the role of server, as done in combining locks.
The design of RCL addresses both access contention and locality. Contention is solved by a fast
transfer of control to a server, using a dedicated cache line for each client to achieve busy-wait
synchronization with the server hardware thread. Locality is improved because shared data is
likely to remain in the server hardware thread’s cache, allowing the server to access such data
without incurring cache misses. In this, RCL is similar to combining locks, but it has a lower
overall overhead, it resists better to preemption because the dedicated server thread always makes
progress, and it proposes a mechanism to handle condition variables, which makes it directly
usable in real-world applications. RCL is well-suited to improve the performance of a legacy
application in which contended locks are an obstacle to performance, since using RCL enables
improving resistance to contention and locality without requiring a deep understanding of the
source code. On the other hand, modifying locking schemes to use fine-grained locking, lock-free
algorithms or transactional memory is time-consuming, requires an overhaul of the source code,
and does not improve locality.

Other contributions presented in this thesis include a methodology along with a set of tools
to facilitate the use of RCL in legacy applications. Because RCL serializes critical sections
associated with locks managed by the same server hardware thread, transforming all locks into
RCLs on a smaller number of servers induces false serialization: some servers serialize the
execution of critical sections that are protected by different locks and therefore do not need to
be executed in mutual exclusion. In some cases, false serialization can introduce a significant
overhead. Therefore, the programmer must first decide which lock(s) should be transformed into
RCLs and which server(s) handle which lock(s). A profiler was written for this purpose. It is
designed to identify which locks are frequently used by the application, to measure how much
time is spent on locking, and to measure how good the data locality of critical sections is. Based
on this information, a set of simple heuristics are proposed to help the programmer decide which
locks must be transformed into RCLs. An automatic reengineering tool for C programs was

3

CHAPTER 1. INTRODUCTION

designed with the help of Julia Lawall in order to transform the code of critical sections so that
it can be executed as a remote procedure call on the server hardware thread: the code within a
critical section must be extracted as a function. The argument passed to that function will be
its context object, i.e., an object that contains copies of all variables referenced or updated by
the critical section that are declared in the function containing the critical section code. RCL
takes the form of a runtime for Linux and Solaris that is compatible with POSIX threads, and
that supports a mixture of RCL and POSIX locks in a single application.

The performance of RCL is compared to other locks with a custom microbenchmark which
measures the execution time of critical sections that access a varying number of shared mem-
ory locations. Furthermore, based on the results of the profiler, three benchmarks from the
SPLASH-2 [107, 99, 110] suite, three benchmarks in the Phoenix 2 [101, 103, 112, 92] suite,
Memcached [26, 41], and Berkeley DB [80, 79] with a TPC-C benchmark developed at Simon
Fraser University were identified as applications that could benefit from RCL. In each of these
applications, RCL is compared against a basic spinlock, the standard POSIX lock, MCS [75],
and Flat Combining [51]. RCL is also compared with CC-Synch and DSM-Synch [39], two state-
of-the-art algorithms that were designed concurrently with RCL, and therefore were not included
in the evaluation of the RCL paper that was published at USENIX ATC [71]. Comparisons are
made for a same number of hardware threads, which means that there are fewer application
threads in the RCL case, since one or more hardware threads are dedicated to RCL servers.

RCL is evaluated on two machines: (i) Magnycours-48, an x86 machine with four AMD
Opteron CPUs and 48 hardware threads running Linux 3.9.7, and (ii) Niagara2-128, a SPARC
machine with two Ultrasparc T2 CPUs and 128 hardware threads running Solaris 10. Key
highlights of the results are:

• On a custom microbenchmark, under high contention, RCL is faster than all other evaluated
approaches: on Magnycours-48 (resp. Niagara2-128), RCL is 3.2 (resp. 1.8) times faster than
the second best approach, CC-Synch, and 5.0 (resp. 7.2) times faster than the POSIX lock.

• On other benchmarks, contexts are small, and thus the need to pass a context to the server
has only a marginal performance impact.

• On most benchmarks, only one lock is frequently used and therefore only one RCL server
is needed. The only exception is Berkeley DB with the TPC-C client, which requires two
or three RCL servers to reach optimal performance by reducing false serialization.

• On Magnycours-48 (resp. Niagara2-128), RCL improves the performance of five (resp. one)
application(s) from the SPLASH-2 and Phoenix 2 benchmark suites more than all other
evaluated locks.

• For Memcached with Set requests, on Magnycours-48 (resp. Niagara2-128), RCL yields
a speedup of 2.5 (resp. 1.3) times over the POSIX lock, 1.9 (resp. 1.2) times over the basic
spinlock and 2.0 (resp. 1.2) times over MCS. The number of cache misses in critical sections
is divided by 2.9 (resp. 2.3) by RCL, which shows that it can greatly improves locality.
Combining locks were not evaluated in this experiment because they do not implement
condition variables, which are used by Memcached.

• For Berkeley DB with the TPC-C client, when using Stock Level transactions, on Magnycours-
48 (resp. Niagara2-128) RCL yields a speedup of up to 11.6 (resp. 7.6) times over the
original Berkeley DB locks for 48 (resp. 384) simultaneous clients. RCL resists better than

4

other locks when the number of simultaneous clients increases. In particular, RCL performs
much better than other locks when the application uses more client threads than there are
available hardware threads on the machine, even when other locks are modified to yield
the processor in their busy-wait loops.

Organization of the document. The thesis is structured as follows:

• Chapter 2 focuses on multicore architectures. It presents the general design of these
architectures and describes the most common bottlenecks they suffer from. The two
machines used in the evaluations are also described in that chapter.

• Chapter 3 presents the evolution of lock algorithms. Detailed algorithms of all locks that
are used in the evaluation in Chapter 5 are presented in that chapter, as a reference.

• Chapter 4 presents the main contributions of the research work presented in this thesis,
namely, RCL and its implementation, the profiler that makes it possible to identify which
applications and locks can benefit from RCL, and the reengineering tool that automatically
transforms applications so that they can be used with RCL.

• Chapter 5 presents an evaluation of RCL’s performance. First, a microbenchmark is used
to obtain a first estimate of the performance of RCL as well as that of some of the locks
presented in Chapter 3. Then, the profiler designed to help decide when using RCL would be
beneficial for an application is presented. Finally, using the results of the microbenchmark
combined with the results of the profiler presented in Chapter 4, a set of applications that
are likely to benefit from RCL is identified, and RCL as well as other locks are evaluated
with the applications from that set.

• Finally, Chapter 6 concludes the thesis and considers future research directions.

5

Chapter 2

Multicore architectures

This chapter presents multicore architectures and their bottlenecks. Section 2.1 quickly presents
the various components of a multicore architecture. Section 2.2 presents hardware threads, i.e.,
the minimal execution units of multicore machines. Section 2.3 describes how hardware threads
communicate with each other through the CPU caches and the RAM. Section 2.4 presents
heterogeneous multicore architectures, i.e., architectures that use various cores with different
characteristics. Section 2.5 presents the machines used in the evaluation. Finally, Section 2.6
concludes the chapter.

2.1 Overview
Historically, most CPUs contained a single processing core, with a single hardware thread, and
manufacturers mainly improved the performance of CPUs by increasing their clock speed, which
went from a few megahertz in the early 1980’s to several gigahertz twenty years later. However,
in the early 2000’s, increasing the CPU clock speed became increasingly difficult due to power
dissipation, which makes CPUs with high clock speeds consume too much energy and overheat.
Manufacturers instead switched to bundling several processing cores into CPUs in order to
keep increasing overall processing performance, even though exploiting the computing power of
multicore architectures requires parallelizing applications efficiently, whereas clock speed increases
automatically improved the performance of all software.

A typical, current, consumer multicore machine is shown in Figure 2.1. It can have one or
several Central Processing Units (CPUs, two in the figure). Each CPU can have one or several
dies (four in the figure), and each die contains one or several cores (16 in the figure). Some
machines only run one hardware thread per core, while others use hardware multithreading to
run several hardware threads in parallel (64 in the figure). Communication between hardware
threads on the same core is typically ensured by low-level CPU caches (L1 or L2, L1 in the figure).
Communication between cores is typically ensured by high-level CPU caches (L2 or L3, L2 in the
figure). Communication between dies and/or CPUs is ensured by a data bus. Nowadays, buses
are most frequently implemented in the form of a point-to-point interconnect. In Figure 2.1, all
dies are directly connected to each other, but that is not always the case: sometimes, several hops
are needed for the communication between two dies. All dies are connected to the Random Access
Memory (RAM) via their memory controller. In Uniform Memory Access (UMA) architectures,
accessing the memory from any of the dies comes at the same cost (latency and speed). The

7

CHAPTER 2. MULTICORE ARCHITECTURES

Figure 2.1: Example of a multicore architecture

architecture presented in Figure 2.1 uses Non-Uniform Memory Access, because the memory is split
in different memory banks, and dies access local memory banks faster than remote memory banks.

Moreover, the machine presented in Figure 2.1 is cache-coherent, which means that all of its
memory is directly addressable, and the underlying cache-coherence mechanism, implemented
in hardware, transparently fetches data in the right memory bank or CPU cache to bring it
to the hardware thread that requests it. Some new architectures are now non-cache-coherent,
which means that each core or CPU can only access its own local memory, and explicit messages
must be used by the software layer to transfer data from one core to the other. However,
non-cache-coherent architectures are not very commonly used yet. Section 2.3.1 focuses on
cache-coherent vs. non-cache-coherent architectures in more detail.

2.2 Hardware threads
Until the early 2000’s, most consumer CPUs were only able to run a single software thread at
any given time, i.e., they only provided a single hardware thread. Multitasking was handled
by schedulers, which used time-sharing to enable several software threads to use the CPU
concurrently. The first technique that was commonly used to introduce parallelism in CPUs was
instruction pipelines: each instruction is broken up into a number of steps, and different steps
from consecutive instructions are executed in parallel [93]. With the introduction of multicore
CPUs, the parallelism provided by the multiple cores was combined with the parallelism provided
by the instruction pipeline, in order to improve performance.

In many multicore architectures, several software threads can be running at a given time if
they are placed on different cores. Moreover, in order to increase parallelism even more, some
CPU manufacturers do not only bundle several CPU cores into a single CPU, they also replicate
some parts of the cores in order to make each one of them execute several software threads
simultaneously: from the point of view of the developer, each core provides multiple hardware
threads that are completely independent execution units, and one software thread can be running

8

2.3. COMMUNICATION BETWEEN HARDWARE THREADS

on each of these hardware threads at any given time [106]. In practice, however, two hardware
threads running concurrently on the same core may slow down each other more than if they were
running on different cores, because they share resources such as, for instance, their Arithmetic
and Logic Unit (ALU). The idea of hardware multithreading is to increase parallelism at a lower
cost than by adding more cores, because some components that are not usually bottlenecks can
be shared by several hardware threads.

Each hardware thread must have access to the following components, some of which possibly
being shared: (i) A set of registers that store the data that is currently being used by the hardware
thread (generally not shared), (ii) an arithmetic and logic unit, often completed with a Floating
Point Unit (FPU) for operations on floating point numbers, (iii) a Transaction Lookaside Buffer
(TLB), which is a cache that is used to accelerate the translation of virtual memory addresses into
physical addresses, and (iv) elements that are located outside CPU cores and sometimes shared
by several cores, as shown in Figure 2.1, such as data and instruction CPU caches, or mem-
ory/interconnect controllers. Hardware multithreading can be implemented using three techniques:
coarse-grained multithreading, fine-grained multithreading, and simultaneous multithreading.

Coarse-grained multithreading. Also called block multithreading or cooperative multithread-
ing, coarse-grained multithreading lets a thread run until it is blocked by an event that causes a
long enough stall, such as a cache miss or a page fault. The thread will not be scheduled again
until the data or signal it was waiting for has arrived. Each hardware thread must have its own
set of data and control registers, so that the CPU can switch between hardware threads in a
single CPU cycle.

Fine-grained multithreading. Also called interleaved multithreading, with fine-grained multi-
threading, the CPU starts executing an instruction from a different hardware thread at each cycle,
in a round-robin fashion. Since instructions from several threads are executed in parallel in the
pipeline, each stage in the pipeline must track which thread’s instruction it is processing. More-
over, since more threads are executed in parallel than with coarse-grained multithreading, shared
resources such as the TLB and CPU caches must be larger so that they do not become bottlenecks.

Simultaneous multithreading (SMT). It is the most advanced implementation of hardware
multithreading, and it is designed for superscalar CPUs. In a traditional superscalar CPU with
one hardware thread, several instructions are issued from a single thread at each CPU cycle.
With SMT, CPUs issue several instructions from multiple threads at each CPU cycle. This
requires to track which thread’s instruction is being processed for each thread at each stage of the
pipeline. However, SMT has the advantage to use issue slots better than traditional superscalar
processors, because single threads only have a limited amount of instruction-level parallelism,
whereas multiple threads are typically independent from each other. SMT is used in some Intel
(HyperThreading) and Sun/Oracle CPUs. In particular, SMT is used by the UltraSPARC T2+,
the CPU used by Niagara2-128, one of the machines described in Section 2.5.2 and used in the
evaluation in Chapter 5.

2.3 Communication between hardware threads
This section describes the means by which hardware threads communicate with each other.
Section 2.3.1 describes CPU caches and how they are used for communicating between hardware
threads. It also presents cache-coherent and non-cache-coherent architectures. Section 2.3.2
focuses on NUMA architectures.

9

CHAPTER 2. MULTICORE ARCHITECTURES

2.3.1 CPU caches
An overview of CPU caches is given in Section 2.3.1.1. Cache-coherent and non-cache-coherent
architectures are described in Sections 2.3.1.2 and 2.3.1.3, respectively.

2.3.1.1 Overview

CPU caches (simply referred to as “caches” henceforth) are fast components that store small
amounts of data closer to CPU cores in order to speed up memory access. The data stored in
caches can either be duplicates of data stored in the RAM and that is expected to be used soon
by a hardware thread, or values that have been recently computed and that will be flushed back
to the RAM later. As shown in Figure 2.1, caches are usually organized in a hierarchy, with
typically two to three levels (L1, L2 and L3 caches). The farther caches are from CPU cores, the
larger and slower they are. The unit of addressable data in a cache is a cache line, which means
that each time data is transfered to a cache, the minimum of data that can be transfered is the
size of the cache line for that cache (a typical cache line size in current architectures could be
64 or 128 bytes). When a hardware thread tries to read or write data that is not available in
its lowest level cache, a cache miss is triggered, and the cache line is fetched from higher level
caches or from the RAM. Caches can either store instructions, data, or both.

Replacement policy. In the case of a cache miss, the cache may have to evict one of the
cache lines to make room for the newly fetched cache line. There are many possible policies to
determine which cache line should be evicted from the cache. For instance, the Least Recently
Used (LRU) or the Least Frequently Used (LFU) cache line can be evicted.

Write policy. When data is written into a cache line that is present in the cache (write hit),
it must be flushed into the main memory. There are two main approaches:

• With a write-through policy, a write to the cache causes a write to the main memory.

• With a write-back policy, writes to the main memory are delayed: cache lines that have
been written over in the cache are marked dirty, and dirty cache lines are written to the
main memory when they are evicted from the cache (following the replacement policy).

If a hardware thread needs to write data to a cache line that is not present into the cache
(write miss), two main approaches are possible:

• With a no-write-allocate policy, the cache line is not loaded into the cache, instead, the
data is directly written into the main memory.

• With a write-allocate policy, the cache line is loaded into the cache, then overwritten into
the cache with the new data (write hit).

Any pair of write-hit and write-miss policies is functional, but typically, most caches use
either write-through combined with no-write-allocate, or write-back combined with write-allocate.
However, many different types of caches exist that use variations of the policies listed above.
Moreover, write policies are more complicated on cache-coherent architectures, because the same
cache line may be stored in the caches of several cores, and some caches may not hold the most
recent version of the data. This issue is discussed in more detail in Section 2.3.1.2.

10

2.3. COMMUNICATION BETWEEN HARDWARE THREADS

(a) Direct mapped cache (b) 2-way set associative cache

Figure 2.2: CPU cache associativity

Associativity. When a cache line is inserted into the cache, the replacement policy determines
which cache line is evicted and will be replaced with the new cache line. If the replacement policy
may evict any cache line, regardless of the address it maps to (by picking the least recently used
cache line, for instance), the cache is said to be fully associative, as illustrated in Figure 2.2a. If,
on the contrary, a memory location may only be mapped to one location in the cache, determined
by its address, the cache is said to be direct mapped. Typically, the replacement policy can pick
a location in the cache among a set of n cache lines, the cache is said to be n-way associative.
Figure 2.2b illustrates the behavior of a n-way set associative cache for n = 2: each element
in memory can be stored in two different locations in the cache. Increasing n decreases the
number of cache misses, because if multiple memory locations that map to the same address in
the cache are used in a short time period, several of them will be able to fit in the cache. On the
other hand, n entries in the cache must be checked in order to determine whether a cache line is
present in the cache, therefore, increasing n induces a overhead. In n-way set associative caches,
a popular replacement policy is Pseudo-LRU (PLRU): if a cache line must be inserted into a set
s, the least recently used element of s is evicted.

Prefetching data. In order to reduce the number of cache misses, CPUs try to predict which
data will be used in the near future and load it in cache before it is accessed. Modern CPUs
include a data prefetching unit that performs this job. The data prefetching unit performs well
when an application has regular access patterns (stride accesses such as scanning an array, or
following pointers in linked-list traversals). Even though a lot of memory access patterns are
too complex to be recognized by the data prefetching unit, they rarely hinder performance [60].
Modern processors also prefetch instructions, which can be a complex task due to branches in
programs: the instruction prefetch is sometimes part of a complex branch prediction algorithm.

2.3.1.2 Cache-coherent architectures

On multicore architectures, each core has its own local caches. If different caches hold different
versions of the same data, two hardware threads may not have the same view of the global
memory, and it may be hard for hardware threads to ensure that the data they are reading is
up-to-date. To prevent this, most CPUs nowadays are cache-coherent, which means that even
though cores have their own local caches with possibly different versions of the same data, a
cache-coherence protocol is implemented in the hardware in order to make sure that different
hardware threads have a consistent view of the global memory.

11

CHAPTER 2. MULTICORE ARCHITECTURES

An architecture is said to be cache-coherent if the following conditions are met [86]:

• If a hardware thread t writes then reads from a location l, with no writes from other
hardware threads at the same location between the write and the read operation, then t
must read the value it wrote at the location l.

• A read from a hardware thread t1 to a location l that was previously written by t2 must
return the value that t2 wrote at that location if enough time passed between the read and
the write operation, and if no other hardware thread wrote data at l between the read and
the write operation.

• Writes to the same location are serialized, i.e., two writes to the same location by any two
hardware threads are seen in the same order by all hardware threads.

Section 2.3.1.2.a describes cache-coherence protocols that ensure that all hardware threads
have a consistent view of the global memory. Section 2.3.1.2.b presents instructions that facilitate
synchronization between hardware threads. Finally, Section 2.3.1.2.c gives a quick overview of
common bottlenecks on cache-coherent architectures.

2.3.1.2.a Cache-coherence protocol

In cache-coherent architectures, hardware threads typically rely on the cache-coherence protocol
for communication: when a hardware thread t1 needs to send a value to a hardware thread t2,
it writes the value at a known memory address, and t2 reads it later, possibly busy-waiting for
the value at that address to be modified by t1. Most cache-coherence protocols that are used in
current multicore machines are based on the MESI protocol [85]. The name MESI comes from
the four possible states it defines for cache lines: Modified, Exclusive, Shared and Invalid. These
states can be described thus:

• Modified. The data in the cache line has been modified locally (i.e., it is dirty), and only
resides in this cache. The copy in the main memory is is not up to date, therefore, if the
cache line is evicted or changes its state, its data must be flushed to the main memory.

• Exclusive. The data in the cache line is unmodified (i.e., it is clean), and it does not
reside in any other cache.

• Shared. The data in the cache line is clean but other copies may reside in other caches.

• Invalid. The cache line does not contain valid data. This typically happens when a shared
cache line was modified in one of the caches: other copies of the data got invalidated by
the cache-coherence protocol.

While the MESI protocol is functional, its performance is not optimal on architectures with a
large number of cores because of its communication overhead. In particular, the MESI protocol
may send many high-latency messages that contain redundant data: if a cache requests data
that resides in many different caches (Shared state), all caches may send the same data to the
requesting cache, which results in wasted bandwidth. Another drawback of the MESI protocol
is that the only way for data from a Modified cache line to be accessed by remote hardware
threads is to flush that data to the main memory and fetch it again, when fast cache-to-cache
communications should be sufficient. Improved versions of the MESI protocol, with more states,
have been implemented to solve these issues. Two widely-used variants are the MESIF protocol
and the MOESI protocol.

12

2.3. COMMUNICATION BETWEEN HARDWARE THREADS

MESIF protocol. The MESIF protocol has been used by Intel CPUs since the Nehalem
architecture. It adds a Forwarded state to the MESI protocol and modifies its Shared state. The
Forwarded (F) state is a variant of the Shared state that expresses the fact that the cache should
act as the designated responder for that cache line. At most one cache holds a copy of data in
the Forwarded state. If a cache requests data that exists in various caches, and if one of the
caches holds a copy of the data that is in the Forwarded state, only that cache will send the data:
no redundant messages are sent. If no version of the data is in the Forwarded state, the data will
be fetched from the main memory, which may induce a overhead. This can happen if a cache
line that was in the Forwarded state was evicted. To avoid this issue, the most recent requester
of the data is automatically assigned the Forwarded state, which decreases the risk of Forwarded
cache lines getting evicted.

MOESI protocol. The MOESI protocol is used by AMD and Sun/Oracle CPUs. It adds
an Owned state and modifies the Shared state of the MESI protocol. The Owned (O) state
expresses the fact that the cache holds one of the copies of a cache line (as with the Shared
state) and has the exclusive right to modify it. All modifications to that cache line must be
broadcast to all other caches that own it (in the Shared state): this allows for direct core-to-core
communication without going through the main memory. An Owned cache line may change
its state to Modified after invalidating all shared copies, and it may change its state to Shared
after flushing the data to memory. The semantics of the Shared state in the MOESI protocol
are modified: unlike with the MESI protocol, a Shared cache line may hold invalid data if an
Owned cache line holds the correct, most recent version of the data. The Owned cache line is
responsible for eventually flushing its data to the main memory. If no Owned cache line holds
the data, the Shared cache line holds data that is ensured to be valid. Shared cache lines may
change their state to Exclusive or Modified after invalidated all other shared copies.

As shown in Figure 2.3, with the MOESI protocol, when two hardware threads from the
same die communicate together, all they need to use is their local cache and the minimum subset
of caches that they share. When hardware threads from different dies or CPUs communicate,
the data must go through the interconnect, but no access to the main memory is needed.

2.3.1.2.b Instructions used for synchronization

While, on cache-coherent architectures, reading and writing data to shared memory locations is
sufficient for basic communication between hardware threads, specific instructions are sometimes
needed for more complex synchronization schemes. First, because CPUs automatically reorder
independent instructions, some specific instructions can be used to ensure system-wide ordering
constraints between read and write operations of different hardware threads: these instructions
are known as memory barriers. Second, it is sometimes useful to execute several operations
in a way that appears atomic to other hardware threads. This can be done thanks to atomic
instructions.

Memory barriers. Modern CPUs use out-of-order execution, i.e., they may reorder instruc-
tions to improve performance: instructions that can be instantly executed are sometimes executed
before earlier instructions that would cause a stall waiting for their input data. While out-of-order
execution is completely transparent in architectures that provide a single hardware thread, it
can cause unpredictable behavior in architectures that provide several hardware threads: the
reordering of instructions is designed to be transparent for the hardware thread that executes
them, but other hardware threads see the side effects of these instructions in the real order

13

CHAPTER 2. MULTICORE ARCHITECTURES

Figure 2.3: Communication between hardware threads with the MOESI protocol

in which they are executed. Memory barriers, also known as memory fences, make it possible
to enforce an ordering constraint on memory operations issued before and after the barrier
instruction. Most modern architectures (including x86) do not ensure that stores may not be
reordered after loads to different addresses. To prevent this, a store fence can be issued between
the store and load instructions. Atomic instructions also act as memory barriers: all pending
load and store operations must be executed before the atomic instruction.1

Atomic instructions. The instruction set of current CPUs often includes a set of atomic
instructions. These instructions combine several operations whose execution appears to be
atomic to hardware threads, i.e., no other instruction from any hardware thread can modify the
shared data they operate on during their execution. Atomic instructions make it possible for
programs to modify shared data without having to acquire locks. Common atomic instructions
include: (i) test-and-set, which reads (and returns) the value v1 at a given address and replaces
it with a new value v2 if v1 is non-zero2, (ii) fetch-and-store, which reads (and returns) the
value v1 at a given memory address and replaces it with a new value v2, (iii) fetch-and-add,
which fetches a value v1 at a given address, adds a value v2 to v1 and stores the result at v1’s
address, (iv) atomic swap, or atomic exchange, which swaps the values at two given addresses
in memory, and (v) Compare-And-Swap (CAS), which compares the value v1 at a memory
address to a value v2 and, in case of equality, writes a value v3 at v1’s address. A whole class of
algorithms, named lock-free algorithms, rely exclusively on atomic instructions instead of locks
for synchronization [56, 77, 52, 40, 62, 63].

1On x86 architectures, atomic instructions only force the execution of pending memory instructions if the LOCK
prefix is used. The LOCK prefix also ensures that during the execution of the atomic instruction, the hardware
thread has exclusive ownership of the cache line on which a read-modify-write operation is performed.

2Several definitions of test-and-set exist. According to some authors, test-and-set behaves exactly like the
fetch-and-store instruction described in the same paragraph.

14

2.3. COMMUNICATION BETWEEN HARDWARE THREADS

2.3.1.2.c Bottlenecks

The cache-coherence protocol can often be a source of bottlenecks. It is important for developers
to ensure good cache locality in multithreaded applications, i.e., to try to keep data in local
caches as much as possible in order to avoid the overhead caused by cache misses. A common
cache bottleneck is the presence of false sharing: two hardware threads may frequently access
independent variables that are located in the same cache line, which results in the cache line
needlessly “ping-ponging” between the caches, thereby causing unnecessary cache misses. Profilers
such as DProf [87] are designed to locate cache locality bottlenecks. Sheriff [68] specifically
detects false sharing and protects applications from it by adaptively isolating shared updates from
different threads into separate physical addresses. Corey [13], an operating system for manycore
architectures, proposes several techniques that aim to improve cache locality. In particular, it
makes it possible for applications to dedicate cores for handling specific kernel functions or data.
The research work presented in this thesis, RCL, tackles the specific issue of improving cache
locality inside critical sections by executing them all on the same hardware thread.

2.3.1.3 Non-cache-coherent architectures

As seen in the previous section, the cache-coherence protocol incurs an overhead, and this
overhead may get worse as the number of cores increases. To prevent this, some manufacturers
have designed non-cache-coherent architectures, in which each core owns part of the global
memory, and hardware threads must use message-passing in order to request data from other
cores. Non-cache-coherent CPUs include Intel’s Single Chip Cloud Computer (SCC) and to some
extent, Tilera’s TILE-Gx CPUs. In both the SCC and the TILE-Gx CPUs, cores are organized
in a grid. Writing code for non-cache-coherent architectures can be very complex since cores
cannot simply read and write from known memory addresses to communicate, and must rely on
custom message-based protocols instead. Moreover, operating systems and applications have to
be rewritten for these architectures. Fortunately, non-cache-coherent multicore architectures have
many common points with distributed systems, and research on distributed operating systems
has been ongoing for decades [66, 91, 104]. This led to the design of some research operating
systems for non-cache-coherent architectures such as Corey [13] and Barrelfish [9] that solely
rely on message-passing. Similarly, some software components such as garbage collectors [114]
have been written for non-cache-coherent architectures. However, it will take a lot of time for
operating systems and other software components to become as feature-rich as currently-used
legacy software that has been developed for decades on cache-coherent architectures. Moreover,
it has been shown [14] that legacy operating systems such as Linux can be made to scale on
current cache-coherent multicore architectures with dozens of cores.

2.3.2 NUMA architectures
The main memory (RAM) can be organized in two ways on multicore architectures: UMA
or NUMA. Uniform Memory Access (UMA) architectures use a very simple design: all CPUs
address all of their memory requests to a single memory controller that is itself connected to
the RAM. With this design, accessing any part of the RAM has the same cost (in latency and
bandwidth) from any hardware thread. The main issue with UMA machines is that the unique
memory controller can be a bottleneck on multicore architectures, especially as the number of
hardware threads increases. Non-Uniform Memory Access (NUMA) architectures, on the other
hand, use several memory controllers: cores are grouped into NUMA nodes, each of which is

15

CHAPTER 2. MULTICORE ARCHITECTURES

Figure 2.4: Local and remote NUMA accesses

connected to a NUMA bank that contains part of the main memory. The hardware handles
mapping memory addresses to the right NUMA nodes: typically, the range of memory addresses
is split into as many contiguous chunks as there are nodes, and addresses from chunk n are all
mapped to the nth NUMA bank. If a hardware thread needs to access a memory address that
is located in a remote NUMA bank, then requests have to be sent on the interconnect to the
node that owns that NUMA bank, possibly with several hops if there is no direct interconnect
link between the two nodes. This indirection increases latency: local accesses are faster than
remote accesses. Moreover, the interconnect links may decrease bandwidth if they are saturated,
and if a lot of memory accesses from various nodes access the same NUMA bank, the memory
controller of that NUMA bank can become a bottleneck, as is the case with UMA architectures.

In Figure 2.4, each die is a NUMA node that is connected to its local NUMA bank. An
example of local NUMA access is shown in green: when a hardware thread reads data from
memory, that data is copied into its L2 and L1 cache from which it can access it. When a
hardware thread needs to access remote data, however, it must request it to the die whose NUMA
bank holds the data. In the figure, any two dies have a direct interconnect link that connect
them, therefore, one hop is sufficient. This is not always the case: requests sometimes have to
be forwarded across several nodes in more complex multicore architectures, which comes at an
increased latency cost.

Since remote accesses in NUMA architectures are costly, developers must be careful to write
programs that avoid them: lack of NUMA locality can hinder the scalability of key software
components such as garbage collectors [44]. Similarly to how developers can use profilers such as
DProf [87] in order to detect remote cache or RAM accesses and improve cache locality, specific
profilers such as MemProf [65] have been designed to help developers detect remote NUMA
accesses and avoid them when possible. Some tools such as Carrefour [27] make it possible
to automatically improve NUMA locality system-wide, by gathering statistics (such as those

16

2.4. HETEREOGENEOUS ARCHITECTURES

provided by hardware performance counters [18]), and deciding when to migrate, interleave or
replicate memory pages.

Hyper-Transport Assist. In some NUMA architectures, when a hardware thread t1 in
NUMA node n1 needs to access data from a cache line that is stored in the remote caches of
a hardware thread t2 in NUMA node n2, with the data being allocated in the RAM of node
n3, t1 broadcasts a read or a write request to all caches because it does not know which cache
owns the cache line. Since this scenario is fairly common, the resulting requests increase the
load on caches and interconnect links, which may lead to non-negligible overhead. To prevent
this, AMD Opteron CPUs use an optimization known as HyperTransport Assist [24] (a.k.a. HT
Assist). With HT Assist, part of the highest level cache of die3 d3, whose memory controller
handles node n3, holds a cache directory (or probe filter) that contains information about the
location of the cache lines that hold data from that node (n3). Thanks to the cache directory, t1
simply sends its request to d3 instead of broadcasting it. The cache directory of d3 indicates that
the data is stored into t2’s caches, therefore, d3 sends a message to t2’s die, which replies with
the requested cache line to d3, and d3 forwards the cache line to t1’s die. Therefore, d3 is used
as a proxy and all communication is point-to-point, which is more efficient than broadcasting
requests to all caches in the hope that one of them will respond with the cache line.

Interleaved memory. Current NUMA-capable systems usually make it possible to use inter-
leaved memory instead of NUMA. With interleaved memory, memory addresses are allocated to
each bank in turn. Consequently, contiguous reads and write access each bank in turn, which can
improve memory throughput because less time is wasted waiting for memory banks to become
ready for memory operations. Moreover, with interleaved memory, when hardware threads access
a chunk of contiguous memory, the load is naturally balanced among memory controllers. NUMA
usually offers better results than interleaved memory for applications that were designed with
memory locality in mind, and should be more scalable in future architectures with many cores
and memory banks.

2.4 Hetereogeneous architectures
While most current multicore architectures provide a set of identical cores, architectures that
provide cores with various characteristics (different processing speeds, cores specialized for specific
tasks) have been proposed: IBM’s Cell processor, for instance, features one general-purpose
CPU core and eight coprocessors organized in a ring. Even on common consumer architectures
where all cores provided by CPUs tend to be identical, small, specialized cores provided by the
Graphics Processing Unit (GPU) can be used for computations.

Exploiting the performance of heterogeneous multicore architectures is even more challenging
than with homogeneous multicore architectures due to their increased complexity. Some schedulers
that try to predict which threads could be executed more efficiently on faster cores have been
proposed [64]. Other works propose to dedicate faster cores to specific tasks such as executing
critical sections [102]. Finally, whole new operating systems such as Helios [78] have been proposed,
with the claim that current operating systems are not able to scale on future heterogeneous
architectures with a large number of cores.

3Or CPU, if the architecture uses one memory controller per CPU instead of per die.

17

CHAPTER 2. MULTICORE ARCHITECTURES

2.5 Machines used in the evaluation
This section describes the two machines used in the evaluation in Chapter 5. Section 2.5.1 describes
Magnycours-48, a machine with 48 hardware threads that uses AMD Opteron processors. This
machine is still available on the market, it is currently sold by Dell as a general-purpose server.
Section 2.5.2 describes Niagara2-128, a machine that uses Sun UltraSPARC T2+ CPUs and
offers more hardware threads (128) even though it is older: the UltraSPARC T2+, released in
2008, was replaced with the SPARC T3 in 2010. Finally, Section 2.5.3 discusses and compares
the performance of the two machines using benchmarks.

2.5.1 Magnycours-48
Magnycours-48 is an x86 machine with four AMD Opteron 6172 CPUs (the Opteron 6100 series is
codenamed “Magny-cours”, hence the name of the machine). The CPUs’ clock speed is 2.100GHz.
Each of the CPUs has twelve cores split across two dies: Magnycours-48 features 48 cores in total.
Since Opterons do not use hardware multithreading, Magnycours-48 also provides 48 hardware
threads. Each core has a local L1 and L2 cache, while the L3 cache is shared among all six
cores on the die. Each core has two dedicated 2-way set associative 128KB L1 caches, one for
instructions and one for data, for a total of 256KB of L1 cache memory. Each core also has a
16-way set associative 512KB cache that contains both instructions and data. The six cores on
each die share a 96-way set associative 6MB L3 cache. All caches have a 64KB cache line size.
Each die is a NUMA node, therefore, Magnycours-48 has eight NUMA banks. Each bank handles
32GB of 1.333GHz U/RDDR3 memory, for a total of 256GB quad-channel main memory. The
interconnect links between the six dies do not form a complete graph: each die is only connected
to the other die on the same CPU and to three remote dies. Therefore, the diameter of the
interconnect graph is two: inter-core communications (fetching cache lines from remote caches,
or NUMA accesses, for instance) require at most two hops. The structure of the interconnect
graph can be seen in Figure 2.5b, along with the rest the architecture of Magnycours-48. The
interconnect uses HyperTransport 3.0 links with a theoretical peak bandwidth of 25.6GB/s at
6.4GT/s (GigaTransfers per second).

Boyd-Wickizer et al. use a set of tools in their paper about Corey [13] to measure various
metrics about their hardware. In particular, they provide an application named Memal that
loads cache lines in the L1, L2 or L3 cache of a specific core c1, and accesses them remotely with
a remote core c2, in order to measure the cost of cache misses. Many cache lines are accessed
and the benchmark returns the average access time. Running Memal for every pair of cores
on Magnycours-48 gives the results shown in Figure 2.5a when cache lines are initially loaded
in the L1 cache. Local L1 accesses cost around 3 cycles (in green), and accessing data from a
core on the same die costs around 38 cycles (in purple). There are two distinct costs for remote
cache accesses, which is due to the non-complete interconnect graph described in the previous
paragraph: accessing to data on a remote die that is directly connected to the local die (i.e., it is
one hop away) costs around 220 cycles (in red), while accessing data from a die that is two hops
away costs around 300 cycles (in yellow). The spikes in the graph are caused by the fact that
these results are not averaged, therefore, any random interference during a run (context switches,
for instance) can lead to erroneous longer access times. The reason why the results were not
averaged is that given the large number of data points, running the experiment once already
takes a long time. Running Memal for L2 and L3 caches does not alter remote access times,
which shows that fetching a cache line from a remote CPU cache or from the NUMA bank of

18

2.5. MACHINES USED IN THE EVALUATION

 0

 8

 16

 24

 32

 40

 48

 8

 16

 24

 32

 40

 48
 0

 250

 500L
a

te
n

c
y
 (

c
y
c
le

s
)

Hardware thread #
Hardware thread #

 0

 100

 200

 300

 400

 500

(a) Cost of local and remote accesses

AMD Opteron™ 6100 Series Processor
Processor Block Diagram for 4P Mainboards

Updated February 2011

AMD Opteron™ 6100 Series Processor
Processor Block Diagram for 4P Mainboards

Updated February 2011

AMD Opteron™ 6100 Series Processor
Processor Block Diagram for 4P Mainboards

Updated February 2011

Source: siliconmechanics.com

(b) Architecture

Figure 2.5: Cache latencies and architecture of Magnycours-48

that CPU incurs the same cost. The local access times for L2 and L3 cache misses are around 15
and 30 cycles, respectively.

Software environment. Magnycours-48 runs Ubuntu 11.10 (Oneiric Ocelot) with a 3.9.7
Linux kernel, glibc 2.13, libnuma 2.0.5, and gcc 4.6.1.

2.5.2 Niagara2-128
Niagara2-128 is a SPARC machine with two Sun UltraSPARC T2+ CPUs (codenamed Niagara
2). Each CPU has a clock frequency of 1.165GHz and comes with eight cores on a single die.
Each core runs eight hardware threads thanks to simultaneous multithreading. Each core has a
16KB 8-way set associative instruction cache and a 8KB 4-way set associative data cache. L1
cache lines are 16 bytes wide. The L2 cache is shared among all cores in a CPU. It is a 4MB
16-way associative cache, with 64-byte cache lines. The 32GB dual-channel FB-DIMM main
memory is interleaved (NUMA is disabled). The two CPUs are connected with an interconnect
whose theoretical peak bandwidth is 63 GB/s (42 GB/s read and 21 GB/s write).

The results of running Memal on Niagara2-1284 for all hardware thread pairs with data in the
L1 cache are shown in Figure 2.6. Local L1 accesses cost around 42 cycles (in green), and local
L2 accesses have similar latency (not shown in the figure). Interestingly, even though accessing
data on a remote core on the same CPU through the L2 cache costs around 46 cycles (in purple)
for the first CPU, it costs 60 cycles for the second CPU. We have not been able to find the source
of this discrepancy. Accessing data that is located on a remote CPU costs about 90 cycles (in
pink). Again, the yellow spikes on the graph are artifacts that would be removed by averaging
the results over several runs.

Software environment. Niagara2-128 runs Solaris 10 (SunOS 5.10) with gcc 4.7.1.

2.5.3 Performance comparison
This section discusses and compares the performance of Magnycours-48 and Niagara2-128.
Section 2.5.3.1 compares the cache access latencies of the two machines. Section 2.5.3.2 uses a

4Memal had to be ported to Solaris to run on Niagara2-128.

19

CHAPTER 2. MULTICORE ARCHITECTURES

 0
 16

 32
 48

 64
 80

 96
 112

 128

 16
 32

 48
 64

 80
 96

 112
 128

 0

 150

 300L
a

te
n

c
y
 (

c
y
c
le

s
)

Hardware thread #
Hardware thread #

 0

 100

 200

 300

Figure 2.6: Cost of local and remote accesses on Niagara2-128

custom benchmark to measure the overhead of write-access contention on a shared cache line.
Section 2.5.3.3 uses a benchmark suite to compare the sequential and the parallel performance of
the two machines. Finally, Section 2.5.3.4 summarizes the results.

2.5.3.1 Cache access latencies

Memal was used in Sections 2.5.1 and 2.5.2 to measure the cache access latencies of Magnycours-48
and Niagara2-128, respectively. These results are summarized in Figure 2.7a, with latencies
converted from cycles (c) to nanoseconds (ns) in order to allow for easier comparison between
the two machines. On Niagara2-128, hardware threads access data from the local core up to 25.8
times slower than on Magnycours-48, and they access data from a different core on the local die up
to 2.9 times slower than on Magnycours-48. However, Niagara2-128 can almost be twice as fast as
Magnycours-48 when it comes to accessing data that is located on a remote die thanks to its faster
interconnect and the fact that its two CPUs are directly connected (at most one hop is needed).

In summary, Magnycours-48 is slower when it comes to uncontended inter-die communication,
but Niagara2 has slower uncontended communication inside its dies. Since Magnycours-48 has
eight dies with six hardware threads on each instead of only two dies with sixty-four hardware
threads on each for Niagara2-128, Magnycours-48 uses more inter-die communication, which is
its weak point, and Niagara2-128 uses more communication that is local to its dies, which is also
its weak point. To conclude, it is difficult to determine which of the two machines has the best
performance when it comes to cache access latencies.

2.5.3.2 Contention overhead

A custom benchmark was written to assess the overhead of contention on regular and atomic
instructions on Magnycours-48 and Niagara2-128. This benchmark runs a monitored thread
that executes an instruction 1,000,000 times on a shared variable, and the execution time of
every 1,000th instruction is measured: not all instructions are monitored in order to prevent
the performance measurements from causing too much overhead. The measurements are then

20

2.5. MACHINES USED IN THE EVALUATION

Local core access Local die access Remote die access
L1: 3c / 1.4ns
L2: 15c / 7.1nsMagnycours-48
L3: 30c / 14.3ns

38c / 18.1ns One hop: 220c / 104.1ns
Two hops: 300c / 142.9ns

CPU 1: 46c / 39.5nsNiagara2-128 L1 / L2: 42c / 36.1ns
CPU 2: 60c / 52.5ns Direct link: 90c0 / 177.3ns

(a) Cache access latencies

1 thread 2 threads 24 threads 48 threads 64 threads 128 threads
Magnycours-48 Store 73c / 63.4ns 183c / 157.7ns 3,032c / 2,602.6ns 6,610c / 5,674.4ns
Local NUMA bank CAS 98c / 84.1ns 182c / 156.6ns 947c / 813.4ns 5,561c / 4,773.6ns
Magnycours-48 Store 73c / 63.2ns 220c / 189.5ns 4,112c / 3,529.6ns 9,206c / 7,902.5ns
Remote NUMA bank CAS 98c / 84.1ns 341c / 293.3ns 5,656c / 4,855.6ns 11,749c / 10,084.9ns

Store 56c / 48.0ns 56c / 48.0ns 1,623c / 1,393.2ns 4768c / 4,092.9ns 6,444c / 5,531.5ns 14,752c / 12,662.9nsNiagara2-128
CAS 75c / 64.3ns 75c / 64.3ns 1,633c / 1,401.8ns 4,749c / 4,076.3ns 6,353c / 5,454.0ns 14,860c / 12,755.8ns

(b) Overhead of contention on store and CAS instructions

Figure 2.7: Cost of cache accesses and instructions

averaged in order to produce an estimate of the execution time of the monitored instruction,
which can either be an assignment (store) or an atomic Compare-And-Swap (CAS) instruction
(see Section 2.3.1.2.b). Concurrently, the benchmark runs non-monitored threads that repeatedly
write random values to the shared variable used by the monitored instruction, in order to simulate
contention. The more hardware threads are added, the more contended the shared variable is.
All threads (monitored or non-monitored) are bound to separate hardware threads. Threads are
bound in such a way that they are first spread on the first hardware thread of each core of the
first die, then CPU, and so on until they are bound to the first hardware thread of every core in
the machine. After this, the same process continues with the second hardware thread of each
core, until all hardware threads are used. On Magnycours-48, the shared variable can either be
allocated on the NUMA bank of the monitored hardware thread, or on a remote NUMA bank.
Figure 2.7b summarizes the results of the experiment.

Magnycours-48. When only one thread (the monitored thread) is used on Magnycours-48,
the cost of a store (resp. CAS) instruction is 63.4 nanoseconds (resp. 84.1 nanoseconds). In this
case, the shared variable is always stored in the L1 cache. When two threads are used, they
are located on two cores of the same die, and the non-monitored thread often brings the shared
variable to its local L1 cache, invalidating it from the monitored thread’s L1 and L2 caches.
However, even though the difference in latency between accessing a variable that resides in a local
L1 cache and a remote L1 cache is only 16.7 nanoseconds (see Figure 2.7a), using two threads
instead of one increases the costs of store and CAS instructions by at least 94.3 nanoseconds.
Therefore, the overhead of adding another thread is not only caused by the additional cache
misses: the synchronization mechanisms from the cache-coherence protocol induce an overhead
when two threads try to write to the same cache line concurrently. Adding more threads keeps
increasing the cost of store and CAS instructions to several thousand nanoseconds: using a
store (resp. CAS) instruction under high contention is up to 124.6 (resp. 107.2) more costly than
executing it locally under low contention.

On Magnycours-48, accessing a shared variable that belongs to a local NUMA bank has
a lower latency than accessing data that belongs to a remote NUMA bank (−28.1% for store
instructions, −52.7% for CAS instructions), even though the shared variable is usually directly
transferred between caches during the benchmark and no RAM access is needed. This is due
to the HT Assist technology described in Section 2.3.2: when the monitored thread repeatedly

21

CHAPTER 2. MULTICORE ARCHITECTURES

accesses a variable that was allocated on a remote NUMA bank, all messages have to transit by
the die whose memory controller is connected to that NUMA node, because the L3 cache of that
die contains the NUMA node’s cache directory. On the contrary, when the monitored thread
accesses data that belongs to its own NUMA node, this indirection is not needed, because the
monitored thread can directly access the corresponding cache directory on its local die.

Finally, store and CAS instructions have similar costs on Magnycours-48. CAS instructions
are more expensive than store instructions under low contention (+55% with 24 threads) and
under high contention when accessing data from a remote NUMA bank (+27.6% with 48 threads),
however, they scale better than store instructions when they are performed on a local NUMA
bank (−15.9% with 48 threads).

Niagara2-128. Executing store and CAS instructions on Niagara2-128 is faster than on
Magnycours-48 under low contention (24.1% faster for store instructions and 23.5% faster for
CAS instructions with one thread). Moreover, Niagara2-128 also scales better than Magnycours-
48 on this benchmark: Niagara2-128 is up to 48.2% faster for store instructions and 59.6%
faster for CAS instructions than Magnycours-48 when using 48 hardware threads. Increasing the
number of threads beyond 48 threads keeps increasing the overhead of store and CAS instructions.
In fact, the overhead increases linearly with the number of threads from 24 threads onwards, and
with 128 threads, executing a single store (resp. CAS) instruction takes 263.8 (resp. 198.7) times
longer than executing it locally under low contention. Finally, even though CAS instructions
are 34.0% slower than store instructions under low contention, they perform similarly under
moderate to high contention.

To conclude, Niagara2-128 is able to perform a more write accesses to a cache line than
Magnycours-48: its architecture resists better when contention is high for concurrent accesses to
a cache line.

2.5.3.3 Application performance

The second version of the Stanford ParalleL Applications for SHared memory (SPLASH-2) is
a benchmark suite that consists of parallel scientific applications for cache-coherent architec-
tures [107, 99, 110]. In this section, the applications from the SPLASH-2 suite are run on both
Magnycours-48 and Niagara2-128, for one, 48, and 128 threads. The results are then analyzed:
they provide some insight regarding the sequential and the parallel performance of both machines.

Sequential performance. Figure 2.8 shows the results of running the SPLASH-2 applications
on Magnycours-48 and Niagara2-128 (each data point is averaged five times). Figure 2.8a shows
the results of running the single-threaded version, which measures the sequential performance of
a single hardware thread on both machine (no communication involved). Magnycours-48 clearly
outperforms Niagara2-128, with performance improvements ranging between 6.1 times and 12.0
times. On average, Magnycours-48 is 8.9 times faster than Niagara2-128.

Parallel performance. Figure 2.8b shows the performance of the SPLASH-2 applications
with 48 threads: Magnycours-48 still outperforms Niagara2-128 most of the time. However, the
performance gap is reduced, and on one benchmark (Raytrace/Car), Niagara2-128 manages
to outperform Magnycours-48. Niagara2-128 is able to run 64 threads on the same die and
can therefore benefit from faster communications than Magnycours-48 (no need to go through
the interconnect), which helps compensate its very low sequential performance. Niagara2-128
outperforms Magnycours-48 on Raytrace/Car because this benchmark spends most of its time

22

2.5. MACHINES USED IN THE EVALUATION

 0

 2

 4

 6

 8

 10

 12

 14

R
adiosity

R
aytrace/Balls4

R
aytrace/C

ar

Barnes

FM
M

O
cean C

ontiguous

O
cean N

on-C
ont.

Volrend

W
ater-nsquared

W
ater-spatial

Magnycours-48 Niagara2-128

 0

 2

 4

 6

 8

 10

 12

 14

R
a

d
io

s
ity

R
a

y
tra

c
e

/B
a

lls
4

R
a

y
tra

c
e

/C
a

r

B
a

rn
e

s

F
M

M

O
c

e
a

n
 C

o
n

tig
u

o
u

s

O
c

e
a

n
 N

o
n

-C
o

n
t.

V
o

lre
n

d

W
a

te
r-n

s
q

u
a

re
d

W
a

te
r-s

p
a

tia
l

Magnycours-48 Niagara2-128

 0

 5

 10

 15

 20

 25

 30

R
adiosity

R
aytrace/Balls4

R
aytrace/C

ar

Barnes

FM
M

O
cean C

ontiguous

O
cean N

on-C
ont.

Volrend

W
ater-nsquared

W
ater-spatial

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

 0

 5

 10

 15

 20

 25

 30

R
a

d
io

s
ity

R
a

y
tra

c
e

/B
a

lls
4

R
a

y
tra

c
e

/C
a

r

B
a

rn
e

s

F
M

M

O
c

e
a

n
 C

o
n

tig
u

o
u

s

O
c

e
a

n
 N

o
n

-C
o

n
t.

V
o

lre
n

d

W
a

te
r-n

s
q

u
a

re
d

W
a

te
r-s

p
a

tia
l

(a) Single-threaded

 0

 2

 4

 6

 8

 10

 12

 14

R
adiosity

R
aytrace/Balls4

R
aytrace/C

ar

Barnes

FM
M

O
cean C

ontiguous

O
cean N

on-C
ont.

Volrend

W
ater-nsquared

W
ater-spatial

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

 0

 2

 4

 6

 8

 10

 12

 14

R
a

d
io

s
ity

R
a

y
tra

c
e

/B
a

lls
4

R
a

y
tra

c
e

/C
a

r

B
a

rn
e

s

F
M

M

O
c

e
a

n
 C

o
n

tig
u

o
u

s

O
c

e
a

n
 N

o
n

-C
o

n
t.

V
o

lre
n

d

W
a

te
r-n

s
q

u
a

re
d

W
a

te
r-s

p
a

tia
l

(b) 48 threads

 0

 2

 4

 6

 8

 10

 12

 14

R
adiosity

R
aytrace/Balls4

R
aytrace/C

ar

Barnes

FM
M

O
cean C

ontiguous

O
cean N

on-C
ont.

Volrend

W
ater-nsquared

W
ater-spatial

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

 0

 2

 4

 6

 8

 10

 12

 14

R
a

d
io

s
ity

R
a

y
tra

c
e

/B
a

lls
4

R
a

y
tra

c
e

/C
a

r

B
a

rn
e

s

F
M

M

O
c

e
a

n
 C

o
n

tig
u

o
u

s

O
c

e
a

n
 N

o
n

-C
o

n
t.

V
o

lre
n

d

W
a

te
r-n

s
q

u
a

re
d

W
a

te
r-s

p
a

tia
l

(c) 128 threads

Figure 2.8: SPLASH-2 results

performing synchronization (lock acquisitions) instead of sequential computations, as will be seen
in the evaluation (Chapter 4). Figure 2.8c shows that for 128 threads, Magnycours-48 is still much
faster than Niagara2-128 for most benchmarks, even though it only has 48 hardware threads.
Niagara2-128 manages to outperform Magnycours-48 on three benchmarks, however, (Radiosity,
Ocean Contiguous and Ocean Non-Contiguous) thanks to its larger amount of hardware threads.

On a side note, it can be seen in Figure 2.8 that adding more threads when executing the
SPLASH-2 applications often worsens performance instead of improving it: the SPLASH-2 suite
was released in the 90’s, when multi-CPU systems only featured a few CPUs with low sequential
performance. Such legacy applications are often unable to scale on newer systems, and increasing
the number of threads increases contention on shared resources such as locks and more generally,
cache lines, which decreases performance.

To conclude, Niagara2-128 has much worse sequential performance than Magnycours-48. Its
faster communication between hardware threads and larger number of hardware threads make it
possible to reduce the performance gap with Magnycours-48 when a lot of threads are used, it is
still clearly outperformed by Magnycours-48 on most applications of the SPLASH-2 suite.

2.5.3.4 Summary

Magnycours-48 is a machine that has much faster sequential performance and faster intra-die com-
munication, while Niagara2-128 is a slower machine that sometimes exhibits better performance
when it comes to communication between hardware threads, especially under high contention.
However, the faster communication and larger amount of hardware threads of Niagara2-128 is
not sufficient to make it perform better than Magnycours-48 on a parallel benchmark suite. Since
Magnycours-48 has better sequential performance relative to its communication performance
than Niagara2-128, it can be expected that synchronization will be more of a bottleneck on
Magnycours-48 than on Niagara2-128. The evaluation in Chapter 5 will confirm this intuition.

23

CHAPTER 2. MULTICORE ARCHITECTURES

2.6 Conclusion
Computer architectures are in a phase of mutation. After decades of CPU performance increases
mainly coming from higher clock frequencies, manufacturers now tend to split components:
the processing power of CPUs is split among cores and memory is split into NUMA banks.
Communications between the cores, the caches, and the RAM become more and more complex,
and the overhead of communication becomes more and more of a bottleneck: instructions can be
several hundreds of time slower under high contention than they are under low contention. In this
context, synchronization mechanisms have to evolve in order to perform well on newer machines:
the next chapter presents the evolution of lock algorithms, i.e., synchronization mechanisms that
make it possible to ensure that sections of code are executed in mutual exclusion.

24

Chapter 3

Lock algorithms

The lock is one of the oldest synchronization mechanisms [35, 57], and yet, it is still extensively
used in modern applications. A lock makes it possible for multiple threads to execute sections
of code in mutual exclusion. One of the main advantages of locks is their simplicity: in order
to execute a section of code that needs to use a resource in mutual exclusion, a thread simply
acquires a lock and is ensured that no other thread that uses the same resource will execute
the critical code concurrently. Locks induce several overheads however. First, designing a lock
algorithm that makes acquisition not costly when many threads try to acquire it concurrently
is a challenge on multicore machines with a lot of hardware threads: naïvely designed locks
require extensive communication between hardware threads to ensure mutual exclusion under
high contention. Second, while using locks can be straightforward if developers do not try to
minimize the size of critical sections, this approach can induce major overheads: long critical
sections increase the duration of the critical path, and therefore reduce the potential performance
improvement provided by parallelism in multicore machines, as stated by Amdahl’s law [4]. To
improve performance, developers can try to split critical sections into smaller ones, i.e., use
finer-grained locking. Doing so can be very difficult however, because finding ways of reducing
the size of critical sections is often not trivial, and leads to complex locking schemes that increase
the probability of introducing concurrency bugs. Third, each time a thread executes a critical
section, the shared data protected by the lock has to be brought to that thread, which causes
costly cache misses on the critical path. While the second issue has to be solved by developers
because it is application-dependent, lock algorithms focus on solving the first and third issues.

This section presents a selection of lock algorithms that includes the most common types of
locks, including state-of-the-art combining locks. The lock algorithms are compared in the light
of the following criteria:

• Reactivity. Locks that use busy-waiting react faster than locks that put threads to sleep
when the lock is taken, because they do not require context switches between the execution
of critical sections. The downside of this approach is that busy-waiting consumes a lot of
CPU time and energy.

• Performance under high contention. An efficient lock algorithm should allow a thread
to enter a critical section quickly when many threads on many hardware threads try to
acquire the lock concurrently.

• Number of atomic instructions. Some lock algorithms use a lot of contended atomic
instructions on shared synchronization variables, which can induce bottlenecks.

25

CHAPTER 3. LOCK ALGORITHMS

• Ordering of critical sections. Execution of critical sections in the First-In-First-Out
(FIFO) order is preferred over other orderings, because it improves fairness.1

• Potential starvation. Well-designed lock algorithms prevent starvation, i.e., the lack of
progress of one or several threads.

• Resistance to preemption. The performance of some lock algorithms drops when the
lock holder or threads that wait for the lock get preempted by the operating system’s
scheduler. This is not a desirable property because even though current architectures offer
dozens of hardware threads, some applications still spawn a larger amount of software
threads than there are hardware threads. This is the case for Berkeley DB with the TPC-C
benchmark presented in the evaluation in Chapter 5.

• Parameters. Some algorithms use one or several parameters that need to be fine-tuned
for optimal performance. Finding satisfactory values for these parameters can sometimes
be complex and time-consuming.

• Data locality of internal structures. Some lock algorithms try to reduce the migration
of the shared variables and structures they use internally during the execution.

• Data locality of critical sections. Some lock algorithms consecutively execute a large
number of critical sections on the same hardware thread in order to make sure that shared
variables and structures used by critical sections remain in that hardware thread’s caches.

• Usability in legacy applications. The most commonly used lock in legacy applications
is the POSIX lock, which is a blocking lock that comes with additional synchronization
mechanisms such as condition variables. If a lock algorithm implements the same API as
the blocking lock and makes it possible to easily implement condition variables, it can be
easily used in legacy applications.

Sections 3.2 to 3.8 presents a selection of lock algorithms: blocking locks, a basic spinlock,
the CLH lock, the MCS lock, time-published locks, the Oyama lock, Flat Combining, CC-Synch,
and DSM-Synch. Section 3.9 compares these lock algorithms. Section 3.10 briefly presents other
locks that were not considered in the study. Finally, Section 3.11 concludes.

3.1 Blocking locks
The main idea of blocking locks is that a thread that is not able to acquire the lock instantly is
put to sleep. An example implementation of a blocking lock can be the following. In order to
acquire the lock, a thread (i) tries to set a global lock variable to true; in case of failure, the lock
is already taken, therefore, (ii) it is enqueued in a global queue and (iii) it is put to sleep. The
operating system makes sure that the thread cannot be preempted during operations (i) and (ii)
in order to avoid a lost wakeup (this can be achieved with the futex() system call in Linux,
for instance). To release the lock, a thread either resets the lock variable if the list is empty, or
wakes up the next thread in the list. Like the function that acquires the lock, the function that

1FIFO ordering may not be preferred in real-time systems, where the scheduler must not be fair to processes.
However, none of the locks considered in this chapter are designed with real-time systems in mind, and real-time
systems are beyond the scope of this thesis.

26

3.2. BASIC SPINLOCK

releases the lock must be carefully designed to avoid any problematic concurrent interactions
between threads that try to acquire the lock and the thread that releases it.

Blocking locks use less power and CPU time than lock algorithms that busy-wait for locks.
However a context switch is required between each lock acquisition, which makes blocking locks
lack reactivity. Blocking locks are used in most legacy applications, since they are the only type of
lock that works properly on machines that provide only one hardware thread: on such a machine,
busy-waiting consumes CPU time without leaving a chance for the lock holder to release the
lock. This is why the most common locks on *NIX systems, the POSIX locks, are blocking locks.

POSIX locks are acquired and released using the pthread_mutex_lock/unlock() functions.
They also make it possible to wait on condition variables: the pthread_cond_wait() function
atomically releases a POSIX lock while causing the calling thread to sleep on a condition variable.
A subsequent call by another thread to pthread_cond_signal() can be used to wake up one of
the threads that waits on that condition variable, upon which the lock will be reacquired. A
call to pthread_cond_broadcast() can be used to wake up all threads that wait on a given
condition variable. Condition variables are frequently used in legacy applications: roughly half
of the multithreaded applications that use POSIX locks in Debian 6.0.3 (October 2011) also use
condition variables.

3.2 Basic spinlock
Spinlocks are lock algorithms that use busy-waiting (a.k.a. spinning) on a global condition
variable that represents the state of the lock. This section presents a basic spinlock that uses the
atomic compare-and-swap (CAS()) instruction presented in Section 2.3.1.2.b in a busy-wait loop
to try to set the value of a global lock variable. The thread that manages to set the lock variable
owns the lock and is able to execute the critical section. The lock is simply released by resetting
the lock variable through a standard assignment. This basic algorithm is shown in Algorithm 1.

Algorithm 1: Basic spinlock
1 types:
2 lock_t int *;

3 function lock(lock_t lock)
4 while ¬CAS(lock, 0, 1) do // Try to atomically set the lock variable
5 pause(); // Busy-wait loop hint

6 function unlock(lock_t lock)
7 ∗lock := 0; // Reset the lock variable

The basic spinlock is very efficient under low contention on multicore architectures thanks
to the very low number of instructions needed to implement it. This lock algorithm makes it
possible to hand the lock over very quickly between threads. However, when contention is high,
the performance of the basic spinlock is extremely poor, because of the write-access contention
on the cache line that contains the lock variable: when many threads try to execute the
atomic compare-and-swap instruction concurrently on the same cache line, the memory bus gets
saturated by the messages of the cache-coherence protocol, and the cost of a compare-and-swap
instruction becomes very high, as shown in Section 2.5.3.2. More evolved spinlocks algorithms
exist. In some variants, at each iteration of the busy-wait loop, the lock variable is read, and
a compare-and-swap instruction is only executed if the lock variable indicates that the lock is
not taken: this optimization can decrease write-access contention on the lock variable. As will

27

CHAPTER 3. LOCK ALGORITHMS

be described in Section 3.10, some lock algorithms are similar to spinlocks except they make
threads yield the processor for some time at each iteration of the busy-wait loop, which makes
their behavior closer to that of blocking locks.

Legacy applications that use POSIX locks can easily switch to spinlocks, because spinlocks
provide the same interface as POSIX locks: their lock() and unlock() functions only use one
argument that represents the lock. Moreover, a thread can easily wait on a condition variable
with spinlocks using POSIX primitives with the following steps: the thread (i) acquires a POSIX
lock, (ii) releases the spinlock, (iii) calls the POSIX function for acquiring a condition variable
(pthread_cond_wait()), (iv) releases the POSIX lock and (v) reacquires the spinlock. The
pthread_cond_signal() and pthread_cond_broadcast() can then be used directly to wake
up threads that are waiting on condition variables.

PAUSE instruction. In Algorithm 1, the pause() function call implements a busy-wait loop
hint, which corresponds to the PAUSE instruction on an x86 machine. If a PAUSE instruction is
not used, the branch predictor predicts that the CAS operation will always be unsuccessful, and
the pipeline gets filled with speculative CAS instructions that are expected to be unsuccessful.
When the lock is released, a memory order violation occurs: the processor sees that the variable
has been modified, and all invalid speculative CAS instructions must be flushed from the pipeline,
which induces a significant overhead. The PAUSE instruction waits long enough for speculative
comparison instructions to not get enqueued in the pipeline, but not long enough to induce
significant overhead on exit of the busy-wait loop. Moreover, preventing the pipeline from
filling up with speculative CAS operations saves energy as well as CPU time for other hardware
threads on the same core. Some CPUs may not provide a busy-wait loop hint, in which case
high-latency instructions can be used to simulate a PAUSE instruction. Since UltraSPARC T2+
CPUs do not provide a PAUSE instruction, the performance of several high-latency instructions
were evaluated on Niagara2-128 (one of the machines presented in Section 2.5.2), and the “RD
%CCR,%G0”, instruction, recommended by Dave Dice [32], was found to be the most efficient: this
instruction is therefore used in all busy-wait loops in the evaluation (Chapter 5).

3.3 CLH
The CLH lock [25, 74], invented independently at the University of Washington by Travis Craig,
and at the Swedish Institute of Computer Science by Anders Landin and Eric Hagersten, aims
to improve on spinlocks. As was explained in Section 3.2, the main issue with spinlocks is
that all threads busy-wait on the same synchronization variable, which causes high contention
on the cache line that contains it. CLH removes the need for busy-waiting on a single global
variable, and therefore performs better under high contention. The CLH algorithm is shown in
Algorithm 2.

CLH uses a global queue for each lock. This global queue initially contains a dummy node
whose succ_must_wait variable is set to false. Each thread owns a node. In order to acquire
the lock, a thread sets its node’s succ_must_wait variable to true, atomically inserts itself into
the queue using the fetch-and-store instruction presented in Section 2.3.1.2.b, and waits for the
succ_must_wait variable of its predecessor thread’s node to be set to false. When this happens,
the thread owns the lock and can execute its critical section. To release the lock, a thread simply
sets its node’s succ_must_wait variable to false, which unlocks the next thread in the queue.

Since each thread busy-waits on a different succ_must_wait variable, instead of all threads
busy-waiting on the same variable, CLH is more efficient than the basic spinlock under high

28

3.4. MCS

Algorithm 2: CLH
1 structures:
2 node_t { node_t *prev, // Pointer to successor in the queue

boolean succ_must_wait }; // Used for busy-waiting

3 types:
4 lock_t node_t *;

// The ‘lock’ parameter points to the tail of a list of nodes, each node representing a thread that waits for the lock.
Initially, the list contains a dummy node with the values (nil, false). The ‘node’ parameter points to a thread-
local node.

5 function lock(lock_t ∗lock, node_t ∗node)
6 var node_t *pred;
7 node→ succ_must_wait := true; // Successor will have to wait
8 node→ prev := fetch_and_store(lock, node); // Queue for lock
9 pred := node→ prev; // Get predecessor

10 while pred→ succ_must_wait do
11 pause(); // Busy-wait for lock

12 function unlock(node_t ∗ ∗node)
13 var node_t *pred := ∗node→ prev; // Get predecessor
14 ∗node→ succ_must_wait := false;
15 ∗node := pred;

contention. CLH provides another advantage over the basic spinlock: since threads enqueue their
nodes in a FIFO queue, FIFO ordering of lock acquisitions is ensured. This property eliminates
the risk of starvation caused by lock acquisitions.

CLH may be slightly more difficult to use in legacy applications than the basic spinlock,
because its lock() and unlock() function use two arguments instead of one in POSIX locks:
(i) a pointer to the tail of the list of nodes, and (ii) an pointer to the local thread’s node, which
can be modified. This can be solved by using a thread-local variable to store the pointer to the
local thread’s node. If thread-local variables are not provided by the programming language,
compiler, and/or runtime that is used by the legacy application, some light code refactoring
might be needed to make it use CLH. Condition variables can be implemented for CLH using
the same technique as the one proposed for spinlocks (see Section 3.2).

3.4 MCS
The MCS lock [76] is similar to the CLH lock since it also uses a global queue with one node per
thread, and threads busy-wait on one synchronization variable per thread instead of a global one.
In MCS however, a thread always uses the same node during the whole execution. This node
can be allocated locally, which can improve performance on non-cache-coherent architectures.
The MCS algorithm is shown in Algorithm 3.

In MCS, each thread owns a node for each lock. When a thread t needs to acquire the lock,
it enqueues its node atomically into the global queue. If the node is the only element in the
queue, the lock was free and t can go on with the execution of the critical section. Otherwise,
the queue contains the nodes of all the other threads that are waiting to acquire the lock. In
that case, t busy-waits on its node’s locked variable until it is set to false, which means that
its predecessor is done executing its critical section and t now owns the lock. In order to release
the lock, thread t first checks whether its node is the last element in the queue. If this is the
case, t atomically removes itself from the queue: the lock is not held by any thread anymore. If
the node was not the last one in the queue or if removing the node atomically from the queue

29

CHAPTER 3. LOCK ALGORITHMS

Algorithm 3: MCS
1 structures:
2 node_t { node_t *next, // Pointer to successor in the queue

boolean locked }; // Used for busy-waiting

3 types:
4 lock_t node_t *;

// The ‘lock’ parameter points to the tail of a list of nodes, each node representing a thread that waits for the lock
(initially, ∗lock := nil). The ‘node’ parameter points to a thread-local node.

5 function lock(lock_t ∗lock, node_t node)
6 var node_t *pred;
7 node→ next := nil; // Initially, no successor
8 pred := fetch_and_store(lock, node); // Queue for lock
9 if pred 6= nil then // If lock was not free

10 node→ locked := true; // Prepare to busy-wait
11 pred→ next := node; // Link behind predecessor
12 while node→ locked do
13 pause(); // Busy-wait for lock

14 function unlock(lock_t ∗lock, node_t ∗node)
15 if node→ next = nil then // If no known successor
16 if CAS(lock, node, nil) then
17 return; // No successor, lock free

18 while node→ next := nil do
19 pause(); // Wait for successor

20 node→ next→ locked := false; // Pass lock

failed, at least one other thread is waiting for the lock. After making sure that the next thread’s
node is properly enqueued, t hands over the lock to the next thread in the queue by setting that
thread’s locked variable to false.

CLH and MCS are both queue locks: they use a global queue of waiting threads, which
ensures FIFO ordering for lock acquisitions. The global queue makes it possible to use as many
synchronization variables as there are threads, thereby removing the main overhead of the basic
spinlock: threads do not busy-wait on a single global synchronization variable. MCS has an
advantage over CLH: threads always reuse the same node as their local node, and they always
busy-wait on a variable that belongs to their local node. This can improve performance on
non-cache-coherent architectures if each thread’s node is allocated locally: no busy-waiting on
a remotely allocated variable is needed, and busy-waiting on a remotely-allocated variable in
non-cache-coherent architectures can use a lot of bandwidth and may lack reactivity. On NUMA
architectures, MCS makes it possible for a client to spin on a locally-allocated synchronization
variable, but the synchronization variable is not contended (one per thread) and only accessed in
read mode in the busy-wait loop, therefore, it should remain cached until it is invalidated just
before the client exits the busy-wait loop. Consequently, performance gains of MCS over CLH
on NUMA architectures should be negligible.

Using MCS in legacy applications leads to the same issues as using CLH. In particular, the
lock() and unlock() functions of MCS use two arguments instead of one for POSIX locks. A
variant of MCS, named K42 [7], solves this issue: its lock() and unlock() only take the tail of
the queue as their argument, without the need of thread-local variables. While using K42 can be
more practical than using MCS in some legacy applications, its performance has been shown to
be worse [15], and it is patented by IBM, which limits its use.

30

3.5. TIME-PUBLISHED LOCKS

3.5 Time-published locks
While queue locks such as CLH and MCS perform better than basic spinlocks due to the fact that
they use one synchronization variable per thread for busy-waiting, their performance can drop
drastically in an environment where threads can get preempted. Preemption can be problematic
in two cases [81]: (i) the thread that owns the lock gets preempted, in which case all the threads
that are waiting for the lock waste CPU time busy-waiting needlessly, and (ii) when the lock is
released, the next thread in the queue has been preempted, therefore, the following threads in
the queue also waste CPU time busy-waiting even though the lock is free and they should be
allowed to acquire it.

Another issue with queue locks and preemption is the convoy effect [64], in which the FIFO
ordering of lock acquisitions and the FIFO scheduling policy of the operating system interact in
such a way that critical sections take one or several of the scheduler’s time quanta to be executed.
As an example, let us consider a very basic scenario where a convoy occurs with a queue lock.
Suppose four threads t1, t2, t3 and t4 run on a machine with three hardware threads, and all of
them execute critical sections whose execution time is significantly shorter than a time quantum.
The scheduler uses a FIFO policy with this order for thread scheduling:

[Q1] Scheduler queue: t1 ← t2 ← t3 ← t4

In this case, threads t1, t2 and t3 are each running on one of the three hardware threads, and
t4 sleeps. The queue lock’s queue contains all threads, in that order:

[Q1] Lock queue: t4 ← t3 ← t2 ← t1

All threads wait for t4 to execute its critical section. Since thread t4 sleeps, it cannot execute
its critical section until the next time quantum. At the next quantum, the situation is the
following:

[Q2] Scheduler queue: t4 ← t1 ← t2 ← t3

I.e., t4, t2 and t1 are running, and t3 is sleeping. Thread t4 can now execute its critical
section, after which the situation is the following (supposing t4 enqueues itself again to execute a
new critical section):

[Q2] Lock queue: t3 ← t2 ← t1 ← t4

Since t3 is sleeping, it cannot execute its critical section during this time quantum. At the
next time quantum, the scheduler’s queue becomes:

[Q3] Scheduler queue: t3 ← t4 ← t1 ← t2

At which point t3 can execute its critical section, and the lock queue becomes:

[Q3] Lock queue: t2 ← t1 ← t4 ← t3

This is again in a situation in which the lock holder t2 cannot execute its critical section
until the next time quantum because it is sleeping. In this scenario, it always takes at least one
time quantum to execute a critical section. Since time quanta are usually orders of magnitude
slower than critical sections, this phenomenon can drastically slow down the execution of the
application. More complex convoys can occur, in which executing a critical section takes more
than one time quantum.

31

CHAPTER 3. LOCK ALGORITHMS

Time-published locks [49] are modified versions of the MCS and CLH locks that help prevent
the issues caused by preemption in MCS and CLH locks. They use a timestamp-based heuristic
to solve the two problems stated at the beginning of this section (which occur when the lock
holder or waiting threads in the list get preempted), as well as convoys. Each thread periodically
writes the current system time to a shared location. If a thread t fails to acquire the lock for a
long amount of time, it checks the timestamp of the lock holder, and if that timestamp is stale,
it assumes that the lock holder has been preempted. Therefore, it yields the processor in order
to increase the probability for the lock holder to be scheduled again: this technique helps solve
problem (i). Moreover, if a thread t1 reads a stale timestamp for a thread t2 that is waiting in
the queue, it assumes that t2 has been preempted, and therefore remove t2 from the queue: this
helps solve problem (ii). Finally, the timestamp-based heuristic quickly removes convoys: since a
convoy results in stale timestamps, the preempted threads get removed from the queue, and the
waiting threads yield, forcing a reordering of the scheduling queue.

The algorithm of the modified MCS lock, known as MCS-TP, is shown in Algorithms 42

and 5. While synchronization variable of MCS can only hold two values that indicate whether
the lock is held or not, the modified synchronization variable of MCS-TP can take five values:
(i) INIT, which is used before any lock acquisition, (ii) AVAILABLE, which means the thread holds
the lock, (iii) WAITING, which means the threads is busy-waiting in the queue, (iv) TIMED_OUT,
which means the thread has been removed from the queue because another thread assumed it
had been preempted, and (v) FAILED which is used when a lock acquisition failed because it
was too long (in which case the thread tries to acquire the lock again). MCS-TP is a complex
algorithm whose main drawback is that it requires several constants for which it may be difficult
to find satisfactory values: (i) MAX_CS_TIME is an approximate upper bound on the length of
critical sections, which is application-dependent and cannot be easily evaluated without profiling,
(ii) PATIENCE is the amount of time a thread should wait in the queue, for which a satisfactory
value can only be determined empirically, (iii) UPDATE_DELAY, which is the amount of time it
takes a thread to see a timestamp published on another thread, including any potential clock
skew. Again, this value is hard to evaluate and is hardware-dependent.

3.6 Oyama
The Oyama lock [82] is a type of lock that aims to improve data locality by making threads
execute several critical sections consecutively by a server thread: since critical sections that are
protected by a given lock often perform operations on the same set of shared variables, executing
several of them consecutively on the same hardware thread makes it possible for these variables
to remain in that hardware thread’s caches, thus reducing the number of cache misses on the
critical path and therefore improving performance. Similarly to MCS and CLH, Oyama uses a
global queue in which threads enqueue themselves when they need to execute a critical section.
With Oyama, however, each node contains a pointer to a function that encapsulates the critical
section so that it can be executed remotely. Oyama also uses a global synchronization variable
that can take three values: (i) FREE, which means that the lock is free, (ii) LOCKED, which means

2Line 38 is not present in the MCS-TP algorithm presented in the technical report that describes the
algorithm [25]. However, omitting it causes the current lock to sometimes not register itself as being the last
acquired lock by the current thread, even though that thread’s node is left in the global queue. Therefore, on
the next time the trylock() function is called, the algorithm may consider that the last considered lock was a
different one while this is not the case, which can cause threads to incorrectly insert their nodes several times in
the global queue and lead to deadlocks.

32

3.6. OYAMA

Algorithm 4: MCS-TP, lock() function
1 types:
2 enum_status_t enum { INIT, AVAILABLE, WAITING, TIMED_OUT, FAILED };

3 structures:

4
node_t { lock_t *last_lock, long_long time, node_t *next, boolean locked, enum_status_t status };
lock_t { node_t *tail, long_long cs_start_time };

// The ‘lock’ parameter points to the tail of a list of nodes, each node representing a thread that waits for the lock
(initially, ∗lock := nil). The ‘node’ parameter points to a thread-local node.

5 function lock(lock_t ∗lock)
6 while ¬trylock(lock) do
7 ;

8 function trylock(lock_t ∗lock, node_t ∗node) : int
9 var node_t *pred;

10 var long_long start_time := get_timestamp();
11 if node→ status 6= TIMED_OUT or node→ last_lock 6= lock or
12 ¬CAS(&node→ status, TIMED_OUT, WAITING) then // Try to reclaim previous position in queue.
13 node→ status := WAITING;
14 node→ next := 0;
15 pred := test_and_set(&lock → tail, node);
16 if ¬pred then // The lock was free.
17 lock → cs_start_time := get_timestamp();
18 return 1;
19 else
20 pred→ next := node;

21 while true do
22 if node→ status = AVAILABLE then
23 lock → cs_start_time := get_timestamp(); // Lock free, update timestamp and acquire it.
24 return 1;
25 else if node→ status = FAILED then

// The lock acquisition failed. If the lock holder appears to have been preempted, yield to leave it a
chance to release the lock.

26 if get_timestamp()− lock → cs_start_time > MAX_CS_TIME then
27 yield();
28 node→ last_lock := lock;
29 return 0;

// Busy-wait loop: busy-wait for a limited amount of time (PATIENCE) then try to time out. If the lock
holder appears to have been preempted, yield to leave it a chance to release the lock.

30 while node→ status = WAITING do
31 node→ time := get_timestamp();
32 if get_timestamp()− start_time ≤ PATIENCE then
33 continue;
34 if ¬CAS(&node→ status, WAITING, TIMED_OUT) then
35 break;
36 if get_timestamp()− lock → cs_start_time > MAX_CS_TIME then
37 yield();
38 node→ last_lock := lock;
39 return 0;

that a critical section is being executed, but no other critical section needs to be executed after
that, and (iii) a pointer to the global queue. When a thread t needs to execute a lock, it tries
to atomically switch the value of the global variable from FREE to LOCKED. In case of failure,
another thread is executing a critical section, therefore, t enqueues itself atomically into the
global queue. In case of success, t owns the lock: it executes its critical section, then tries to
release the lock using a compare-and-swap operation. This operation can fail if other threads

33

CHAPTER 3. LOCK ALGORITHMS

Algorithm 5: MCS-TP, unlock() function
1 function unlock(lock_t ∗lock, node_t ∗node)
2 var int scanned_nodes = 0;
3 var node_t *succ;
4 var node_t *curr := node;
5 var node_t *last := nil;
6 while true do
7 succ := curr → next;
8 if ¬succ then
9 if CAS(&lock → tail, curr, nil) then // Leave the queue if last in line

10 curr → status := FAILED;
11 return; // We were last in line
12 while ¬succ do // Find last element
13 succ := curr → next;

14 scanned_nodes++;
15 if scanned_nodes < MAX_THREADS then
16 curr → status := FAILED;
17 else if last = nil then
18 last := curr; // Handle treadmill case
19 if succ→ status = WAITING then
20 long_long succ_time = succ→ time;
21 if get_timestamp()− succ_time ≤ UPDATE_DELAY
22 and CAS(&succ→ status, WAITING, AVAILABLE) then
23 while last and last 6= curr do
24 last→ status := FAILED;
25 last := last→ next;
26 return;

27 curr := succ;

enqueued themselves during the execution of the critical section. In this case, t becomes a server:
it detaches the queue, and executes all of the critical sections it contains. Thread t then tries to
release the lock atomically again, and in case of failure, it may have to detach the queue again
and to execute the newly-enqueued critical sections. The scheme goes on until t manages to
release the lock.

The basic idea of Oyama, namely, making a thread execute a streak of critical sections in
order to improve data locality, is also used by the more recent lock algorithms presented in the
to next sections (Flat Combining, CC-Synch and DSM-Synch). This approach does not only
improve data locality, it also accelerates the critical path because when a thread executes a streak
of critical sections, no synchronization is needed between the execution of each critical section.
The only communication overhead is caused by the cache misses needed for fetching the code and
parameters of the next critical sections to execute (which can usually be avoided with prefetching),
and signaling threads that their critical sections have been executed. In comparison, with the basic
spinlock, blocking locks, or queue locks, before starting to execute a critical section, the thread
that releases the lock must write to a contended variable, and the new thread that acquires the lock
must see that change and get out of its busy-wait loop. This overhead can be costly, because it is
located on the critical path: if n threads execute critical sections concurrently at a very high rate,
on average, each thread has to wait for n−1 other critical sections to be executed before its critical
section is executed, which means that the overhead of synchronization has to be paid n− 1 times.

While Oyama has several advantages over the locks presented in the previous sections, it also
has drawbacks: first, it uses a global lock variable which could get highly contended. Second, the
implementation uses a large amount of atomic instructions. Third, critical sections are executed

34

3.7. FLAT COMBINING

in LIFO order which is bad for fairness. Fourth, the thread that executes critical sections may
starve in a scenario of high contention where threads enqueue themselves in the queue faster
than one thread can execute them. In that case, the thread executing the critical sections will
never be able to resume its execution.

Finally, Oyama cannot be used directly in legacy applications, for two reasons. First,
Oyama requires critical sections to be encapsulated into functions. This requires extensive code
refactoring, and no solution to this problem is given in the Oyama paper [82]. Second, condition
variables cannot easily be implemented for Oyama because by making the server thread sleep,
they would prevent it from executing remaining critical sections in the queue. Moreover, since
server threads are normal application threads, waiting on condition variables could randomly
prevent an application thread from making progress, which could cause undesirable unexpected
effects such as deadlocks. These two issues with Oyama also affect the three lock algorithms
(Flat Combining, CC-Synch and DSM-Synch) that will be presented in the next two sections.

3.7 Flat Combining
Flat Combining [51] is not a lock algorithm per se, but rather a synchronization paradigm that
aims to combine operations on a shared object in a way that decreases algorithmic complexity
and improves data locality. It is sometimes possible for a thread to execute n operations on
a shared object with a more efficient sequential algorithm than for n threads to execute one
operation each. With Flat Combining, when a thread needs to execute such an operation on
an object, it enqueues itself in a global queue, then waits for a combiner thread to execute its
operation. If there is no combiner thread, it becomes a combiner thread itself and executes all
operations from the queue, hopefully using an efficient sequential algorithm. When the thread is
done executing all pending operations, it resumes its normal execution.

Flat Combining has two main benefits. First, it makes it possible to use a fast sequential
combining algorithm for a queue of operations. Second, as is the case with Oyama, since
many operations on a shared object are executed consecutively by the same thread, (i) no
synchronization is needed during the execution of the critical sections that are executed by the
combiner thread other than signaling threads that their critical section has been executed, and
(ii) data locality is improved because the shared data used by critical section remains on the
same hardware thread. It is interesting to note that if the combiner thread does not use a
special combining algorithm (since it is not always possible to find such an algorithm) but simply
executes requests one after the other, Flat Combining becomes an efficient lock mechanism that
executes the operations in mutual exclusion while improving data locality and reducing the
overhead of synchronization. Using Flat Combining as a lock is similar to using Oyama, but it is
more efficient, since Flat Combining eliminates three of its drawbacks. First, Flat Combining
never leads to starvation. Second, it executes its request in the FIFO order instead of LIFO. And
third, it uses less atomic instructions than Oyama.

The algorithm of Flat Combining is shown in Algorithm 6. Like Oyama, Flat Combining
uses a global lock and a global queue whose nodes contain pointers to functions that encapsulate
critical sections. Each thread owns one node per lock, which can either be active or inactive.
Flat Combining also uses a global counter for tracking old, inactive nodes and removing them
from the queue. When a thread t needs to execute a critical section, it first checks if its node is
active. If its node is inactive, it activates it and inserts it into the queue. Then, t either waits for
a combiner to execute its request, or for the global lock to be free, in which case it can acquire

35

CHAPTER 3. LOCK ALGORITHMS

Algorithm 6: Flat Combining
1 structures:
2 node_t { request_t req, ret_val_t ret, int active, int age, node_t *next };

// ‘lock’ represents the lock. It is the head of a shared queue. Initially, the queue is empty and ∗lock = nil. ‘node’
initially points to a thread-local node with the values {nil, nil, false, 0, nil}. ‘list_lock’ is a spinlock that
protects the shared queue. ‘count’ is a counter whose initial value is 0.

3 function execute_cs(request_t req, node_t ∗ ∗lock, node_t ∗node, int ∗list_lock, int ∗count) : ret_val_t
4 var node_t *sup, *prev, *cur;
5 var int local_count;
6 node→ req := req;
7 while true do
8 if ¬node→ active then // Request inactive?
9 node→ active := true; // Make it active

10 repeat // Enqueue it
11 sup := ∗lock;
12 node→ next := sup;
13 until CAS(∗lock, sup, node);
14 while ∗list_lock 6= 0 and node→ req 6= nil
15 and node→ active do // Busy-wait while global lock taken,
16 pause(); // node active and request not executed
17 if node→ req = nil then // A combiner executed our request
18 return node→ ret; // We return the request
19 else if CAS(list_lock, 0, 1) then // No combiner did, become combiner
20 break;

21 if ¬node→ active then // Request inactive again?
22 node→ active := true; // Make it active
23 repeat // Enqueue it
24 sup := ∗lock;
25 node→ next := sup;
26 until CAS(∗lock, sup, node);

27 ∗count++; // Increment global counter
28 local_count := ∗count; // Take snapshot of global counter
29 cur := ∗lock;
30 while cur 6= nil do // Now combiner: execute all requests
31 if cur → req 6= nil then
32 Critical section:
33 <apply cur → req to object’s state and store the return value to cur → ret>
34 cur → req := nil;
35 cur → age := local_count;
36 cur := cur → next;
37 if ¬(count mod CLEANUP_FREQUENCY) then // Once in a while, cleanup list
38 prev := ∗lock; // (remove inactive nodes)
39 cur := prev → next;
40 while cur 6= nil do
41 if cur → age + CLEANUP_OLD_THRESHOLD < local_count then
42 prev → next := cur → next;
43 cur → active := false
44 else
45 prev := cur;
46 cur := prev → next;

47 ∗list_lock := 0; // Release global lock
48 return lock → ret; // Executed own request: return result

the global lock and become a combiner itself. When t becomes a combiner, it increments the
global counter, then executes the critical sections of all the other threads. Sometimes, after the

36

3.8. CC-SYNCH AND DSM-SYNCH

combiner has executed all of the critical sections from the queue, it performs a cleanup phase in
which it removes old nodes from the queue. In order to determine if a request is old enough to
be removed from the queue, its age is calculated using the difference between the current value
of the global counter and the value it had when its node last became a combiner. Finally, the
combiner releases the global lock. Note that nodes are inserted at the head of the queue, and the
combiner follows the queue from head to tail. Moreover, unlike with Oyama, when the combiner
reaches the end of the list, it simply releases the global lock instead of going through the list
again in case new nodes have enqueued themselves during the combining phase. Therefore, unlike
Oyama, Flat Combining never leads to starvation.

Flat Combining, like Oyama, has the advantage of improving data locality. It has a few
drawbacks however: first, it uses a global lock, which can get highly contended. Second, Flat
Combining uses two parameters: (i) CLEANUP_FREQUENCY, which determines how often old nodes
are removed from the queue, and (ii) CLEANUP_OLD_THRESOLD, which determines how old nodes
must be before they get removed from the queue. Modifying the values of these parameters make
it possible to switch between a lenient and an aggressive cleaning policy for the queue. With a
lenient cleaning policy, many unused nodes pollute the queue, and the combiner has to skip them
when it executes the streak of critical sections. This makes the critical path longer, especially
since cache misses are required to fetch the nodes from the queue. Moreover, threads have to
reenqueue themselves more often, which may cause contention on the head of the queue. With
an aggressive cleaning policy, the global lock is held for longer, because it is held while the queue
is being cleaned: this also makes the critical path longer. Therefore, calibrating the parameters
of Flat Combining can be a hard task: since both an aggressive and a lenient cleaning policy
can be detrimental to the performance of the algorithm, empirical measurements are needed to
determine the policy that works best for the application and the hardware used.

Note on the chronology. The presentation of the lock algorithms until this point gave an
overview of the state of the art of lock algorithms at the time the main contribution of this thesis,
RCL (see Chapter 4), was designed. The next two algorithms, CC-Synch and DSM-Synch, were
developed simultaneously with RCL and published only a few weeks before the submission of the
RCL paper at USENIX ATC [71].

3.8 CC-Synch and DSM-Synch
This section presents CC-Synch and DSM-Synch [39], two algorithms proposed by Fatourou et
al. that aim to improve on Flat Combining. Like Flat Combining, CC-Synch and DSM-Synch
use a global queue, and application threads occasionally become combiners that execute streaks
of requests. Moreover, CC-Synch and DSM-Synch are designed to be used with an efficient
sequential combining algorithm, but without such an algorithm, CC-Synch and DSM-Synch can
simply be used as fast lock mechanisms.

CC-Synch. The algorithm of CC-Synch is shown in Algorithm 7. Unlike Flat Combining,
CC-Synch does not use a global lock. Instead, each thread busy-waits on its own wait variable
inside of its node. The first thread to enqueue itself becomes the unique combiner, and it executes
its own critical section as well as the critical sections from the queue until (i) it reaches the head
of the queue or (ii) it has executed a total of MAX_COMBINER_CS critical sections. In the latter
case, the combiner hands over the role of combiner to the next thread in the queue. When a
combiner runs out of requests to execute, the queue is restored to its initial state, i.e., it contains

37

CHAPTER 3. LOCK ALGORITHMS

Algorithm 7: CC-Synch
1 structures:
2 node_t { request_t req, ret_val_t ret, boolean wait, boolean completed, node_t *next };

// ‘lock’ represents the lock. It is the tail of a shared queue that initially contains a dummy node with the values
// {nil, nil, false, false, nil}. ‘node’ initially points to a thread-local node with the values {nil, nil, false, false,
// nil}.

3 function execute_cs(request_t req, node_t ∗ ∗lock, node_t ∗ ∗node) : ret_val_t
4 var node_t *next_node, *cur_node, *tmp_node, *tmp_node_next;
5 var int counter := 0;
6 next_node := ∗node; // The current thread uses a (possibly recycled) node
7 next_node→ next := nil;
8 next_node→ wait := true;
9 next_node→ completed := false;

10 cur_node := atomic_swap(∗lock, next_node); // ‘cur_node’ is assigned to the current thread
11 cur_node→ req := req; // The current thread announces its request
12 cur_node→ next := next_node;
13 ∗node := cur_node;
14 while cur_node→ wait do // The current thread busy-waits until it is unlocked
15 pause();
16 if cur_node→ completed then
17 return cur_node→ ret; // If the request is already applied, return its value
18 tmp_node := cur_node; // The current thread is the combiner
19 while tmp_node→ next 6= nil and counter < MAX_COMBINER_OPERATIONS do
20 counter++;
21 tmp_node_next := tmp_node→ next;
22 Critical section:
23 <apply tmp_node→ req to object’s state and store the return value to tmp_node→ ret>
24 tmp_node→ completed := true; // tmp_node’s req is applied
25 tmp_node→ wait := false; // Signal the client thread
26 tmp_node := tmp_node_next; // Proceed to the next node
27 tmp_node→ wait := false;
28 return cur_node→ ret;

a single dummy node whose wait parameter is set to false: the next thread to enqueue itself
will become the next combiner.

The MAX_COMBINER_CS parameter prevents starvation. The reason why CC-Synch needs this
parameter when Flat Combining does not is that in Flat Combining, threads insert their new
nodes at the head of the queue, therefore, the critical sections of newly inserted nodes will
never be executed by the current combiner. With CC-Synch, new nodes are inserted at the
tail of the queue, therefore, without the MAX_COMBINER_CS parameter, threads may enqueue
themselves faster than the combiner executes critical sections, which would lead to starvation:
the combiner would only ever execute critical sections for other threads and would never be
able to hand over the role of combiner to another application thread. While picking a low value
for MAX_COMBINER_CS is costly because it prevents long streaks of critical sections from being
executed on the same node (which makes the lock behave more like a queue lock), picking a
high value is only detrimental to fairness, which is only a minor concern in most applications.
Therefore, picking a satisfactory value is not very complex: a large value ensures that the lock
with perform well in most cases. Fatourou et al. recommend a value of n times the number of
hardware threads of the architecture, with n being a small integer.

The fact that CC-Synch does not use a global queue fixes the potential problem of an
contended global lock in Flat Combining, and since combiners follow the queue and hand over
their role to the first thread in the queue whose request has not been executed, all inactive

38

3.8. CC-SYNCH AND DSM-SYNCH

Algorithm 8: DSM-Synch
1 structures:
2 node_t { request_t req, ret_val_t ret, boolean wait, boolean completed, node_t *next };

// ‘lock’ represents the lock. It is the tail of a shared queue that initially contains a dummy node with the values
// {nil, nil, false, false, nil}. ‘nodes’ is an array that contains two thread-local nodes, initialized with the values
// {nil, nil, false, false, nil}. ‘toggle’ is a thread-local variable that determines which one of the thread-local
// nodes is currently used.

3 function execute_cs(request_t req, node_t ∗ ∗lock, node_t nodes[2], int ∗ toggle) : ret_val_t
4 var node_t *tmp_node, *my_node, *my_pred_node;
5 var int counter := 0;
6 ∗toggle := 1− ∗toggle; // The current thread toggles its toggle variable
7 my_node = nodes[∗toggle]; // The current thread chooses to use one of its nodes
8 my_node→ wait := true;
9 my_node→ completed := false;

10 my_node→ next := nil;
11 my_node→ req := req; // The current thread announces its request
12 my_pred_node := atomic_swap(∗lock, my_node); // The current thread inserts my_node in the list
13 if my_pred_node 6= nil then // If a node already exists in the list
14 my_pred_node→ next := my_node; // Fix ‘next’ of previous node
15 while my_node→ wait do // The current thread busy-waits until it is unlocked
16 pause();
17 if my_node→ completed then // If the current thread’s request is already applied
18 return my_node→ ret; // The current thread returns its return value

19 tmp_node := my_node

20 while true do // The current thread is the combiner
21 counter++;
22 Critical section:
23 <apply tmp_node→ req to object’s state and store the return value to tmp_node→ ret>
24 tmp_node→ completed := true; // The request of ‘tmp_node’ is applied
25 tmp_node→ wait := false; // Signal the client thread
26 if tmp_node→ next = nil or
27 tmp_node→ next→ next = nil or
28 counter ≥ MAX_COMBINER_OPERATIONS then

// The current thread helped H threads or fewer than 2 nodes are in the list
29 break;
30 tmp_node := tmp_node→ next; // Proceed to the next node
31 if tmp_node→ next = nil then // The request is the only record in the list
32 if CAS(∗lock, tmp_node, nil) then
33 return my_node→ ret;
34 while tmp_node→ next = nil do // Some thread is appending a node
35 yield(); // Wait until it finishes its operation

36 tmp_node→ next→ wait := false; // Unlock next node’s owner
37 return my_node→ ret;

nodes are located before the combiner in the queue: the queue never requires any cleanup. This
removes the need for the two CLEANUP_FREQUENCY and CLEANUP_OLD_THRESHOLD parameters,
and improves performance since the cleanup of Flat Combining makes the critical path longer.

DSM-Synch. DSM-Synch is a modified version of CC-Synch that aims to perform better on
non-cache-coherent architectures. With CC-Synch, each thread owns a dedicated node in the
beginning of the algorithm, but when a thread needs to enqueue itself, the dummy node at
the tail of the queue becomes its new node, and its old node becomes the new dummy node.
Therefore, with CC-Synch, even if the nodes are initially allocated locally, threads are not ensured
to always use locally allocated nodes because nodes are handed over between threads. As shown

39

CHAPTER 3. LOCK ALGORITHMS

in Algorithm 83, DSM-Synch uses two nodes per thread per lock, and threads always use one of
them when they need to enter the queue: if these two nodes are allocated locally, all threads will
only ever use locally allocated nodes. Consequently, with CC-Synch, the long busy-wait loop
used by threads to wait for the execution of their critical sections (lines 16 and 17 in Algorithm 7)
busy-waits on data that may not have been allocated locally, whereas with DSM-Synch, the
corresponding busy-wait loop (lines 16 and 17 or Algorithm 7) only busy-waits on data that has
been allocated locally as long as the nodes were initially allocated locally. This optimization was
designed for non-cache-coherent architectures, for which busy-waiting on remote data can use a
lot of interconnect bandwidth and may lack reactivity. The optimization also makes it possible to
busy-wait on a locally allocated variable on NUMA architectures, but since the synchronization
variable is not contended (one per client) and only accessed in read mode, performance gains over
CC-Synch should be negligible on these architectures as the variable will typically remain cached
until it is invalidated just before the corresponding client exits its busy-wait loop. DSM-Synch
is slightly more complex than CC-Synch: DSM-Synch uses more atomic instructions and two
busy-wait loops (lines 15-16 and 34-35 of Algorithm 8) instead of one.

3.9 Comparison of lock algorithms
This section compares the lock algorithms presented heretofore based on the metrics presented
in the beginning of the chapter. Figure 3.1 illustrates that comparison.

Reactivity and performance under high contention. All locks that use busy-waiting are
very reactive because they do not require context switches between the execution of critical
sections as is the case with blocking locks. The basic spinlock performs very poorly under high
contention due to the fact that it uses a single synchronization variable. Queue locks (CLH, MCS
and MCS-TP) perform better because they use one synchronization variable per thread. Oyama
and Flat Combining perform even better because they execute streaks of critical sections without
needing synchronization between them other than signaling threads when their critical section
has been executed. However, Oyama and Flat Combining still use a global lock. CC-Synch and
DSM-Synch remove the global lock completely.

Number of atomic instructions. The basic spinlock issues a lot of contended atomic in-
structions when many threads busy-wait on the same synchronization variable. In all queue
locks (CLH, MCS, MCS-TP), Oyama, and combining locks (Flat Combining, CC-Synch, and
DSM-Synch), threads use atomic instructions to insert their nodes into the global queue. Oyama
and Flat Combining use an internal global spinlock, which also makes them use a significant
amount of potentially contended atomic instructions.

Ordering and starvation. Most lock algorithms execute critical sections in FIFO order with
the exception of (i) the basic spinlock, in which the fastest thread to request the lock acquires it,
and (ii) Oyama, since it uses a LIFO queue. For this reason, basic spinlocks can lead to starvation
(one thread that is faster than the others may always obtain the lock first). Oyama can also
cause starvation if critical sections are added to the queue at a very high rate, i.e., too fast for
the thread that executes them to ever reach the end of the queue. Starvation is impossible for

3The implementation of DSM-Synch proposed in Fatourou et al.’s original paper [39] resets tmp_node->next
to NULL between lines 36 and 37. This operation is not present in the official implementation [38] of DSM-Synch.
It seems to cause a lost update of the tmp_node->next variable that can cause a deadlock of the combiner, by
making it loop indefinitely at lines 34-35.

40

3.9. COMPARISON OF LOCK ALGORITHMS

R
ea

ct
iv
ity

Pe
rf
or

m
an

ce
un

de
r

hi
gh

co
nt
en

tio
n

N
um

be
ro

fa
to
m
ic

in
st
ru

ct
io
ns

O
rd

er
in
g
of

cr
iti
ca

l
se

ct
io
ns

St
ar
va

tio
n
po

ss
ib
le

R
es

is
ta
nc

e
to

pr
ee

m
pt
io
n

N
um

be
ro

f
pa

ra
m
et
er
s

C
ho

os
in
g
effi

ci
en

t
pa

ra
m
et
er
s

D
at
a
lo
ca

lit
y
of

in
te
rn

al
st
ru

ct
ur

es

D
at
a
lo
ca

lit
y
in

cr
iti
ca

ls
ec

tio
ns

U
sa

bi
lit
y
in

le
ga

cy
ap

pl
ic
at
io
ns

Basic spinlock Good Poor Very high Random Yes Average 0 - Poor Average Easy
Blocking lock Poor Good Average FIFO No Good 0 - Average Average -
CLH Good Average Average FIFO No Very poor 0 - Good Average Medium
MCS Good Average Average FIFO No Very poor 0 - Better Average Medium
MCS-TP Good Average Average FIFO No Good 5 Hard Better Average Medium
Oyama Good Good High + LIFO Yes Average 0 - Average Good Hard
Flat Combining Good Good High FIFO No Average 2 Hard Average Good Hard
CC-Synch Good Very good Average FIFO No Average 1 Easy Good Good Hard
DSM-Synch Good Very good Average FIFO No Average 1 Easy Better Good Hard

Figure 3.1: Comparison of lock algorithms

Flat Combining, because threads enqueue themselves at the head of the queue, i.e., behind the
combiner. CC-Synch and DSM-Synch use the parameter MAX_COMBINER_OPERATIONS to prevent
starvation.

Resistance to preemption. All locks that use busy-waiting and a global queue are prone to
convoys, as will be seen in Section 5.3.5.2. Therefore, their resistance to preemption is very low.
The resistance to preemption of other locks is average, except for MCS-TP which was specifically
designed to be resistant to preemption and convoys.

Parameters. Locks that do not use parameters always run at optimal performance, while
locks that use parameters may require fine-tuning to perform well. In particular, MCS-TP is
hard to configure because it uses five parameters, and some of them, such as the upper bound
on the length of critical sections, depend both on the architecture and the application used: such
values can only be determined precisely through complex profiling. The parameters used by Flat
Combining make it possible to choose between a lenient or aggressive cleanup policy for the queue,
but both policies can be detrimental, therefore, choosing efficient parameters requires empirical
evaluation. CC-Synch and DSM-Synch use a single parameter for which a large value can safely
be chosen for good performance, even if too large a value may be detrimental to fairness.

Data locality of internal structures. The basic spinlock has very poor data locality on
its shared synchronization variable because all threads concurrently apply compare-and-swap
operations on it: the shared variable “ping-pongs” between the caches of all cores. CLH has
better locality because different threads busy-wait on different synchronization variables. MCS
and MCS-TP have better locality for their synchronization variables on non-cache-coherent
architectures than CLH because they ensure that each thread busy-waits on its own node.
Oyama and Flat Combining use both a global lock and a local synchronization variable for
each node in the global queue, therefore, their data locality is average for internal structures.
CC-Synch uses one synchronization variable per thread, like CLH. DSM-Synch, like MCS, also
ensures that each thread always busy-waits on its own queue node, therefore, it should waste less
bandwidth and be more reactive on non-cache-coherent architectures.

Data locality in critical sections. Oyama, Flat Combining, CC-Synch and DSM-Synch all
improve data locality by making threads execute streaks of critical sections: since critical sections

41

CHAPTER 3. LOCK ALGORITHMS

of a given lock often protect a set of shared variables, these variables are likely to remain in a
local cache during the execution of several critical sections.

Usability in legacy applications. Legacy applications typically use blocking locks, imple-
mented as POSIX locks, because in contrast with other lock algorithms, blocking locks work
properly on architectures with a single hardware thread. Legacy applications can easily switch to
the basic spinlock, because it uses the same interface as POSIX locks: the lock() and unlock()
functions take only one argument. The lock() and unlock() functions of queue locks (CLH,
MCS, and MCS-TP) take two arguments instead of one for POSIX locks: this issue can either be
solved with some light refactoring or with thread-local variables, as was explained in section 3.3.
Alternatively, the K42 variant of MCS described in Section 3.4 can be used. Implementing
condition variables for the basic spinlock using POSIX primitives is trivial using the algorithm
described in Section 3.2, and the same technique can be used for queue locks. Finally, using
Oyama or combining locks (Flat Combining, CC-Synch and DSM-Synch) in legacy applications is
difficult for two reasons. First, these locks need critical sections to be encapsulated into functions,
which requires a lot of code refactoring, and no solution to this problem is provided by their
authors. And second, implementing condition variables in these locks is challenging, because
they could cause a server/combiner thread to sleep and therefore prevent remaining critical
sections from being executed. Moreover, since server/combiner threads are normal application
threads, any application thread could randomly be put to sleep, which could cause undesirable
unexpected effects such as deadlocks.

3.10 Other lock algorithms
The previous sections have presented a set of lock algorithms that range from a very basic
spinlock implementation to recently-published state-of-the-art combining locks. However, in
the past decades, many other lock algorithms have been proposed. This section presents a few
notable examples.

Backoff locks improve on the basic spinlock, with the objective to make it perform better
when many threads perform concurrent lock acquisition attempts. The main idea of backoff locks
is to make threads sleep for a backoff delay in the busy-wait loop. Doing so reduces contention
and also has the advantage of saving powing and CPU time. The delay typically increases at
each iteration, often linearly (linear backoff lock) or exponentially (exponential backoff lock).
According to Anderson et al. [5], increasing the delay exponentially is the most efficient strategy.
The ticket lock [75] also aims to improve the performance of spinlocks under high contention. It
uses two shared counters: the first one contains the number of lock acquisition requests, while
the other one contains the number of times the lock has been released. In order to acquire the
lock, a thread atomically reads and increments the value of the first counter with a fetch-and-add
instruction (see Section 2.3.1.2.b) and busy-waits until the second counter is equal to the value
it has read from the first counter. The advantage the ticket lock has over the basic spinlock
or backoff locks is that threads busy-wait on the second counter using an instruction that only
reads the corresponding cache line instead of an instruction that attempts to write to it (e.g., a
compare-and-swap instruction). Mellor-Crummey et al. [76] show that both backoff locks and
the ticket lock are slower than MCS under high contention. However, David et al. [30] show that
the ticket lock performs better than a wide range of other locks under low contention, and, given
its small memory footprint, they recommend its use over more complex lock algorithms unless it
is sure sure that a specific lock will be very highly contended.

42

3.10. OTHER LOCK ALGORITHMS

Abellan et al. propose GLocks [1] in order to provide fast, contention-resistant locking for
multicore and manycore architectures. The key idea of GLocks is to use a token-based message
passing protocol that uses a dedicated on-chip network implemented in hardware instead of
the cache hierarchy. Since the resources needed to build this network grow with the number of
supported Glocks, Abellan et al. recommend to only use them for the most contended locks and
to use spinlocks otherwise. The main drawback of GLocks is that they require specific hardware
support not provided by current machines.

Finally, given the large amount of proposed lock algorithms, choosing one is not always a
simple task. Smartlocks [37] aim to solve this issue by dynamically switching between existing
lock algorithms in order to choose the most appropriate one at runtime. They use heuristics and
machine learning in order to optimize towards a user-defined goal which may relate to performance
or problem-specific criteria. In particular, on heterogeneous architectures, Smartlocks are able to
optimize which waiter will get the lock next for the best long-term effect when multiple threads
are busy-waiting for a lock.

Hierarchical locks. Hierarchical locks trade fairness for throughput by executing several
critical sections consecutively on the same cluster of hardware threads (core, die, CPU, or NUMA
bank). Doing so allows for better throughput, since synchronization local to a cluster is faster
than global synchronization, for two reasons: (i) critical sections executed on the same cluster
can reuse shared variables that are stored in their common caches, and (ii) the synchronization
variables used for busy-waiting are allocated on a local NUMA node, which may reduce the
overhead of busy-waiting, as shown in Section 2.5.3.2. The Hierarchical Backoff Lock (HBO) [90]
is a backoff lock with an adaptive delay that favors hardware threads of the same cluster: they
are granted shorter backoff times, whereas remote hardware threads are granted longer backoff
times. The Hierarchical CLH lock (H-CLH) [73] creates a CLH-style queue for each cluster, and
the thread at the head of each local queue occasionally splices the local queue into a global queue.
Critical sections are executed following the global queue, as if it were a traditional CLH queue.
However, given the way the global queue is built, nodes from the same cluster are neighbors in
the global queue and their critical sections are executed consecutively.

Dice et al. [33] propose to combine Flat Combining and MCS to create efficient hierarchical
locks: each cluster uses one instance of Flat Combining that efficiently creates local MCS queues
of threads, and merges them into a global MCS queue. The lock is handed over in the MCS
queue exactly like with a MCS lock, except the global queue created by the combiners is ordered
by clusters, like with H-CLH. However, Dice et al.’s approach is more efficient than H-CLH
because with H-CLH, all threads need to enqueue themselves by using an atomic instruction that
is applied to the global tail of the queue, which can cause bottlenecks. Moreover, with H-CLH,
threads must know which thread is the master of their local cluster, which complicates their
busy-waiting semantics.

Finally, Dice et al. propose Lock Cohorting [34], a general technique that makes it possible to
build hierarchical locks from any two non-hierarchical lock algorithms G and S, as long as these
lock algorithms satisfy certain (widespread) properties. The general idea is to use one instance
of S per cluster, and one global instance of G. The first thread to acquire a lock acquires both G
and S, and then releases only S if other threads from the same cluster are waiting for the lock
(these threads will only have to acquire S to own the lock), otherwise, it releases both G and S
to let threads from other clusters acquire the lock. Dice et al. use Lock Cohorting to build new
hierarchical locks by choosing either a backoff lock, the ticket lock, MCS, or CLH for G and for
S. They show that some of the resulting combinations outperform both HBO and H-CLH.

43

CHAPTER 3. LOCK ALGORITHMS

3.11 Conclusion
This section has presented and compared the properties of a wide range of lock algorithms,
including spinlocks, blocking locks (that are used in most legacy applications through the POSIX
library), queue locks (CLH, MCS, MCS-TP), and combining locks (Flat Combining, CC-Synch,
DSM-Synch). All of these lock algorithms have drawbacks. The next section presents the main
contribution of this thesis, Remote Core Locking (RCL), a lock mechanism that aims to solve
these drawbacks while providing additional performance improvements over state-of-the-art lock
algorithms such as CC-Synch and DSM-Synch.

44

Chapter 4

Contribution

This chapter presents the main contributions of the research presented in the thesis. Section 4.1
presents Remote Core Locking (RCL), a lock mechanism designed to improve the performance of
applications on multicore architectures, and compares it with the lock algorithms described in
Chapter 3. Section 4.2 describes a profiler that helps predict which locks may benefit from RCL,
and a reengineering that makes it possible to transform a legacy application into an application
that uses RCL with a minimal amount of work. Finally, Section 4.3 concludes.

4.1 Remote Core Lock
RCL goes one step further than combining locks by fully dedicating a server hardware thread to
the execution of critical sections. RCL has two main advantages. First, it reduces synchronization
overhead, because the client threads and the server communicate using a fast client/server
cache-aligned messaging scheme that is similar to the one used in Barrelfish [9]. And second,
RCL improves data locality, because the shared variables that the critical sections protect are
all accessed from the same dedicated server hardware thread, where no application thread can
be scheduled. Therefore, the shared variables are more likely to always remain in that hardware
thread’s cache hierarchy.

(a) Traditional locks (b) RCL

Figure 4.1: Critical sections with traditional locks vs. RCL

RCL has additional advantages. In particular, the fact that the server hardware thread
is dedicated to the execution of critical sections ensures that the server threads can never
be preempted by application threads: the server always makes progress on the critical path.

45

CHAPTER 4. CONTRIBUTION

Furthermore, the fact that server threads are not application threads make it possible for RCL
to implement condition variables.

If more than one lock is used by the application, the RCL server can handle the critical sections
of several locks, but doing so results in false serialization, i.e., the unnecessary serialization of
independent critical sections. To alleviate this issue, more servers can be used, each of them
executing the critical sections of one or several locks. RCL is not meant to be used for all locks,
however: RCL’s strongest point is its high performance under high contention, and the lock
algorithms used for uncontended locks have negligible impact of performance, therefore, RCL
should only be used for contended locks. As shown in Section 5.3.1, the number of contended
locks in an application is generally low enough that only a few RCL servers are needed to
reach optimal performance. Since modern multicore architectures provide a lot of hardware
threads whose processing power cannot always be harvested efficiently because applications lack
scalability, many hardware threads are often left unused by applications: these hardware threads
can be used for RCL servers in order to improve performance.

In order to use RCL, it is necessary to choose the locks for which RCL is expected to be
beneficial and to encapsulate the critical sections associated with these locks into functions as is
the case with Oyama and combining locks. The following sections first describe the core RCL
algorithm, then present a profiling tool that helps developers choose which locks to implement
using RCL as well as a reengineering that encapsulates critical sections into functions in order to
make them directly usable with RCL.

4.1.1 Core algorithm
With RCL, critical sections are replaced by remote procedures call to a server that executes
the code of the critical sections. In order to implement the remote procedure call, each server
owns an array of request structures (Figure 4.2) that is used for communication with the clients.
This array is C · L bytes long, where C is a constant representing the maximum number of
clients (a large number, typically much higher than the number of available hardware threads),
and L is the size of the hardware cache line. Each request structure reqi is L bytes and allows
communication between a specific client ci and the server. The array is aligned so that each
structure reqi is mapped to a single cache line.1 The array of requests is allocated on the NUMA
bank of the server on NUMA architectures.

The first three machine words of each request reqi contain respectively: (i) the address of the
lock associated with the critical section, (ii) the address of a structure encapsulating the context,
i.e., the variables referenced or updated by the critical section that are declared by the function
containing the critical section code, and (iii) the address of a function that encapsulates the
critical section for which the client ci has requested the execution, or NULL if no critical section
execution is requested.

Client side. In order to execute a critical section, a client ci first writes the address of the
lock into the first word of the structure reqi, then writes the address of the context structure
into the second word, and finally writes the address of the function that encapsulates the code
of the critical section into the third word. The client then actively waits for the third word
of reqi to be reset to NULL, which indicates that the server has executed the critical section.
In order to improve energy efficiency on x86 architectures, if there are less clients than the

1If the architecture uses several cache line sizes, the largest cache line size is chosen in order to avoid false
sharing (see Section 2.3.1.2.c).

46

4.1. REMOTE CORE LOCK

Figure 4.2: The request array

number of available hardware threads, the SSE3 MONITOR/MWAIT instructions can be used to
avoid busy-waiting: the client hardware thread (assuming clients threads are bound to hardware
threads) will physically sleep and be woken up automatically when the server writes into the
third word of reqi. Optionally, the busy-wait loop of the client may yield the processor at each
iteration, as will be discussed in Section 5.3.5.3.

Server side. A servicing thread iterates over the requests, waiting for one of the requests to
contain a non-NULL value in its third word. When such a value is found, the servicing thread
checks whether the requested lock is free and, if so, acquires the lock and executes the critical
section using the function pointer and the context. When the servicing thread is done executing
the critical section, it resets the third word to NULL, and resumes iterating over the request array.

4.1.2 Implementation of the RCL Runtime
Legacy applications may use ad hoc synchronization mechanisms and rely on libraries that
themselves may block or busy-wait. The core algorithm, described in Section 4.1.1, only refers to
a single servicing thread, and thus requires that this thread is never blocked at the operating
system level and never busy-waits. This section describes how the RCL runtime ensures liveness
and responsiveness in these cases, and presents implementation details.

4.1.2.1 Ensuring liveness and responsiveness

Three kinds of situations may induce liveness or responsiveness issues if the server uses a single
servicing thread. First, the servicing thread may be blocked at the operating system level. This
can happen when a critical section tries to acquire a POSIX lock that is already held, performs
an I/O, or waits on a condition variable, for instance. Second, the servicing thread may enter a
busy-wait loop if a critical section tries to acquire a nested RCL or a lock that uses busy-waiting,
or if it uses some other form of ad hoc synchronization [111]. Finally, the servicing thread may
be preempted at the operating level, either because its timeslice expires [81] or because of a page
fault. Blocking and waiting within a critical section may cause a deadlock, because the servicing
thread is unable to execute critical sections associated with other locks, even when doing so may
be necessary to allow the blocked critical section to unblock. Additionally, blocking, of any form,
including waiting and preemption, degrades the responsiveness of the server because a blocked
thread is unable to serve other locks managed by the same server.

47

CHAPTER 4. CONTRIBUTION

To solve these issues RCL uses a pool of servicing threads on each server to ensure liveness
and responsiveness, as is described in the next paragraphs.

Ensuring liveness. Blocking and waiting within a critical section raise a problem of liveness,
because a single servicing thread cannot execute critical sections associated with other locks, even
when doing so may be necessary to allow the blocked critical section to unblock. A pathological
case happens when the servicing thread busy-waits in a critical section while waiting for a
variable to be set by another critical section that is handled by the same server but is protected
by a different lock: this situation is illustrated by clients c2 and c3 on Figure 4.3. To ensure
liveness, the pool of servicing threads on each server ensures that when a servicing thread blocks
or waits, there is always at least one other free servicing thread that is not currently executing
a critical section, and this servicing thread will eventually be elected. To ensure the existence
of a free servicing thread, the RCL runtime provides a management thread, which is activated
regularly at each expiration of a timeout (set to the operating system’s timeslice value) and runs
at highest priority. When activated, the management thread checks that at least one of the
servicing threads has made progress since the last activation of the management thread, using a
server-global flag is_alive. The management thread clears this flag just before sleeping, and
any servicing thread that enters a critical section sets it. If the management thread observes that
is_alive is cleared when it wakes up, it assumes that all servicing threads are either blocked or
waiting. In this case, it checks that a free thread exists in the pool of servicing threads and, if
this is not the case, it adds a new one.

Ensuring responsiveness. Blocking, of any form, including waiting and preemption, degrades
the responsiveness of the server because a blocked servicing thread is unable to serve other locks
managed by the same server. The RCL runtime implements a number of strategies to improve
responsiveness issues introduced by the underlying operating system and by RCL design decisions.

As explained in Section 3.5, a well-known problem in the use of locks is the risk that the
operating system will preempt a thread at the expiration of a timeslice while it is executing
a critical section, thereby extending the duration of the critical section and thus increasing
contention [81]. RCL dedicates a pool of threads on each dedicated sever hardware thread to the
execution of critical sections, which makes it possible to manage these threads according to a
scheduling policy that does not use preemption. The POSIX FIFO scheduling policy is used,
because it both respects priorities, as is needed to ensure liveness, and makes it so that that all
threads keep running until they are blocked or manually yield the processor. The use of the
FIFO policy raises a liveness issue: if a servicing thread is executing a busy-wait loop, it will
never be preempted by the operating system, and a free thread will never be elected. To solve
this, when no progress is detected by the manager thread, it elects a servicing thread by first
decrementing and then incrementing the priorities of the other threads, effectively moving them
to the end of the FIFO queue. The use of the FIFO policy also implies that when a servicing
thread unblocks after blocking in a critical section, it is placed at the end of the FIFO queue.
If there are many servicing threads, there may be a long delay before the unblocked thread is
rescheduled. To minimize this delay, the RCL runtime tries to always minimize the number of
servicing threads: a servicing thread leaves the pool whenever it observes that there is at least
one other free servicing thread, since that other thread will be able to handle any requests.

The RCL management thread ensures the liveness of the server but only reacts after a timeout.
When all servicing threads are blocked in the operating system, the operating system’s scheduler
is used to elect a new free thread immediately. Concretely, the RCL runtime maintains a backup
thread that runs at a lower priority than all servicing threads. The FIFO scheduling policy never

48

4.1. REMOTE CORE LOCK

Figure 4.3: Ad hoc synchronization example

elects a lower priority thread when a higher priority thread can run, and thus the backup thread
is only elected when all servicing threads are blocked. When the backup thread is elected, it
adds a new servicing thread, which immediately preempts the backup thread and can service
the next request.

Finally, when a critical section needs to execute a nested RCL managed by the same hardware
thread and the lock is already owned by another servicing thread, the servicing thread immediately
yields the processor in order to allow the owner of the lock to release it.

Example. Figure 4.3 presents a complete example of ad hoc synchronization in a critical
section that illustrates a worst case scenario in terms of active waiting. Initially, thread t1 is the
only servicing thread, and it handles a critical section of client c1. That critical section tries to
acquire a condition variable (cond_wait() function call), causing t1 to block at the operating
system level. At that point, there is no more runnable servicing thread. Therefore, the operating
system’s scheduler immediately elects the backup thread, which adds a new free servicing thread
t2 that immediately preempts the backup thread. Thread t2 executes c2’s request. Client c2’s
critical section causes t2 to busy-wait on the variable var. At some point, the management
thread awakens, and clears the server-global is_alive flag. Then, at the management thread’s
next activation, since t1 is blocked in the operating system and t2 is busy-waiting, no servicing
thread has been able to set is_alive. Since there is no free servicing thread at that point,
the management thread creates a new servicing thread, t3, and elects it, as it is now the only
servicing thread that has not recently been elected. Therefore, at that point, the server has three
servicing threads, t1, t2 and t3, one of which, t3, is free. When t3 executes the request from c3, it
modifies the value of var.

After executing client c3’s request, thread t3 detects that there are other servicing threads
running. Therefore, it yields the processor in order to allow them to run. Thread t2 is the only
other servicing thread that is not blocked at the operating system level, and consequently, it is
elected. Since the critical section executed by t3 has set var, thread t2 can exit its busy-wait
loop and unblock the condition variable, causing t1 to awaken. Client c2’s critical section ends,
and t2 detects that the server has two free servicing threads: itself and t3. Consequently, thread
t2 leaves the servicing pool. Thread t3 is then elected, but it notices that there is no pending
critical section. Furthermore, since it notices that another servicing thread is running and that

49

CHAPTER 4. CONTRIBUTION

Algorithm 9: Executing a critical section (client)
1 thread-local variables:
2 int client_index;
3 boolean is_server_thread;
4 server_t *my_server;
5 function execute_cs(lock_t ∗lock, function_t ∗function, void ∗context)
6 var request_t *request := &lock→server→requests[client_index];
7 if ¬is_server_thread or my_server 6= lock→server then // RCL to a remote hardware thread
8 request→lock := lock;
9 request→context := context;

10 request→function := function;
11 while r→function 6= nil do
12 pause();
13 return;
14 else // Local nested lock
15 while local_compare_and_swap(&lock→is_locked, false, true) = true do
16 yield(); // Give a chance to other thread to release lock
17 context := function(context); // Execute the critical section
18 lock→is_locked := false;
19 return;

thread is not free, it yields the processor to let it run. Thread t1 is therefore elected, and it
completes client c1’s request, before noticing that two servicing threads are free, itself and t3.
Consequently, it leaves the pool of servicing threads: the server is back to its initial state, except
its only servicing thread is now t3.

4.1.2.2 Algorithm details

This section describes client and the server sides of the algorithm in more detail. Algorithm 9 shows
the execute_cs() function that is used by the client to execute a critical section. Algorithm 10
shows the code executed by the servicing threads, and Algorithm 11 shows the code executed by
the manager and backup threads.

Executing a critical section. In order to request the execution of a critical section with
RCL, a client thread simply submits its request by filling the lock, context, and function fields
of its request structure in the requests array, as seen in lines 8-13 of Algorithm 9. Servicing
threads use the same method to request the execution of a critical section that is managed by
a remote RCL server. However, in order to request the execution of a critical section that is
managed by the local RCL server, a servicing thread must ensure that the lock is free, and wait
until it is otherwise. In order to give a chance to the servicing thread that owns the lock to finish
executing its critical section, the thread repetitively yields the processor (lines 11-12).

Servicing threads. As explained in Section 4.1.1, servicing threads iterate over the request
array. In order to avoid the need to reallocate the request array when new client threads are
created, its size is fixed and chosen to be very large (256KB). Moreover, the client identifier
allocator implements an adaptive long-lived renaming algorithm [17] that keeps track of the
highest client identifier and tries to reallocate smaller ones.

Algorithm 10 shows the code executed by servicing threads. Only the fast path (lines 9-22)
is executed when the pool of servicing threads contains a single thread. A slow path (lines
23-29) is executed when the pool contains several servicing threads. Lines 12-21 of the fast path
implement the RCL server loop as described in Section 4.1.1 and indicates that the servicing

50

4.1. REMOTE CORE LOCK

Algorithm 10: Structures and servicing thread (server)
1 structures:

2

lock_t: { server_t *server, boolean is_locked };
request_t: { function_t *function, void *context, lock_t *lock };
thread_t: { server_t *server, int timestamp, boolean is_servicing };
server_t: { List<thread_t *> all_threads, LockFreeStack<thread_t *> prepared_threads,

int number_of_free_threads, int number_of_servicing_threads,
int timestamp, boolean is_alive, request_t *requests }

3 global variables:
4 int number_of_clients;
5 function servicing_thread(thread_t ∗thread)
6 var server_t∗ server := t→server;
7 var request_t∗ request, lock_t∗ lock, function_t∗ function;
8 while true do
9 server→is_alive := true;

10 thread→timestamp := server→timestamp;
11 local_fetch_and_add(s→number_of_free_threads, − 1); // This thread is not free anymore
12 for i := 0 to number_of_clients do
13 request := server→requests[i];
14 if request→function 6= nil then
15 lock := request→lock;
16 if local_compare_and_swap(&lock→is_locked, false, true) = false then
17 function := request→function;
18 if function 6= nil then
19 request→context := function(request→context);

// Execute the critical section
20 request→function := nil; // Signal completion to the client
21 lock→is_locked := false;

22 local_fetch_and_add(s→number_of_free_threads, 1); // This thread is now free
23 if server→number_of_servicing_threads > 1 then // Some servicing threads are blocked
24 if server→number_of_free_threads ≤ 1 then
25 yield(); // Allow other servicing threads to run
26 else
27 thread→is_servicing := false; // Keep only one free servicing thread

local_fetch_and_add(server→number_of_servicing_threads, − 1);
28 local_atomic_insert(server→prepared_threads, thread);

// Atomic since the manager may wake up thread before call to sleep() (on Linux, use futexes)
29 atomic(<if ¬thread→is_servicing then sleep();>)

thread is not free during its execution by decrementing (line 11) and incrementing (line 22)
number_of_free_threads. Because the thread may be preempted due to a page fault, all
operations on variables shared between the threads, including number_of_free_threads, must
be atomic. However, since servicing threads of a RCL server are all bound to that server’s
dedicated hardware thread, the atomic instructions that only use server-local data only need to
be executed atomically in the context of their hardware thread. Therefore, local versions of the
atomic operations that do not clean up the write buffers are used. This is done by not using
the LOCK prefix for atomic instructions on x86 architectures, for instance. These local atomic
operations are never contended and they are much less costly than regular atomic instructions
because they do not require additional synchronization between hardware threads.

The slow path is executed if the active servicing thread detects that other servicing threads
exist (line 23). If the other servicing threads are all executing critical sections (line 24), the

51

CHAPTER 4. CONTRIBUTION

Algorithm 11: Management and backup threads (server)
1 function management_thread(server_t ∗server)
2 var thread_t *thread;
3 server→is_alive := false;
4 server→timestamp := 1;
5 while true do
6 if server→is_alive = false then
7 server→is_alive := true;
8 if s→number_of_free_threads =0 then // Ensure a thread can handle remote requests

// Activate prepared thread or create new thread
9 local_fetch_and_add(server→number_of_servicing_threads, 1);

10 local_fetch_and_add(server→number_of_free_threads, 1);
11 thread := local_atomic_remove(s→prepared_threads);
12 if thread = nil then
13 thread := allocate_thread(s);
14 insert(s→all_threads, thread);
15 thread→is_servicing := true;
16 thread.start(prio_servicing);
17 else
18 thread→is_servicing := true;
19 wakeup(thread);

20 while true do // Elect thread that has not recently been elected
21 for thread in server→all_threads do
22 if thread→is_servicing = true
23 and thread→timestamp < server→timestamp then
24 thread→timestamp = server→timestamp;
25 elect(thread);
26 goto end;

27 server→timestamp++; // All threads were elected once, begin a new cycle

28 else
29 server→is_alive := false;
30 sleep(timeout);

31 function backup_thread(server_t ∗server)
32 while true do
33 server→is_alive := false;
34 <wake up the management thread>

servicing thread yields the processor (line 25) to let them run. Otherwise, it removes itself from
the pool and sleeps (lines 26-29).

Management and backup threads. As explained in Section 4.1.2.1, each RCL server runs
one manager thread and one backup thread. If, on wake up, the management thread notices,
based on the value of is_alive, that none of the servicing threads have progressed since the
previous timeout, it ensures that at least one free thread exists (Algorithm 11, lines 8-19) and
forces the election (lines 20-27) of a thread that has not recently been elected. The backup
thread (lines 31-34) simply sets is_alive to false and wakes up the management thread.

4.1.3 Comparison with other locks
In Section 3.9, Figure 3.1 compared the lock algorithms presented in Chapter 3. Using the same
criteria, Figure 4.4 compares RCL with these lock algorithms. This section compares RCL with
other lock algorithms by discussing Figure 4.4 in detail.

52

4.1. REMOTE CORE LOCK

R
ea

ct
iv
ity

Pe
rf
or

m
an

ce
un

de
r

hi
gh

co
nt
en

tio
n

N
um

be
ro

fa
to
m
ic

in
st
ru

ct
io
ns

O
rd

er
in
g
of

cr
iti
ca

l
se

ct
io
ns

St
ar
va

tio
n
po

ss
ib
le

R
es

is
ta
nc

e
to

pr
ee

m
pt
io
n

N
um

be
ro

f
pa

ra
m
et
er
s

C
ho

os
in
g
effi

ci
en

t
pa

ra
m
et
er
s

D
at
a
lo
ca

lit
y
of

in
te
rn

al
st
ru

ct
ur

es

D
at
a
lo
ca

lit
y
in

cr
iti
ca

ls
ec

tio
ns

U
sa

bi
lit
y
in

le
ga

cy
ap

pl
ic
at
io
ns

Basic spinlock Good Poor Very high Random Yes Average 0 - Poor Average Easy
Blocking lock Poor Good Average FIFO No Good 0 - Average Average -
CLH Good Average Average FIFO No Very poor 0 - Good Average Medium
MCS Good Average Average FIFO No Very poor 0 - Better Average Medium
MCS-TP Good Average Average FIFO No Good 5 Hard Better Average Medium
Oyama Good Good High + LIFO Yes Average 0 - Average Good Hard
Flat Combining Good Good High FIFO No Average 2 Hard Average Good Hard
CC-Synch Good Very good Average FIFO No Average 1 Easy Good Good Hard
DSM-Synch Good Very good Average FIFO No Average 1 Easy Better Good Hard
RCL Good + Very good + Only local Other No Good 0 - Very good Very good Medium

Figure 4.4: Comparison of lock algorithms with RCL

Reactivity and performance under high contention. Similarly to combining locks (Flat
Combining, CC-Synch and DSM-Synch), RCL is very reactive and performs well under high
contention, thanks to the fact that (i) it uses one synchronization variable per client and (ii) it
executes streaks of critical sections without needing synchronization between them, other than
signaling threads when their critical section has been executed. Moreover, unlike Flat Combining,
RCL does not need a global lock to hand over the role of server, since server threads keep their
role during the whole execution. The fact that the server role is never handed over is also an
advantage compared to combining locks since the handover process lengthens the critical path.

Number of atomic instructions. Unlike the basic spinlock, Oyama, and Flat Combining,
RCL does not use global synchronization variables on which threads busy-wait using atomic
instructions. Moreover, unlike queue locks (CLH, MCS, MCS-TP) and combining locks (Flat
Combining, CC-Synch, DSM-Synch), RCL does not use a global queue in which application
threads must insert their nodes using atomic instructions. The only atomic instructions that are
used by RCL are local to a single hardware thread and therefore never suffer from contention.

Ordering and starvation. With RCL, critical sections are not served in the FIFO order: at
each iteration of a servicing thread, critical sections are served following the ordering of threads
in the request array. However, starvation is impossible, since the fact that a servicing thread
loops over the request array ensures that when a thread t1 asks for the execution of its critical
section, at most one critical section from the same lock by another thread t2 may be executed
before the execution of t1’s critical section.

Resistance to preemption. RCL is immune to the issue of preemption inside of a critical
section since it dedicates a hardware thread for the execution of critical sections: a busy-waiting
client thread cannot preempt the lock holder because it will never be scheduled on the dedicated
hardware thread. Therefore, in contrast with other locks, the server always makes progress when
it executes critical sections, which ensures that the critical path will be as short as possible.

Parameters. RCL does not use any parameters. This is an advantage because fine-tuning
parameters for a specific machine and a specific lock usage can be time-consuming.

Data locality of internal structures. Since the threads of each RCL server are bound to a
dedicated hardware thread, they benefit from very good data locality: all data and synchronization

53

CHAPTER 4. CONTRIBUTION

structures used by a RCL server are allocated on its local NUMA bank, and no application
thread may be scheduled on the server hardware thread, thereby replacing data from the caches
with its own (on architectures with multiple hardware threads per core, application threads may
pollute the server’s caches by being allocated on the same core, however). Additionally, in order
to avoid of cache misses, the request structures in the request array are directly mapped to cache
lines by being cache-aligned and large enough to fill a whole cache line.

Data locality in critical sections. Similarly to combining locks, RCL improves data locality
by making some threads execute streaks of critical sections. Since critical sections of a given
lock often protect a set of shared variables, these variables may remain in a local cache during
the execution of at least part of a streak. However, RCL takes one step further by ensuring
that these threads are bound to a specific server hardware thread. Therefore, the data they
handle never has to be migrated between hardware threads: the shared data that is accessed by
critical sections is likely to remain in the server’s caches during the whole execution. Moreover,
the fact that no client thread may be scheduled on server hardware threads removes the risk of
application threads polluting the caches with their data.

Usability in legacy applications. Like Oyama and combining locks (Flat Combining, CC-
Synch and DSM-Synch), RCL cannot be used directly in legacy applications, because they require
critical sections to be encapsulated into functions. However, RCL comes with a reengineering,
proposed in Section 4.2.2 to solve this issue. Moreover, RCL is able to handle condition variables
thanks to a pool of threads on the servers, without risking to put the combiner to sleep as is the
case with combining locks.

4.2 Tools
This section describes two tools that were written to facilitate the use of RCL for application
developers. Section 4.2.1 presents a profiler that makes it possible to predict with reasonable
accuracy which locks from which applications may benefit from RCL, and Section 4.2.2 presents a
reengineering that automatically transforms the code of legacy applications to make them use RCL.

4.2.1 Profiler
In order to help the user decide which locks to transform into RCLs, a profiler was implemented
as a dynamically loaded library that intercepts calls involving POSIX locks, condition variables,
and threads. Since RCL improves the speed of lock acquisitions under high contention as well as
data locality, an application that may benefit from RCL either suffers from high lock contention
or its critical sections suffer from poor data locality. The profiler measures two metrics: (i) the
overall percentage of time spent in critical sections including lock acquisitions and releases, which
helps detect applications that suffer high lock contention, and (ii) the average number of cache
misses in critical sections, which helps detect applications whose critical sections suffer from poor
data locality. As shown in the evaluation (Chapter 5), these metrics make it possible to reliably
predict if an application can benefit from RCL. The profiler can also measure the two metrics
for every lock, and provide per-lock information. It identifies locks with the file name and line
number where they were allocated, and returns a list of the backtraces taken at the allocation
points of each lock. Each lock is identified by a hash of the backtrace taken at its allocation point,
and the profiler can be run again with the identifier of a lock in order to measure more precisely
the two metrics for a particular lock. Measuring the global time spent in critical sections and the

54

4.2. TOOLS

global number of cache misses in critical sections make it possible to identify which applications
may benefit from RCL, and per-lock information helps deciding which locks to transform into
RCLs in an application.

Implementation notes. The first version of the profiler, written for the USENIX ATC
paper [71], only supported x86 architectures running Linux, because its evaluation of RCL only
used a machine that was similar to Magnycours-48 (see Section 2.5.1). The new evaluation of
RCL that is presented in this thesis uses both Magnycours-48 and Niagara-128 (see Section 2.5.2).
Niagara2-128 uses a SPARC architecture and runs Solaris. Therefore, the profiler had to be
ported to Solaris in order to be used with Niagara2-128. Its accuracy has also been improved,
both for measuring the time spent in critical sections and the number of cache misses. The
resulting second version of the profiler has been used for the evaluation in Chapter 5. The
remainder of this section presents the improvements that were introduced in the second version
of the profiler.

In order to measure the time spent in critical sections, the hardware timestamp counter
must be read before and after critical sections. For this, the first version of the profiler used the
Performance Application Programming Interface (PAPI) [58, 18], a cross-platform library that
unifies the use of hardware performance counters on various architectures. PAPI provides the
PAPI_get_real_cyc() function to read cycles, unfortunately, the values returned by this function
are often imprecise. On Linux/x86 (Magnycours-48), PAPI uses the costly gettimeofday()
system call to get the current time in microseconds, and multiplies it by the clock frequency to get
a number of cycles. On Solaris/SPARC (Niagara2-128), PAPI reads the value from the timestamp
counter, loses precision by converting it into microseconds, and then converts it again into cycles
by multiplying the result by the CPU’s frequency. The needless conversion operations incur a
non-negligible overhead, moreover, microseconds are not precise enough for a cycle measurement:
on Niagara2-128, for instance, the smallest non-zero value measured between two samples is 1, 165
cycles, which is exactly one microsecond since the hardware clock frequency is 1.165GHz. Solaris
provides gethrtime() to read high resolution time, but this call still converts the results into
nanoseconds, which incurs an overhead. The second version of the profiler directly uses assembly
instructions to read the timestamp counters. While the overhead of PAPI is negligible in most
cases on Magnycours-48, on Niagara2-128, using PAPI (resp. gethrtime()) can cause an overhead
of 170% (resp. 18%) relative to reading the timestamp counter directly with assembly instructions.

The profiler measures the average number of cache misses inside critical sections, not including
lock acquisition and release. Measuring cache misses can be tricky, because CPUs do not always
make it possible to measure them on all hardware threads concurrently. On Magnycours-48,
measuring cache misses simultaneously on all cores leads to erroneous results: it seems that
the cache miss hardware counters are shared on each die, which is not clearly stated in the
official documentation. Similarly, on Niagara2-128, measuring cache misses on all hardware
threads simultaneously leads to erroneous results because the hardware counter registers are not
replicated for each hardware thread. This was fixed by binding threads to hardware threads,
and only measuring cache misses on one hardware thread per die on Magnycours-48, and on one
hardware thread per core on Niagara2-128.

To ensure that the second version of the profiler is working properly, a custom benchmark that
generates a known number of cache misses in its critical sections was written. This benchmark
simply creates one worker thread per core, and each worker thread (i) repeatedly executes critical
sections that are protected by POSIX locks, and (ii) generates cache misses between its critical
sections by busy-waiting on a shared variable. Each critical section modifies the same set of n

55

CHAPTER 4. CONTRIBUTION

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 5 10 15 20 25 30 35 40

N
u

m
b

e
r

o
f

m
e

a
s
u

re
d

 L
2

 c
a

c
h

e
 m

is
s
e

s

Number of generated L2 cache misses

Theoretical number of cache misses
CM, profiler v1, one hw. thread / die monitored

CMs, profiler v2, every hw. thread monitored
CMs, profiler v2, one hw. thread / die monitored

(a) Magnycours-48

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 5 10 15 20 25 30 35 40

N
u

m
b

e
r

o
f

m
e

a
s
u

re
d

 L
1

 c
a

c
h

e
 m

is
s
e

s

Number of generated L1 cache misses

Theoretical number of cache misses
Cache misses measured using PAPI
Cache misses measured using CPC

(b) Niagara2-128, with profiler v2

Figure 4.5: Tuning the profiler: number of cache misses

cache lines. To ensure that the critical sections always generate n cache misses, (i) threads never
execute two critical sections consecutively: another thread has to execute its critical section
in-between, which invalidates the cache lines from the local cache, and (ii) all data prefetching is
avoided by using non-contiguous cache lines and interdependent cache line accesses (the address
of the next cache line to read is built from the value read in the previous cache line [113]). This
benchmark generates at least as many L1 and L2 cache misses as there as there are cache line
accesses on Magnycours-48, since on that machine, only the L1 and the L2 caches are local to each
core, and it generates as many L1 cache misses as there are cache line accesses on Niagara2-128,
since on that machine, only the L1 cache is local to each core.

The benchmark is run with different versions and/or configurations of the profiler. On
Magnycours-48, L2 cache misses are measured, since they are more often triggered by inter-core
communication than L1 cache misses: since the L1 cache is smaller, it is subject to more cache
misses that are caused by cache line eviction. Results for this machine are shown in Figure 4.5a
for the first version of the profiler when one hardware thread per die is monitored, for the second
version of the profiler when all hardware threads are monitored concurrently, and for the second
version of the profiler when one hardware thread per die is monitored. With the second version
of the profiler, measuring cache misses on all hardware threads results in measuring up to seven
extra cache misses. However, measuring cache misses on only one hardware thread per die
gives accurate results (never more than one extra cache miss). Also note that the number of
instructions used to monitor cache misses has been reduced in the second version of the profiler
compared to the first version: the number of extra cache misses measured is reduced (-1) when
the number of generated cache misses is large (>25).

Measuring the number of cache misses is done with the PAPI library on Linux. The second
version of the profiler, which supports Solaris, can also measure cache misses using the native
Solaris CPU Performance Counter (CPC) library on that operating system. On Niagara2-128,
L1 cache misses measured, since only the L1 cache is local to cores: L2 cache misses would
only measure communication between the two processors (i.e., between the first 64 hardware
threads and the last 64 hardware threads), while L1 cache misses are a better measurement of
inter-core communication. Figure 4.5b shows the profiling results on Niagara2-128, with the
PAPI library as well as the CPC library. As can be seen on the figure, on Solaris, using PAPI
measures approximatively two extra cache misses, whereas with CPC, with the CPC library, the
number of measured cache misses is very close to the theoretical number of cache misses.

56

4.2. TOOLS

Listing 1: Critical section from Raytrace
1 int GetJob(RAYJOB *job, int pid)
2 {
3 . . .
4 ALOCK(gm−>wplock, pid) /* Lock acquisition */
5 wpentry = gm−>workpool[pid][0];
6
7 if (!wpentry) {
8 gm−>wpstat[pid][0] = WPS EMPTY;
9 AULOCK(gm−>wplock, pid) /* Lock release */

10 return (WPS EMPTY);
11 }
12
13 gm−>workpool[pid][0] = wpentry−>next;
14 AULOCK(gm−>wplock, pid) /* Lock release */
15 . . .

16 }

Since not all hardware threads can be monitored concurrently in order to obtain precise results,
the number of cache misses per critical section can only be measured accurately with one profiled
run if all application threads perform the same tasks and generate a similar number of cache
misses. This is not the case for Memcached, an application used in the evaluation (Chapter 5),
for instance. In that case, the application is run n times with the profiler, where n is the number
of hardware threads per die (resp. per core) on Magnycours-48 (resp. on Niagara2-128), and each
time, the ith (0 < i ≤ n) hardware thread of each die (resp. core) is monitored. The results are
then averaged.

4.2.2 Reengineering legacy applications
If the profiling results show that some locks used by the application can benefit from RCL, the
developer must reengineer all critical sections that may be protected by the selected locks as
a separate function that can be passed to the RCL server. This reengineering amounts to an
“Extract Method” refactoring [43]. It was implemented with the help of Julia Lawall using the
program transformation tool Coccinelle [83], in 2115 lines of code.

The main problem in extracting a critical section into a separate function is to bind the
variables used by the critical section code. The extracted function must receive the values of
variables that are initialized prior to the critical section and read within the critical section,
and return the values of variables that are updated in the critical section and read afterwards.
Only variables local to the function are concerned, alias analysis is not required because aliases
involve addresses that can be referenced from the server. Listing 1 shows a critical section
from the Raytrace benchmark from the SPLASH-2 suite presented in Section 2.5.3.3, and
Listing 2 shows how it is transformed by the reengineering. The critical section of lines 4-14
of Listing 1 is protected by the ALOCK() and AULOCK() macros that are transformed by the C
preprocessor into calls to the POSIX library functions pthread_mutex_lock() (lock acquisition)
and pthread_mutex_unlock() (lock release), respectively. After transformation, the code of
this critical section is encapsulated into the cs() function declared at line 6 of Listing 2, and
an union named context whose instances will be able to hold the variables used by the critical
section is defined at line 1 of Listing 2. To run the critical section, an instance of the context
union is declared and filled with the values of the variables that are read by the critical section
The critical section is then run through a call to the execute_cs() function from the RCL
runtime (line 35 of Listing 2): this function takes three parameters, the lock, the address of the
function that encapsulates the critical section, and the address of the instance of the context
union. Finally, results are read from the context union (line 36 of Listing 2), since this union

57

CHAPTER 4. CONTRIBUTION

Listing 2: Critical section from Listing 1, after transformation
1 union context {
2 struct input { int pid; } input;
3 struct output { WPJOB *wpentry; } output;
4 };
5
6 void cs(void *ctx) {
7 struct output *outcontext = &(((union instance *)ctx)−>output);
8 struct input *incontext = &(((union instance *)ctx)−>input);
9 WPJOB *wpentry;

10 int pid = incontext−>pid, int ret = 0;
11
12 /* Start of original critical section code */
13 wpentry = gm−>workpool[pid][0];
14 if (!wpentry) {
15 gm−>wpstat[pid][0] = WPS EMPTY;
16 /* End of original critical section code */
17
18 ret = 1;
19 goto done;
20 }
21 gm−>workpool[pid][0] = wpentry−>next;
22 /* End of original critical section code */
23
24 done:
25 outcontext−>wpentry = wpentry;
26 return (void *)(uintptr t)ret;
27 }
28
29 int GetJob(RAYJOB *job, int pid)
30 {
31 int ret;
32 union instance instance = { pid, };
33
34 . . .
35 ret = execute cs(&gm−>wplock[pid], &function, &instance);
36 wpentry = instance.output.wpentry;
37 if (ret) { if (ret == 1) return (WPS EMPTY); }
38 . . .

39 }

contains either the input (variables that are read) or the output (variables that are written) of
the critical section, before and after the call to execute_cs(), respectively. As an optimization,
if the context amounts to a single variable, this variable is located in the empty space at the
end of the client’s cache line (hatched space in Figure 4.2).2 The reengineering also addresses a
common pattern in critical sections, illustrated in lines 7-11 of Listing 1, where a conditional
in the critical section releases the lock and returns from the function. In this case, the code
is transformed such that the critical section returns a flag value indicating which lock release
operation ends the critical section, and the code following the call to execute_cs() executes
the code following the lock release operation that is indicated by the corresponding flag value
(line 37 of Listing 2).

The reengineering also modifies various other POSIX functions to use the RCL runtime. In
particular, the function for initializing a lock receives additional arguments indicating whether
the lock should be implemented as an RCL. Finally, the reengineering also generates a header
file, incorporating the profiling information, that the developer can edit to indicate which lock
initializations should create POSIX locks and which ones should use RCLs. The header also
makes it possible to choose which RCL servers are used for each lock.

2More values could be passed in the client’s cache line if they fit in the request array, but simple experiments
have shown that the performance gain is negligible.

58

4.3. CONCLUSION

4.3 Conclusion
This section has presented RCL, a synchronization mechanism that aims to perform better than
other lock algorithms on modern multicore machines, by dedicating server hardware threads in
order to decrease synchronization times and improve data locality. RCL is implemented in a
runtime, and it is provided along with two tools: (i) a profiler that make it possible to identify
which legacy applications may benefit from RCL, and (ii) a reengineering that automatically
transforms these applications in order to make them use RCL. In the next chapter, a wide range
of applications is run through the profiler, and using the reengineering, the applications for which
the profiler found that RCL may be beneficial are transformed to use it. On these applications,
the performance of RCL is compared with that of the locks presented in Chapter 3.

59

Chapter 5

Evaluation

This chapter describes how developers can use RCL to improve the performance of their appli-
cations, and evaluates the performance of RCL relative to other lock algorithms presented in
Chapter 3 on a wide range of applications. Section 5.1 presents the Liblock, a library that makes
it possible to easily switch between lock algorithms in legacy applications: the Liblock is used for
all performance experiments in this chapter. Section 5.2 presents a microbenchmark that is used
to compare the performance of RCL with that of other lock algorithms. Section 5.3 presents
a methodology that helps developers detect which applications could benefit from RCL. The
profiler is then run on a set of legacy applications, and RCL as well as other lock algorithms
are evaluated on the subset of applications that were identified by the profiler as being good
candidates for RCL. Section 5.4 concludes.

The evaluation presented in this chapter is more detailed than the one presented in the
USENIX ATC paper [71] that proposed RCL. Moreover, while the evaluation from the USENIX
ATC paper only used one machine that was similar to Magnycours-48 (see Section 2.5.1), the
evaluation presented in this chapter uses two machines, Magnycours-48 and Niagara2-128 (see
Section 2.5.2). These machines use two different architectures and operating systems. Finally, in
addition to the lock algorithms that were used in the evaluation of the USENIX ATC paper, the
evaluation presented in this chapter also evaluates the performance of CC-Synch and DSM-Synch.

Note on the figures. In this chapter, all graphs and tables present data points and values
that are averaged over five runs.

5.1 Liblock
In this chapter, the performance of RCL is compared to that of other lock algorithms on a
microbenchmark (Section 5.2) as well as other applications (Section 5.3). The lock algorithms
RCL is compared to have all been presented in Chapter 3. They are the following: the basic
spinlock, the POSIX lock, MCS, MCS-TP, Flat Combining, CC-Synch and DSM-Synch. This set
of lock algorithms consists of: (i) a very basic lock algorithm (the basic spinlock), (ii) one of
the most widespread lock algorithms (the POSIX lock), (iii) queue locks (MCS and MCS-TP),
and (iv) combining locks (Flat Combining, CC-Synch and DSM-Synch), two of them (CC-Synch
and DSM-Synch) being state-of-the-art lock algorithms that were designed at the same time
as RCL. CLH is not evaluated since it should perform similarly to MCS on cache-coherent
architectures, as explained in Section 3.3. The performance of Oyama is not evaluated either,

61

CHAPTER 5. EVALUATION

because other combining locks use the same basic idea as Oyama, with clear improvements, as
explained in that same section. Since MCS-TP is a lock algorithm that only aims to improve
the performance of MCS when threads often get preempted, it is only evaluated in experiments
that sometimes run more application threads than there are hardware threads on the machine.
Finally, hierarchical locks were not evaluated because they are usually based on non-hierarchical
locks and a hierarchical version of RCL could be designed, possibly using the Lock Cohorting [34]
technique described in Section 3.10.

Traditional locks can easily be replaced by non-combining locks in legacy applications
by modifying the functions that acquire and release locks. However, with combining locks,
critical sections have to be encapsulated into functions, because they have to be shipped to the
combiner. Therefore, legacy applications have to be transformed to use these locks, using the
same transformation that was presented for RCL in Section 4.2.2.

In order to ease the comparison of lock algorithms, a library named Liblock was written.
It makes it possible to easily switch between lock implementations in an application. The
application must use critical sections that are encapsulated into functions: the critical sections of
the microbenchmark (see Section 5.2) are, and the legacy applications used in Section 5.3 are all
transformed using the reengineering that was presented in Section 4.2.2. Using the transformed
application instead of replacing the functions that acquire and release the locks has negligible
performance for non-combining locks.

The Liblock’s extensible design makes it possible for developers to make it support any lock
algorithm. It comes with an implementation of each of the locks used in this chapter. The
following paragraphs give more information on these implementations.

Lock implementations in the Liblock. For other lock algorithms than RCL, official
implementations are used when available. Special attention is given to preserve memory
barriers, prefetcher hints, and on Solaris, hints to prevent threads from being descheduled
(schedctl_start()/schedctl_stop() function calls); some of these elements are occasionally
added to the official implementations when they are found to improve performance. RCL aligns
its mailbox structure on cache lines and is careful to allocate server data structures on the
server’s NUMA bank. In order to be as fair as possible, the nodes in the lists of the queue locks
(MCS and MCS-TP) and combining locks (Flat Combining, CC-Synch and DSM-Synch) are
cache-aligned and allocated on their thread’s local NUMA bank (threads are bound in most
experiments, as explained in Section 5.3.2). Recommended parameter values are used when
available. Moreover, the parameter space is partially explored when needed in order to ensure
that lock algorithms use satisfactory values for their parameters.

The implementation of MCS is straightforward and does not use any parameters. For MCS-
TP, the implementation provided by the authors [48] is used. As seen in Section 3.5, MCS-TP
uses three parameters: (i) an upper bound on the length of critical sections (MAX_CS_TIME in
Algorithm 4), for which a value of 10 milliseconds is chosen: this value is defined by measuring
the length of the critical sections of all applications used in the evaluation and by picking the
lowest possible upper bound with a reasonable margin, (ii) the approximate length of time it
takes a thread to see a timestamp published on another thread (UPDATE_DELAY in Algorithm 5):
a value of 10 microseconds is chosen since it is sufficient to prevent all deadlocks, and (iii) the
patience to wait in the queue (PATIENCE in Algorithm 4): a value of 50 microseconds is chosen,
which is the value used in the original paper where MCS-TP is proposed [49]. Exploring
the parameter space locally shows that these values constitute a local optimum. For Flat
Combining, the original authors’ code is used [50], as well as the parameter values they use. The

62

5.2. MICROBENCHMARK

25,000

50,000

75,000

100,000

 1 10 100

E
x
e

c
u

tio
n

 t
im

e
 (

c
y
c
le

s
)

Maximum number of consecutive critical sections serviced by a combiner

144 384

CC-Synch, Magnycours-48
DSM-Synch, Magnycours-48

CC-Synch, Niagara2-128
DSM-Synch, Niagara2-128

Figure 5.1: Influence of MAX_COMBINER_CS on CC-Synch and DSM-Synch

cleanup frequency (CLEANUP_FREQUENCY in Algorithm 6) is set to 100, and the cleanup threshold
(CLEANUP_OLD_THRESHOLD) is set to 10. Again, local exploration of the parameter space shows
that Flat Combining performs well with these parameter values.

CC-Synch and DSM-Synch use a single parameter, MAX_COMBINER_CS in Algorithms 7 and 8,
which specifies the maximum number of critical sections a combiner services before handing over
the role of combiner to another thread. The original paper [39] recommends using a value of
n×h with n being a small integer. The implementation proposed by the authors [38] uses a value
of n = 3. It corresponds to a value of MAX_COMBINER_CS = 3× hm48 = 144 for Magnycours-48,
and MAX_COMBINER_CS = 3× hn128 = 384 for Niagara2-128. Figure 5.1 shows the results of the
microbenchmark at highest contention (delay of 100) when MAX_COMBINER_CS varies between 1
and 500. Both 144 and 384 are located in an area of the graph where the latency of CC-Synch
and DSM-Synch is minimal, therefore, these values are used for MAX_COMBINER_CS.

The implementation of the RCL runtime used on Magnycours-48 is described in Section 4.1.2.
On Solaris 10, using POSIX FIFO scheduling requires superuser privileges. Since a privileged
user account could not be obtained on Niagara2-128, a degraded version of the RCL runtime
that does not use POSIX FIFO scheduling is used for all experiments on that machine. The
degraded version does not use backup or manager threads on RCL servers, and servicing threads
can preempt each other when they are running on the same server hardware thread. Privileged
access to a machine that runs Solaris will be needed to port the non-degraded version of the RCL
runtime to that operating system: the current non-degraded Linux implementation will not run
without modifications on Solaris since it uses Linux-specific mechanisms. For instance, in the
non-degraded Linux implementation, the use of Futexes is needed to avoid a priority inversion
that may be triggered by the FIFO scheduling, and Solaris does not provide a mechanism that is
similar to Futexes.

5.2 Microbenchmark
A microbenchmark was developed in order to measure the performance of RCL relative to
other lock algorithms. For other locks than RCL, the microbenchmark executes critical sections
repeatedly on all h hardware threads1 (one software thread per hardware thread, bound), except
one that manages the lifecycle of the threads. In the case of RCL, critical sections are executed
on h− 2 hardware threads only, since one hardware thread manages the lifecycle of threads and
another one is dedicated to a RCL server. A single RCL server is needed, because all critical
sections are protected by the same lock. The microbenchmark varies the degree of contention

1In this chapter, the total number of hardware threads of a machine is always noted h. The total number of
hardware threads of Magnycours-48 and Niagara2-128 are noted hm48 (= 48) and hn128 (= 128), respectively.

63

CHAPTER 5. EVALUATION

POSIX
Spinlock

MCS
MCS-TP

 Flat Combining
CC-Synch

DSM-Synch
RCL

1,000

10,000

100,000

1e+06

1e+07

 1000 10000 100000 1e+06

E
x
e

c
u

tio
n

 t
im

e
 (

c
y
c
le

s
)

1

10

100

100 1,000 10,000 100,000 1e+06

#
 L

2
 c

a
c
h

e
 m

is
s
e

s

Delay (cycles)

(a) One shared cache line per CS

1,000

10,000

100,000

1e+06

1e+07

 1000 10000 100000 1e+06

E
x
e

c
u

tio
n

 t
im

e
 (

c
y
c
le

s
)

1

10

100

100 1,000 10,000 100,000 1e+06

#
 L

2
 c

a
c
h

e
 m

is
s
e

s

Delay (cycles)

(b) Five shared cache lines per CS

High contention (102 cycles) Low contention (2.106 cycles)
Exec. time # cycles Locality # misses Exec. time # cycles Locality # misses

Spinlock Bad 2,186,419 Bad 94.0 Average 2,822 Average 7.7
POSIX Average good 67,740 Average good 6.5 Average 3,321 Average 6.1
MCS Average bad 132,448 Average bad 12.7 Average 3,086 Average 8.1
MCS-TP Average bad 171,854 Average bad 13.1 Average 4,332 Average 8.4
Flat Combining Average good 52,358 Average good 6.9 Bad 16,017 Bad 44.2
CC-Synch Average good 35,194 Average good 5.9 Average 4,359 Average 7.1
DSM-Synch Average good 35,067 Average good 7.6 Average 3,588 Average 7.8
RCL Good 8,298 Good 2.4c + 0.0s Good 1,899 Good 2.4c + 1.2s

(c) Comparison of the lock algorithms for five shared cache lines

Figure 5.2: Microbenchmark results on Magnycours-48

on the lock by varying the delay between the execution of the critical sections: the shorter the
delay, the higher the contention. The microbenchmark also varies the locality of critical sections
by making them read and write either one or five cache lines. To ensure that cache lines are not
prefetched, they are not contiguous (Magnycours-48’s prefetcher always fetches two cache lines at
a time), and the address of the next memory access is built from the previously read value [113]
when accessing cache lines. This technique is similar to the one described the benchmark that
was used to fine-tune the second version of the profiler in Section 4.2.1.

Magnycours-48. Figure 5.2a presents the average execution time of a critical section (top)
and the number of L2 cache misses (bottom) when each thread executes 10,000 critical sections
that each access one shared cache line on Magnycours-48. This experiment mainly measures the
effect of lock access contention. Figure 5.2b presents the increase in execution time when each
critical section accesses five cache lines instead. This experiment focuses more on the effect of
data locality of shared cache lines. In practice, as seen in Figure 5.5, in the evaluated applications,
most critical sections trigger between one and five cache misses, therefore, performing either one
or five cache line accesses is realistic. Highlights of the experiment are summarized in Figure 5.2c.

64

5.2. MICROBENCHMARK

On Magnycours-48, under high contention (left part of the graph), with five cache line accesses,
RCL is several times faster than all other lock algorithms.2 CC-Synch and DSM-Synch are ~323%
slower than RCL, even though they are state-of-the-art algorithms that were published shortly
before RCL. Both algorithms have comparable performance, as expected on a cache-coherent
architecture (see Section 3.8). Flat Combining, on which these algorithms are based, performs
49% slower than them: the removal of the global lock of Flat Combining for handing over the
role of combiner is a very efficient optimization. MCS is much slower than combining locks: it is
~277% slower than CC-Synch and DSM-Synch, and 153% slower than Flat Combining. This
overhead comes from the fact that with MCS and non-combining locks, synchronization between
two threads is necessary between the execution of two critical sections, whereas combining locks
execute dozens of critical sections consecutively without any synchronization as long as the list of
requests is full. Let hm48 = 48 be the number of hardware threads provided by Magnycours-48.
Since, under high contention, all hm48 − 1 = 47 threads are waiting for the execution of a critical
section, on average, threads have to wait for the execution of hm48− 2 = 46 other critical sections
before they can execute theirs. Therefore, the synchronization overhead between two threads in
the list is paid 46 times when waiting for the execution of each critical section. MCS-TP makes
MCS more resilient to preemption, as shown later in this section, however, this optimization
comes at a cost: MCS-TP has an overhead of 30% relative to MCS. The performance of the
POSIX lock is reasonably good at very high contention (between that of Flat Combining and
MCS), but its performance decreases when contention is average: it becomes worse than that of
MCS and MCS-TP. This comes from the fact that the POSIX lock directly tries to acquire the
lock using the global lock variable before sleeping: when contention is very high, i.e., the delay
between two critical sections is very low, a thread that just released the lock is able to reacquire
it immediately if doing so is faster than waking up the next blocked thread in the list that is
waiting for the critical section. When contention is less high, a context switch is needed every
time the lock is handed over from one thread to the next, which slows down every lock acquisition.
Again, this overhead is paid 46 times since a thread typically has to wait for the execution of 46
other critical sections before it executes its own. Finally, the basic spinlock’s performance under
high contention is very poor because its repeated use of atomic compare-and-swap instructions
saturates the memory bus with messages from the cache-coherence protocol.

The performance of lock algorithms at low contention does not matter as much as the
performance under high contention, because when contention is low, locks are not a bottleneck.
On Magnycours-48, most lock algorithms have comparable performance at low contention (right
part of the graph). Flat Combining performs worse than other lock algorithms at low contention
because after the execution of each critical section, the combiner thread executes the loop at
lines 37-46 of Algorithm 7 in order to clean up the global list. This loop accesses all the remote
nodes in the list which increases the number of cache misses (44.2) and decreases performance.
RCL is as efficient as other lock algorithms under low contention when the microbenchmark
only accesses one shared cache line, but when it accesses five cache lines, RCL becomes more
efficient than them, because the additional cache line accesses do not incur a overhead in the
case of RCL: all accessed variables remain in the cache of the server hardware thread. This is
not the case with combining locks because combiners only execute streaks of request under high
contention: when contention is low, a thread that needs to execute a critical section becomes the
combiner, executes its own critical section, sees that no other thread has added a request for the

2Using the SSE3 MONITOR/MWAIT instructions on the client side when waiting for a reply from the server, as
described in Section 4.1.1, induces a overhead of less than 30% at both high and low contention. This makes the
energy-efficient version of RCL quantitatively similar to the original RCL implementation presented here.

65

CHAPTER 5. EVALUATION

POSIX
Spinlock

MCS
MCS-TP

 Flat Combining
CC-Synch

DSM-Synch
RCL

1,000

10,000

100,000

1e+06

1e+07

 1000 10000 100000 1e+06 1e+07

E
x
e

c
u

tio
n

 t
im

e
 (

c
y
c
le

s
)

1

10

100

1,000

100 1,000 10,000 100,000 1e+06 1+e07

#
 L

1
 c

a
c
h

e
 m

is
s
e

s

Delay (cycles)

(a) One shared cache line per CS

1,000

10,000

100,000

1e+06

1e+07

 1000 10000 100000 1e+06 1e+07

E
x
e

c
u

tio
n

 t
im

e
 (

c
y
c
le

s
)

1

10

100

1,000

100 1,000 10,000 100,000 1e+06 1+e07

#
 L

1
 c

a
c
h

e
 m

is
s
e

s

Delay (cycles)

(b) Five shared cache lines per CS

High contention (102 cycles) Low contention (2.106 cycles)
Exec. time # cycles Locality # misses Exec. time # cycles Locality # misses

Spinlock Bad 5,423,513 Average 34.9 Average 1,550 Very good 0.2
POSIX Average bad 159,573 Average 39.3 Average 2,110 Average 8.3
MCS Average bad 140,557 Very bad 1063.6 Average 1,857 Average 4.0
MCS-TP Average bad 253,772 Very bad 967.6 Average 2,864 Average 3.8
Flat Combining Average good 74,063 Bad 473.9 Bad 8,251 Bad 72.9
CC-Synch Average good 60,920 Good 9.6 Average 4,201 Average 7.3
DSM-Synch Average good 68,376 Good 11.3 Average 3,788 Average 8.6
RCL Good 37,516 Very good 4.3c + 0.0s Average 4,339 Average 5.4c + 0.4s

(c) Comparison of the lock algorithms for five shared cache lines

Figure 5.3: Microbenchmark results on Niagara2-128

execution of a critical section, and goes back to executing its client code. This effect is visible on
the bottom part of Figure 5.2a and Figure 5.2b: at low contention, while the number of cache
misses is higher for most lock algorithms when five cache lines are accessed instead of one, it
remains almost constant with RCL. Finally, Figure 5.2c shows that most cache misses incurred
by RCL are on the client side, and not on the server side: they are therefore outside the critical
path of the server and do not slow down the execution of critical sections for all clients.

Niagara2-128. Figure 5.3 shows the microbenchmark results on Niagara2-128. Instead of
L2 cache misses, L1 cache misses are measured on Niagara2-128, because, as explained in
Section 4.2.1, they are a better metric for measuring inter-core communication on that machine.
Also note that since Niagara2-128 provides hn128 = 128 hardware threads, hn128 − 1 = 127
threads execute critical sections are used instead of h48 − 1 = 47 on Niagara2-128. Therefore,
results of the two experiments are not directly comparable.

The microbenchmark results are qualitatively similar on Niagara2-128 and Magnycours-48.
However, the performance gap is lower due to the fact that Niagara2-128 has better communication
performance relative to its sequential performance, as explained in Section 2.5.3: on Niagara2-128,
synchronization is less of a bottleneck, therefore, using efficient locks does not improve performance
as much as on Magnycours-48. Under high contention, CC-Synch and DSM-Synch are still 62%
and 82% slower than RCL, respectively. Flat Combining is 22% slower than CC-Synch and 8%
slower than DSM-Synch. Removing the global lock is not as efficient to improve performance as it

66

5.3. APPLICATIONS

is on Magnycours-48, because, as seen in Section 2.5.3.2, the compare-and-swap instruction scales
better on Niagara2-128 than on Magnycours-48. MCS is between 55% and 132% slower than
combining locks, and the basic spinlock performs even worse than on Magnycours-48, because
more hardware threads are used, which increases contention.

5.3 Applications
This section focuses on the performance of RCL in multithreaded applications. Section 5.3.1
presents a custom profiler as well as a methodology designed to help developers decide whether
RCL may be beneficial for their application. The profiler is then run on applications from the
SPLASH-2 and Phoenix 2 benchmark suites, as well as Memcached and Berkeley DB with a
TPC-C client. Section 5.3.2 compares the performance of RCL and other lock algorithms on the
subset of applications and datasets that were selected thanks to the profiler data. Finally, Sections
5.3.3, 5.3.4, and 5.3.5 give more detailed results for the experiments from SPLASH-2/Phoenix 2,
Memcached, and Berkeley DB, respectively.

5.3.1 Profiling
The microbenchmark makes it possible to determine at which level of contention lock algorithms
collapse, but the metric it uses for measuring contention is the delay between the execution of
critical sections: this metric is not a very good measure of contention in real-world applications
because it is also highly dependent on other factors such as the length of critical sections. Instead,
the profiler presented in Section 4.2.1 measures the percentage of execution time time spent in
critical sections, including lock acquisition and release time. This metric was found to be simple
to measure, and yet it is a good estimate of lock contention, because when lock contention is high
enough that locks are a bottleneck, lock acquisition and release operations become very long and
end up taking up most of the execution time. In order to estimate at which point locks collapse
in terms of this metric instead of the delay, the microbenchmark is run through the profiler.

Figures 5.4a and 5.4b shows the result of applying the profiler to the microbenchmark with
POSIX locks and one cache line access: the percentage of time spent in critical sections is plotted
as a function of the delay.3 As seen on Figure 5.2a, on Magnycours-48, the POSIX lock collapses
when the delay is under 105, 000 cycles, and RCL is better than all other lock algorithms when
the delay is under 60, 000 cycles. As shown on Figure 5.4a, running the microbenchmark through
the profiler makes it possible to deduce that these two values correspond to 15% and 60% of the
execution time spent in critical sections, respectively. Therefore, it can be deduced that the POSIX
lock collapses when the microbenchmark spends 15% or more of its time in critical sections (lower
threshold), and RCL performs better than all other lock algorithms when the microbenchmark
spends 60% ore more of its time in critical sections (upper threshold). These results are preserved,
or improved, as the number of accessed cache lines increases, because the execution time increases
at least as much, and usually more, for other algorithms than for RCL, due to RCL’s improved
data locality. Therefore, two thresholds for benchmarked applications can be identified on
Magnycours-48: assuming that they use POSIX locks, if they spend more than 15% in critical
sections, using RCL may be beneficial, but not necessarily more than using other lock algorithms
other than POSIX (lower threshold). If they spend more than 60% of their time in critical sections,
using RCL may be more beneficial than using any of the other lock algorithms (upper threshold).

3The analysis assumes that the targeted applications use POSIX locks because they are the most common
type of lock used in applications on *NIX systems. However, a similar analysis could be made for any type of lock.

67

CHAPTER 5. EVALUATION

 0

 20

 40

 60

 80

 100

100 1000 10000 100000 1e+06

%
 o

f
tim

e
 in

 C
S

Delay (cycles)

Collapse of POSIX (105,000 cycles): 15%

Collapse of MCS (60,000 cycles): 60%

(a) Time spent in critical sections on Magnycours-48

 0

 20

 40

 60

 80

 100

100 1000 10000 100000 1e+06 1e+07

%
 o

f
tim

e
 in

 C
S

Delay (cycles)

Collapse of POSIX (240,000 cycles): 15%

Collapse of MCS (60,000 cycles): 85%

(b) Time spent in critical sections on Niagara2-128

cycles % in CS
Upper threshold 60,000 60%Magnycours-48
Lower threshold 105,000 15%
Upper threshold 60,000 85%

All hardware threads (48/128)
Niagara2-128

Lower threshold 240,000 15%
Upper threshold 25,000 55%Magnycours-48
Lower threshold 30,000 45%
Upper threshold 8,000 75%

Half (22 / 62), for Memcached
Niagara2-128

Lower threshold 40,000 45%

(c) Thresholds

Figure 5.4: Time spent in critical sections in the microbenchmark and thresholds

A similar analysis on Niagara2-128 shows that on that machine, the benchmarked applications
may benefit from RCL if they spend more than 15% in critical sections (lower threshold), and
that they may benefit from RCL more than from any other lock algorithm if they spend more
than 85% of their time in critical sections (upper threshold).

The thresholds mentioned heretofore have been found by running the microbenchmark on all
hardware threads. However, as seen later in this section, Memcached is run with half the hardware
thread dedicated to a client that sends request to the Memcached instance. Therefore, the same
analysis was performed with half the hardware threads in order to find suitable thresholds for
this application. All thresholds are listed in Figure 5.4c.

Applications. Figures 5.5 and 5.6 show the results of the profiler for 18 applications on
Magnycours-48 and Niagara2-128, respectively. The evaluated applications are the following:

• The nine applications of the SPLASH-2 benchmark suite (parallel scientific applications,
see Section 2.5.3.3). Since Raytrace is provided with two datasets, Balls4 and Car, the
results for both are shown (a third data set, Teapot, is also provided but only for debugging
purposes).

68

5.3. APPLICATIONS

% in CS = f(# hardware threads) Lock info for max. # hardware threads
#L2 cache1 4 8 16 32 48 Description #
misses / CS

% in CS

Radiosity 3.7% 6.5% 10.4% 38.4% 76.6% 89.2% Linked list access 1 1.7 87.7%
Raytrace/Balls4 0.5% 1.0% 1.6% 3.0% 22.6% 66.8% Counter increment 1 1.4 65.7%
Raytrace/Car 9.2% 19.6% 45.8% 70.1% 86.5% 91.7% Counter increment 1 0.6 90.2%
Barnes 10.7%
FMM 1.0%
Ocean Contiguous 0.1%†

Ocean Non-Cont. 0.1%†

Volrend 14.0%
Water-nsquared 6.8%

SPLASH-2

Water-spatial 3.3%
Linear Regression 0.9% 26.5% 39.4% 68.7% 60.1% 81.6% Task queue access 1 3.8 81.6%
String Match 0.2% 5.7% 10.2% 23.0% 37.6% 63.9% Task queue access 1 4.5 63.9%
Matrix Multiply 0.9% 27.5% 41.8% 67.3% 79.7% 92.2% Task queue access 1 3.1 92.2%
Histogram 13.8%
PCA 12.2%
KMeans 1.1%

Phoenix 2

Word Count 4.1%
Get 3.2% 20.3% 40.7% 69.7% 22 hw. t.: 79.0%‡ Hashtable access 1 2.1 78.3%

Memcached Set 3.7% 19.3% 28.7% 39.1% 22 hw. t.: 44.7%‡ Hashtable access 1 16.5 44.7%
Payment 10.1%
New Order 5.2%
Order Status 2.1% 2.5% 2.1% 2.3% 1.1% 41.2% DB struct. access 11 2.4 40.1%
Delivery 4.3%

Berkeley DB
+ TPC-C

Stock Level 2.1% 2.2% 2.4% 0.5% 0.4% 46.3% DB struct. access 11 2.4 46.3%
† Number of hardware threads must be a power of 2. ‡ Other hardware threads are executing clients.

Figure 5.5: Profiling results for the evaluated applications on Magnycours-48

• The seven applications of the Phoenix 2.0.0 benchmark suite [101, 103, 112, 92] developed
at Stanford. These applications implement common uses of Google’s MapReduce [31]
programming model in the C programming language. Phoenix 2 provides a small, a
medium and a large dataset for each application. The medium datasets were used for all
applications.

• Memcached 1.4.6 [26, 41], a general-purpose distributed memory caching system that is
used by websites such as YouTube, Wikipedia and Reddit. Memcached is run on half of
the hardware threads of each machine, because the other half of the hardware threads
is dedicated to the client that generates the load. This can be done without impacting
performance because Memcached’s scalability is too low for it to benefit from more than
half the hardware threads of Magnycours-48 or Niagara2-128. As shown in Section 5.3.4,
this is true even when Memcached is modified to use other lock algorithms, including RCL.
Memcached uses two threads that perform other tasks than executing requests: one of
them dispatches incoming packets to the worker threads, and another one is responsible
for performing maintenance operations on the global hashtable that stores cached data,
such as resizing it when needed. Therefore, for Memcached to run n worker threads, n+ 2
hardware threads are needed: this explains why the maximum number of hardware threads
used in the experiment is hm48/2 − 2 = 22 (resp. hn128/2 − 2 = 62) for Magnycours-48
(resp. Niagara2-128) instead of hm48/2 = 24 (resp. hn128/2 = 64). The client used to
generate the load is Memslap, from Libmemcached 1.0.2 [28]. Two experiments are used,
in the first one, the client only executes Get requests (reads from the cache), and in the
second one, it only executes Set requests (writes to the cache).

69

CHAPTER 5. EVALUATION

• Berkeley DB 5.2.28 [80, 79], a database engine maintained by Oracle, with TpccOverBkDB,
a TPC-C [67] benchmark written by Alexandra Fedorova and Justin Fuston at Simon
Fraser University. Five experiments are used, one for each of the request types offered
by TPC-C. Berkeley DB takes the form of a library, and the client is an application that
creates one thread that uses Berkeley DB routines for each simulated client.

The left part of tables in Figures 5.5 and 5.6 shows the time spent in critical sections for
the selected applications, for different numbers of threads. The time spent in critical sections
increases when the number of threads increases, because increasing the number of threads
increases contention. A gray box in the tables indicates that the application is not profiled for
the corresponding number of threads, because even when using one software thread per hardware
thread, the time spent in critical sections is very low (under the lower threshold): therefore, locks
are not a bottleneck. The right part of the tables shows the time spent in critical sections and
the number of cache misses for the most used locks.

In SPLASH-2/Radiosity, the most used lock is used to concurrently access a linked list. In
SPLASH-2/Raytrace, the most used lock protects a shared counter. In the Phoenix benchmarks,
the most used lock protect the task queue from the MapReduce implementation. In Memcached,
the most used lock protects the shared hashtable that stores all of the cached data. For the
contended SPLASH-2 and Phoenix 2 applications, as well as Memcached, the time spent in
critical sections for the most used lock is extremely close to the global time spent in critical
sections: this shows that their lock bottleneck comes from a single lock. Most benchmarks have
a low number of cache misses, except Memcached/Set (and, to some extent, Memcached/Get on
Niagara2-128, but 13.5 is not a very high number for L1 cache misses). For Berkeley DB, the
profiler identifies a block of eleven locks that are highly contended, because these locks are all
allocated at the same code location (same file and line number) in the Berkeley DB library, and
the profiler identifies lock by their allocation site. These locks protect the access to a structure
that is unique for each database, and eleven databases are used in TPC-C. The time spent in
critical sections by these eleven locks is equal to the global time spent in critical sections, which
shows that no other lock in the application is a bottleneck. The number of cache misses is always
low in the experiments with Berkeley DB.

5.3.2 Performance overview
The two metrics provided by the profiler, i.e., the time spent in critical sections and the number
of cache misses, do not, of course, completely determine whether an application will benefit from
RCL. Many other factors (length of critical sections, interactions between locks, etc.) affect the
execution of critical sections. However, as shown in this chapter, using the time spent in critical
sections as the main metric and the number of cache misses in critical sections as a secondary
metric works well: the former is a good indicator of contention, and the latter of data locality.

In order to evaluate the performance of RCL, the performance of applications listed in
Figures 5.5 and 5.6 is measured with the lock algorithms (including RCL) listed in Figures 5.2c
and 5.3c. The following paragraphs list the applications that were selected for the evaluation
based on the results of the profiler.

SPLASH-2 and Phoenix. For the SPLASH-2 and Phoenix benchmark suites, results for the
experiments whose time spent in critical sections is higher than one of the thresholds found in
Section 5.2 are presented. As explained in Section 5.3.1, since the time spent in critical sections
grows with lock contention, when one of the thresholds is reached, using RCL may be beneficial

70

5.3. APPLICATIONS

% in CS = f(# hardware threads) Lock info for max. # hardware threads
L1 cache1 4 8 16 32 64 128 Description # misses / CS % in CS

Radiosity 1.6% 2.8% 2.8% 3.0% 3.1% 3.1% 38.7% Linked list access 1 5.4 35.5%
Raytrace/Balls4 0.3% 0.5% 0.4% 0.5% 0.5% 0.6% 14.3% Counter increment 1 4.6 13.4%
Raytrace/Car 5.4% 5.9% 5.8% 6.0% 9.2% 44.7% 79.1% Counter increment 1 3.8 77.0%
Barnes 3.7%
FMM 0.5%
Ocean Cont. 0.0%
Ocean Non-Cont. 0.0%
Volrend 1.0%
Water-nsquared 7.3%

SPLASH-2

Water-spatial 0.1%
Linear Regression 3.4%
String Match 2.9%
Matrix Multiply 10.2%
Histogram 3.2%
PCA 0.1%
KMeans 0.0%

Phoenix 2

Word Count 2.0%
Get 5.4% 10.4% 16.5% 42.3% 62.2% 62 hw. t.: 69.9%‡ Hashtable access 1 13.5 69.2%

Memcached Set 5.0% 8.7% 14.0% 17.5% 19.3% 62 hw. t.: 20.4%‡ Hashtable access 1 73.4 20.2%
Payment 1.8%
New Order 0.3%
Order Status 0.2% 0.1% 0.1% 0.1% 43.8% 63.6% 76.4% DB struct. access 11 4.0 76.4%
Delivery 0.8%

Berkeley DB
+ TPC-C

Stock Level 0.2% 0.1% 0.1% 0.1% 55.5% 78.2% 87.1% DB struct. access 11 3.4 87.1%
‡ Other hardware threads are executing clients.

Figure 5.6: Profiling results for the evaluated applications on Niagara2-128.

thanks to RCL’s good performance under high contention. Since all SPLASH-2 and Phoenix
applications always exhibit a low number of cache misses in critical sections (less than five) in
Figures 5.5 and 5.6, data locality is disregarded as a criterion to select experiments. Following
Figures 5.5 and 5.6, on Magnycours-48, the results of String Match (Phoenix 2), Raytrace/Balls4
(SPLASH-2), Linear Regression (Phoenix 2), Radiosity (SPLASH-2), Raytrace/Car (SPLASH-2),
and Matrix Multiply (Phoenix 2) are presented, since these experiments all spend more time in
critical sections than the upper threshold. On Magnycours-48, no experiment spends less time in
critical sections than the upper threshold but more than the lower threshold. On Niagara2-128,
none of the experiments from SPLASH-2 or Phoenix 2 spends more time in critical sections than
the upper threshold. On that machine, the results of Radiosity (Phoenix 2) and Raytrace/Car
(SPLASH-2) are presented, since the time they spend in critical sections is lower than the upper
threshold but higher than the lower threshold. Finally, the results of Raytrace/Balls4 are shown
even though the time time spent in critical sections for this experiment is below both thresholds:
the objective is to illustrate a case where lock contention is low enough that using more efficient
lock algorithms, including RCL, should not improve performance.

Memcached. For Memcached, on Magnycours-48, the experiment with Get requests spends
more time in critical sections than the upper threshold. Even though the experiment with Set
requests spends an amount of time in critical sections that is between the two thresholds, it also
exhibits a large number of cache misses in critical sections (16.5 L2 cache misses). Therefore,
a significant performance improvement can be expected in that experiment. Similarly, on
Niagara2-128, both experiments (with Get and Set requests) spend an amount of time in critical
sections that is between the lower and the upper threshold. On that machine, Memcached/Set
exhibits a large number of cache misses in critical sections (72.4 L1 cache misses), which indicates
that RCL could be beneficial for locality in this experiment. The performance of combining

71

CHAPTER 5. EVALUATION

locks was not evaluated, because Memcached periodically blocks on condition variables, for
which combining locks do not provide an implementation, as explained in Section 3.6. However,
condition variables are implemented for the basic spinlock and queue locks, using the algorithm
described in Section 3.2.

Berkeley DB with TpccOverBkDb. For Berkeley DB with TpccOverBkDb, results for
Order Status and Stock Level requests on both machines are presented. On Magnycours-48, the
time spent in critical sections for these two experiments, albeit high, is lower than the upper
threshold. However, the profiler underestimates the actual time spent in critical sections for
Berkeley DB, because Berkeley DB uses hybrid locks that busy-wait for a moment before going
to sleep with a POSIX lock: the busy-waiting time is not included in the percentage of time
spent in critical sections because the profiler is written for POSIX locks. The performance of
Berkeley DB with TpccOverBkDb is not evaluated for the other three types of requests, namely
Payment, New Order and Delivery, because the time they spend in critical sections is extremely
low (lower than both thresholds). On Niagara2-128, the results of the profiler are similar, except
for the fact that on that machine, the experiment with Stock Level requests spends more time in
critical sections than the upper threshold.

Figure 5.7 presents an overview of the performance results of all selected experiments for all
lock algorithms. As a reminder, some of the profiling data is shown again in this figure, and the
amount of time spent in critical sections is compared to lower and upper thresholds (noted tl
and tu) that are suitable for each experiment. The experiments are run with the parameters
shown in Figure 5.7c. Custom parameters were used for Radiosity (SPLASH-2) in order to make
the benchmark perform more work: since SPLASH-2 applications were designed in the 90’s,
some of them execute too fast on modern architectures to give usable results. As explained in
Section 5.3.1, Phoenix 2 uses the medium datasets for its benchmarks, which corresponds to
100MB input files for Linear Regression and String Match, and a 500x500 matrix for Matrix
Multiply. For Memcached, the hashtable is preloaded with 30,000 entries when Get requests
(reads) are used, whereas it is preloaded with only 10,000 requests for Set requests, since in that
experiment, the client fills the hashtable. For Berkeley DB with TpccOverBkDb, each client uses
a separate thread, and each one of these threads executes 300 requests.

In the applications from Figures 5.7a, 5.7b, 5.7d, and 5.7e, i.e., SPLASH-2 and Phoenix 2
applications as well as Memcached, only one lock is replaced, as indicated in Figures 5.2c and 5.3c.
Therefore, for RCL, these applications only use one server hardware thread. In the figures of
this section, when an application is run with n hardware threads, it either means that (i) n− s
application threads and s servers are run when RCL is used, or (ii) n application threads are used
for other applications. All software threads are bound to hardware threads in all applications,
except for Berkeley DB, since in that case, when more software threads can be used than the
number of hardware threads, dynamic scheduling can make better usage of the hardware threads
than static scheduling.

The numbers above the histograms (×α : η/µ) report the improvement α over the execution
time of the original application on one hardware thread, the number η of hardware threads that
gives the shortest execution time (i.e., the scalability peak), and the minimal number µ of hardware
threads for which RCL is faster than all other lock algorithms. The histograms show the ratio of the
execution time with each of the lock algorithms relative to the execution time with POSIX locks.

The following sections (5.3.3, 5.3.4 and 5.3.5) describe the performance results of all experi-
ments, and they describe Figure 5.7 in detail. However, general trends can already be observed
on this figure: RCL is generally faster than other lock algorithms, and when the percentage

72

5.3. APPLICATIONS

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

POSIX
1
0
6
3
6
.
7

t
/
s

8
2
9
5
.
7

t
/
s

4
3
3
.
6

t
/
s

3
7
1
.
3

t
/
s

Spinlock

2
4
3
1
.
3

t
/
s

2
5
3
.
3

t
/
s

1
4
8
.
5

t
/
s

<
1
0
0

t
/
s

MCS

1
0
3
8
2
.
7

t
/
s

<
1
0
0

t
/
s

1
5
6
9
.
1

t
/
s

<
1
0
0

t
/
s

Flat Combining

1
9
0
7
3
.
1

t
/
s

2
0
3
2
.
8

t
/
s

1
4
5
4
.
6

t
/
s

1
4
0
.
3

t
/
s

CC-Synch

2
2
3
3
2
.
4

t
/
s

<
1
0
0

t
/
s

2
3
1
0
.
4

t
/
s

<
1
0
0

t
/
s

DSM-Synch

1
6
9
0
1
.
8

t
/
s

<
1
0
0

t
/
s

2
0
8
7
.
1

t
/
s

<
1
0
0

t
/
s

RCL

2
4
1
0
1
.
7

t
/
s

1
5
7
3
1
.
3

t
/
s

2
3
6
6
.
4

t
/
s

2
0
8
1
.
5

t
/
s

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

POSIX Spinlock MCS Flat Combining CC-Synch DSM-Synch RCL

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

POSIX Spinlock MCS Flat Combining CC-Synch DSM-Synch RCL

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

P2: String Match S2: Raytrace/Balls4 P2: Linear Regr. S2: Radiosity S2: Raytrace/Car P2: Matrix Multiply
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

B
e

s
t

p
e

rf
o

rm
a

n
c
e

 r
e

la
tiv

e
 t

o
 b

e
s
t

P
O

S
IX

 p
e

rf
o

rm
a

n
c
e

×
1
1
.
8
:
3
8

×
2
2
.
7
:
3
1

×

4
.
2
:
1
1

×

9
.
5
:
1
4

×

3
.
1
:

5

×

3
.
7
:
1
9

×

9
.
3
:
2
2

×
2
3
.
3
:
2
8

×

4
.
3
:
1
1

×
1
0
.
0
:
1
2

×

4
.
9
:

7

×

3
.
6
:

8

×
1
3
.
9
:
4
2

×
3
2
.
1
:
4
8

×

5
.
9
:
1
9

×
1
5
.
0
:
3
2

×

4
.
6
:
1
0

×

5
.
1
:
1
9

×
1
3
.
8
:
3
9

×
2
9
.
9
:
4
8

×

7
.
1
:
1
7

×
1
5
.
9
:
4
7

×

5
.
3
:
1
6

×

5
.
7
:
1
9

×
1
4
.
0
:
3
3

×
3
4
.
0
:
4
7

×

7
.
4
:
1
9

×
2
0
.
6
:
4
4

×

6
.
9
:
1
5

×

5
.
9
:
1
9

×
1
4
.
0
:
3
5

×
3
3
.
5
:
4
8

×

7
.
4
:
1
7

×
2
0
.
6
:
4
2

×

6
.
9
:
1
8

×

5
.
9
:
1
9

×
1
4
.
3
:
3
1
/
3
1

×
3
4
.
3
:
4
9
/
3
2

×

7
.
7
:
1
9
/
1
8

×
2
4
.
1
:
4
7
/
1
9

×

9
.
4
:
3
1
/

9

×

6
.
3
:
1
9
/

7

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

P2: String Match S2: Raytrace/Balls4 P2: Linear Regr. S2: Radiosity S2: Raytrace/Car P2: Matrix Multiply
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

63.9% in CS (>tu)
4.5 L2 CMs

65.7% in CS (>tu)
1.4 L2 CMs

81.6% in CS (>tu)
3.8 L2 CMs

87.7% in CS (>tu)
1.7 L2 CMs

90.2% in CS (>tu)
0.6 L2 CMs

92.2% in CS (>tu)
3.1 L2 CMs

(a) Magnycours-48: SPLASH-2 and Phoenix 2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Memcached: Set Memcached: Get

B
e

s
t
p

e
rf

o
rm

a
n

c
e

 r
e

la
tiv

e
 t
o

 b
e

s
t

P
O

S
IX

 p
e

rf
o

rm
a

n
c
e

×

1
.
6
:

3

×

4
.
3
:
1
0

×

2
.
2
:

6

×

6
.
3
:
1
0

×

2
.
1
:
1
0

×

7
.
2
:
1
5

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

×

4
.
1
:
1
9
/

5

×

7
.
7
:
2
0
/
1
2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Memcached: Set Memcached: Get

44.7% in CS (<tu)
16.5 L2 CMs

79.0% in CS (>tu)
2.1 L2 CMs

(b) Magnycours-48: Memcached

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

POSIX

1
0
6
3
6
.
7

t
/
s

8
2
9
5
.
7

t
/
s

4
3
3
.
6

t
/
s

3
7
1
.
3

t
/
s

Spinlock

2
4
3
1
.
3

t
/
s

2
5
3
.
3

t
/
s

1
4
8
.
5

t
/
s

<
1
0
0

t
/
s

MCS

1
0
3
8
2
.
7

t
/
s

<
1
0
0

t
/
s

1
5
6
9
.
1

t
/
s

<
1
0
0

t
/
s

Flat Combining

1
9
0
7
3
.
1

t
/
s

2
0
3
2
.
8

t
/
s

1
4
5
4
.
6

t
/
s

1
4
0
.
3

t
/
s

CC-Synch

2
2
3
3
2
.
4

t
/
s

<
1
0
0

t
/
s

2
3
1
0
.
4

t
/
s

<
1
0
0

t
/
s

DSM-Synch

1
6
9
0
1
.
8

t
/
s

<
1
0
0

t
/
s

2
0
8
7
.
1

t
/
s

<
1
0
0

t
/
s

RCL

2
4
1
0
1
.
7

t
/
s

1
5
7
3
1
.
3

t
/
s

2
3
6
6
.
4

t
/
s

2
0
8
1
.
5

t
/
s

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

POSIX Spinlock MCS Flat Combining CC-Synch DSM-Synch RCL

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

POSIX Spinlock MCS Flat Combining CC-Synch DSM-Synch RCL

-batch -ae 500Radiosity
-bf 0.005

Input files:Raytrace/Car
car.env/geo

Input files:

SPLASH-2

Raytrace/Balls4
balls4.env/geo

Medium dataset:Linear Regr.
100MB input file
Medium dataset:String Match
100MB input file
Medium dataset:

Phoenix 2

Matrix Multiply
500x500 matrix
30,000 entries in baseGet
30,000 Get requests
10,000 entries initially

Memcached
Set

10,000 Set requests
Berkeley DB Order Status 300 requests per client
+ TPC-C Stock Level 300 requests per client

(c) Benchmark parameters

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

S2: Raytrace/Balls4 S2: Radiosity S2: Raytrace/Car

B
e

s
t
p

e
rf

o
rm

a
n

c
e

 r
e

la
tiv

e
 t
o

 b
e

s
t

P
O

S
IX

 p
e

rf
o

rm
a

n
c
e

×
6
0
.
2
:
1
2
3

×
2
9
.
8
:

7
2

×
1
5
.
7
:

4
2

×
6
2
.
0
:
1
2
3

×
3
2
.
7
:

8
4

×
1
5
.
4
:

5
8

×
6
0
.
4
:
1
2
4

×
3
4
.
0
:
1
1
3

×
1
4
.
8
:

5
8

×
6
0
.
0
:
1
2
5

×
3
3
.
3
:

9
9

×
1
4
.
7
:

5
8

×
5
9
.
7
:
1
2
3

×
3
4
.
1
:

8
9

×
1
5
.
1
:

5
9

×
6
1
.
7
:
1
2
4

×
3
2
.
9
:
1
0
8

×
1
4
.
9
:

5
8

×
6
1
.
2
:
1
2
6

×
3
4
.
4
:

9
4

×
1
4
.
9
:

5
8

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

S2: Raytrace/Balls4 S2: Radiosity S2: Raytrace/Car

14.3% in CS (<tl)
4.6 L1 CMs

38.7% in CS (<tu)
4.4 L1 CMs

79.1% in CS (<tu)
3.8 L1 CMs

(d) Niagara2-128: SPLASH-2

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

Memcached: Set Memcached: Get

B
e

s
t
p

e
rf

o
rm

a
n

c
e

 r
e

la
tiv

e
 t
o

 b
e

s
t

P
O

S
IX

 p
e

rf
o

rm
a

n
c
e

×

3
.
4
:
6
0

×

7
.
9
:
5
2

×

3
.
9
:
2
0

×

9
.
2
:
2
4

×

3
.
7
:
2
0

×

6
.
5
:
1
6

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

×

4
.
5
:
3
2
/
1
6

×

9
.
3
:
2
8
/
2
8

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

Memcached: Set Memcached: Get

20.2% (<tu) in CS
73.4 L1 CMs

69.2% (<tu) in CS
13.5 L1 CMs

(e) Niagara2-128: Memcached

Order Status, 48 cl. Order Status, 384 cl. Stock Level, 48 cl. Stock Level, 384 cl.

Base

4
2
6
0
.
4

t
/
s

5
1
1
7
.
7

t
/
s

2
0
4
.
1

t
/
s

2
3
5
.
6

t
/
s

POSIX

1
0
6
3
6
.
7

t
/
s

8
2
9
5
.
7

t
/
s

4
3
3
.
6

t
/
s

3
7
1
.
3

t
/
s

Spinlock

2
4
3
1
.
3

t
/
s

2
5
3
.
3

t
/
s

1
4
8
.
5

t
/
s

<
1
0
0

t
/
s

MCS

1
0
3
8
2
.
7

t
/
s

<
1
0
0

t
/
s

1
5
6
9
.
1

t
/
s

<
1
0
0

t
/
s

MCS-TP

1
3
0
0
9
.
7

t
/
s

2
3
7
4
.
5

t
/
s

8
9
5
.
4

t
/
s

1
0
6
.
5

t
/
s

Flat Combining

1
9
0
7
3
.
1

t
/
s

2
0
3
2
.
8

t
/
s

1
4
5
4
.
6

t
/
s

1
4
0
.
3

t
/
s

CC-Synch

2
2
3
3
2
.
4

t
/
s

<
1
0
0

t
/
s

2
3
1
0
.
4

t
/
s

<
1
0
0

t
/
s

DSM-Synch

1
6
9
0
1
.
8

t
/
s

<
1
0
0

t
/
s

2
0
8
7
.
1

t
/
s

<
1
0
0

t
/
s

RCL

2
4
1
0
1
.
7

t
/
s

1
5
7
3
1
.
3

t
/
s

2
3
6
6
.
4

t
/
s

2
0
8
1
.
5

t
/
s

Order Status, 48 cl. Order Status, 384 cl. Stock Level, 48 cl. Stock Level, 384 cl.

Base

POSIX

Spinlock

MCS

MCS-TP

Flat Combining

CC-Synch

DSM-Synch

RCL

Order Status, 48 cl. Order Status, 384 cl. Stock Level, 48 cl. Stock Level, 384 cl.

Base

POSIX

Spinlock

MCS

MCS-TP

Flat Combining

CC-Synch

DSM-Synch

RCL

 1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Order Status, 48 cl. Order Status, 384 cl. Stock Level, 48 cl. Stock Level, 384 cl.

B
e

s
t

p
e

rf
o

rm
a

n
c
e

 r
e

la
tiv

e
 t

o
 b

a
s
e

 a
p

p
lic

a
tio

n

4
2
6
0
.
4

t
/
s

5
1
1
7
.
7

t
/
s

2
0
4
.
1

t
/
s

2
3
5
.
6

t
/
s

1
0
6
3
6
.
7

t
/
s

8
2
9
5
.
7

t
/
s

4
3
3
.
6

t
/
s

3
7
1
.
3

t
/
s

2
4
3
1
.
3

t
/
s

2
5
3
.
3

t
/
s

1
4
8
.
5

t
/
s

<
1
0
0

t
/
s

1
0
3
8
2
.
7

t
/
s

<
1
0
0

t
/
s

1
5
6
9
.
1

t
/
s

<
1
0
0

t
/
s

1
3
0
0
9
.
7

t
/
s

2
3
7
4
.
5

t
/
s

8
9
5
.
4

t
/
s

1
0
6
.
5

t
/
s

1
9
0
7
3
.
1

t
/
s

2
0
3
2
.
8

t
/
s

1
4
5
4
.
6

t
/
s

1
4
0
.
3

t
/
s

2
2
3
3
2
.
4

t
/
s

<
1
0
0

t
/
s

2
3
1
0
.
4

t
/
s

<
1
0
0

t
/
s

1
6
9
0
1
.
8

t
/
s

<
1
0
0

t
/
s

2
0
8
7
.
1

t
/
s

<
1
0
0

t
/
s

2
4
1
0
1
.
7

t
/
s

1
5
7
3
1
.
3

t
/
s

2
3
6
6
.
4

t
/
s

2
0
8
1
.
5

t
/
s

 1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Order Status, 48 cl. Order Status, 384 cl. Stock Level, 48 cl. Stock Level, 384 cl.

40.1% in CS (<tu)
2.4 L1 CMs

46.3% in CS (<tu)
2.4 L1 CMs

(f) Magnycours-48: Berkeley DB

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

Order Status, 48 cl. Order Status, 384 cl. Stock Level, 48 cl. Stock Level, 384 cl.

B
e

s
t

p
e

rf
o

rm
a

n
c
e

 r
e

la
tiv

e
 t

o
 b

a
s
e

 a
p

p
lic

a
tio

n

7
8
0
6
.
5

t
/
s

2
7
1
9
.
3

t
/
s

5
3
2
.
4

t
/
s

1
0
9
.
8

t
/
s

2
0
0
0
3
.
3

t
/
s

9
1
4
8
.
3

t
/
s

1
2
2
4
.
1

t
/
s

5
6
3
.
4

t
/
s

3
0
0
8
7
.
2

t
/
s

<
1
0
0

t
/
s

1
6
6
1
.
7

t
/
s

<
1
0
0

t
/
s

4
5
4
0
3
.
5

t
/
s

<
1
0
0

t
/
s

2
3
3
2
.
0

t
/
s

<
1
0
0

t
/
s

1
3
5
8
1
.
8

t
/
s

3
0
0
1
.
4

t
/
s

7
8
7
.
7

t
/
s

1
3
6
.
5

t
/
s

3
9
6
7
0
.
6

t
/
s

4
9
9
9
.
6

t
/
s

2
1
8
8
.
5

t
/
s

1
6
3
.
6

t
/
s

4
4
8
3
9
.
8

t
/
s

<
1
0
0

t
/
s

2
3
3
5
.
8

t
/
s

<
1
0
0

t
/
s

4
2
6
8
2
.
4

t
/
s

<
1
0
0

t
/
s

2
2
9
6
.
1

t
/
s

<
1
0
0

t
/
s

3
8
4
2
3
.
5

t
/
s

1
7
8
6
8
.
4

t
/
s

2
3
2
0
.
4

t
/
s

8
3
5
.
8

t
/
s

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

Order Status, 48 cl. Order Status, 384 cl. Stock Level, 48 cl. Stock Level, 384 cl.

76.4% in CS (<tu)
4.0 L1 CMs

87.1% in CS (>tu)
3.4 L1 CMs

(g) Niagara2-128: Berkeley DB
Note: in this figure, tl et tu stand for the lower and the upper threshold corresponding to each experiment.

Figure 5.7: Application performance overview

of time spent in critical sections increases or when the number of cache misses increases, the
performance improvement offered by RCL also increases. On Magnycours-48, the percentage of
time spent in critical sections is generally higher than on Niagara2-128 for applications that use
POSIX locks (i.e., all applications other than Berkeley DB). Again, this is due to the fact that on

73

CHAPTER 5. EVALUATION

Niagara2-128, as was explained in Section 2.5.3, the cost of communication is lower relative to its
sequential performance. Therefore, synchronization is less of a bottleneck. On Berkeley DB with
TpccOverBkDb, the percentage of time spent in critical sections is higher for Niagara2-128, but
since Berkeley DB uses non-POSIX locks, measurements of this metric by the profiler are not
reliable: the performance gains offered by RCL on Niagara2 for Berkeley DB are lower than on
Magnycours-48, which seems to indicate that Berkeley DB with TpccOverBkDb actually suffers
from more lock contention on Niagara2-128 than on Magnycours-48.

5.3.3 Performance of SPLASH-2 and Phoenix applications
This section focuses on the performance of the SPLASH-2 and Phoenix applications that were
selected by the profiler. The first paragraphs focus on the six selected experiments on Magnycours-
48, and the remaining paragraphs focus on the three selected experiments on Niagara2-128.

Magnycours-48. As shown on Figure 5.7a, on Magnycours-48, where all of the selected
experiments from SPLASH-2 and Phoenix 2 spend more time in critical sections than the upper
threshold, the performance gain for better lock algorithms, RCL in particular, increases with the
time spent in critical sections: this shows that the percentage of time spent in critical sections is a
good metric for selecting benchmarks. However, even though Matrix Multiply (Phoenix 2) spends
92.2% of its time in critical sections when using POSIX locks, its performance improvement with
RCL is similar to Linear Regression (Phoenix 2) which only spends 81.6% of its time in critical
sections. This comes from the fact that Matrix Multiply is intrinsically unable to scale for the
considered data set: even though the use of RCL reduces the amount of time spent in critical
sections to 1%, the best resulting speedup is only 6.3 times for 7 hardware threads.

On average, the basic spinlock performs similarly to the POSIX lock. MCS and Flat
Combining improve performance significantly, with Flat Combining being slightly more efficient
than MCS most of the time. CC-Synch and DSM-Synch consistently perform better than POSIX,
the basic spinlock, MCS and Flat Combining, and they both provide similar results as expected
on a cache-coherent machine. RCL performs significantly better than all other lock algorithms,
and the performance gain increases as the time in critical section increases except for Matrix
Multiply. The performance of lock algorithms in these applications is consistent with the results
from the microbenchmark, except for the basic spinlock which sometimes performs better than
the POSIX lock even though it always performed much worse in the microbenchmark.

Figure 5.8 shows detailed results for the selected SPLASH-2 and Phoenix 2 experiments
on Magnycours-48: for each lock algorithm on each benchmark, the speedup relative to the
single-threaded version is plotted as a function of the number of threads used. Since RCL loses
one hardware thread for the server, its performance is worse when only a few application threads
are used, but it catches up with other lock algorithms quickly (after 3 to 10 threads). The more
time experiments spend in critical sections, the earlier the unmodified version of the application
with POSIX locks collapes: String Match (Phoenix 2) spends 63.9% of its execution time in
critical sections and starts collapsing at 39 hardware threads, Raytrace/Balls4 (SPLASH-2)
spends 65.7% of its execution time in critical sections and starts collapsing at 32 hardware
threads, Linear Regression (Phoenix 2) spends 81.6% of its time in critical sections and starts
collapsing at 20 hardware threads, Radiosity (SPLASH-2) spends 87.7% of its time in critical
sections and starts collapsing at 15 hardware threads, and Raytrace/Car spends 90.2% of its
time in critical sections and starts collapsing at 8 hardware threads. An early collapse indicates
high contention, which shows that the profiler efficiently identifies highly-contended locks. The
higher the contention, the more using more efficient lock algorithms, RCL in particular, improves

74

5.3. APPLICATIONS

POSIX Spinlock MCS Flat Combining CC-Synch DSM-Synch RCL

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 6 12 18 24 30 36 42 47

S
p

e
e

d
u

p

threads

(a) Phoenix 2: String Match

 0

 5

 10

 15

 20

 25

 30

 35

 1 6 12 18 24 30 36 42 48

S
p

e
e

d
u

p

threads

(b) SPLASH-2: Raytrace/Balls4

POSIX Spinlock MCS Flat Combining CC-Synch DSM-Synch RCL

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 6 12 18 24 30 36 42 47

S
p

e
e

d
u

p

threads

(c) Phoenix 2: Linear Regression

 0

 5

 10

 15

 20

 25

 1 6 12 18 24 30 36 42 48

S
p

e
e

d
u

p

threads

(d) SPLASH-2: Radiosity

POSIX Spinlock MCS Flat Combining CC-Synch DSM-Synch RCL

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 6 12 18 24 30 36 42 48

S
p

e
e

d
u

p

threads

(e) SPLASH-2: Raytrace/Car

 0

 1

 2

 3

 4

 5

 6

 7

 1 6 12 18 24 30 36 42 47

S
p

e
e

d
u

p

threads

(f) Phoenix 2: Matrix Multiply

Figure 5.8: SPLASH-2 and Phoenix 2 speedup on Magnycours-48

performance (better speedup) and scalability (later collapse). Again, the only outlier is Matrix
Multiply (Phoenix 2) which spends 92.2% of its time in critical sections and yet starts collapsing
for all lock algorithms at around 20 hardware threads, which seems to indicate that it suffers from
another bottleneck which prevents all lock algorithms from improving performance beyond that
point. Even though the basic spinlock usually collapses before the POSIX lock, its performance
peak is sometimes higher than the POSIX lock’s. This shows that the basic spinlock can exhibit
good performance when the number of hardware threads is low because it has not saturated the
bus yet, which explains the performance gap of the basic spinlock with the microbenchmark: in

75

CHAPTER 5. EVALUATION

POSIX Spinlock MCS Flat Combining CC-Synch DSM-Synch RCL

 0

 10

 20

 30

 40

 50

 60

 70

 1 16 32 48 64 80 96 112 128

S
p

e
e

d
u

p

threads

(a) Raytrace/Balls4

 0

 5

 10

 15

 20

 25

 30

 35

 1 16 32 48 64 80 96 112 128
S

p
e

e
d

u
p

threads

(b) Radiosity

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 16 32 48 64 80 96 112 128

S
p

e
e

d
u

p

threads

(c) Raytrace/Car

Figure 5.9: SPLASH-2 speedup on Niagara2-128

Figure 5.2, the basic spinlock always performs poorly because the maximum number of hardware
threads is always used.

Niagara2-128. As seen in Figure 5.7d, on Niagara2-128, the performance of Raytrace/Balls4
(SPLASH-2) is not improved by using more efficient lock algorithms, and Figure 5.9a shows
that the performance of Raytrace/Balls4 never collapses. This is the expected behavior, because
Raytrace/Balls4 spends less time in critical sections than both thresholds: the profiler correctly
estimates that the experiment does not suffer from a level of lock contention that is high enough for
performance to be improved by using better lock algorithms. The fact that replacing POSIX locks
by other lock algorithms does not worsen performance indicates that even if a developer mistakenly
replaces a POSIX lock by a more efficient one, such as RCL, due to a false positive from the profiler,
no negative consequences are to be expected when it comes to performance. Moreover, the profiler
does not return any false negatives on the eighteen experiments that were profiled: although
these results are not shown in this thesis, the performance of other experiments whose time spent
in critical sections was below both thresholds was evaluated with all lock algorithms, and the
result was always the same: changing lock algorithms does not alter performance in that case.

Note that even though the performance of Raytrace/Balls4 on Figure 5.9a never collapses,
the slope of the curve decreases as the number of threads increases. This may indicate that the
application simply does not reach the point where adding more threads increases lock contention
enough that its performance collapses and using other lock algorithms improves performance: on
similar yet newer architectures with more hardware threads, one might expect that the application
would reach that point and that using more efficient lock algorithms would improve performance.

Radiosity (SPLASH-2) and Raytrace/Car (SPLASH-2) spend an amount of time in critical
sections that is between the two thresholds, therefore, using other lock algorithms than POSIX
should improve performance, but RCL may not improve performance more than the other lock
algorithms. That can be seen for Radiosity in Figure 5.9b: any other lock algorithm than POSIX
improves performance, but MCS, Flat Combining, CC-Synch, DSM-Synch and RCL all give
similar results. With Raytrace/Car, however, the POSIX lock is more efficient than all other lock
algorithms even though according to the profiler, performance should be improved by other lock
algorithms. As seen in Figure 5.9c, in that experiment, even though the POSIX lock collapses
first, other lock algorithms do not perform better because the application always collapses when
it reaches a speedup of 16x, which seems to indicate that another bottleneck than locks prevents
the application from scaling beyond that speedup.

76

5.3. APPLICATIONS

5.3.4 Performance of Memcached
This section focuses on the performance of Memcached, with Get and Set requests. As mentioned
earlier in section 5.3, with Memcached, the performance of RCL is only compared to that of
the POSIX lock, the basic spinlock, and MCS, because Memcached uses condition variables
and combining locks are not designed to use them. The POSIX library provides primitives to
handle condition variables with the POSIX lock, and using these primitives to provide support
for condition variables for the basic spinlock and MCS is straightforward. Figure 5.10 shows, for
all locks, the speedup of multithreaded Memcached relative to the single threaded-version, as a
function of the number of worker threads used. Figures 5.10a and 5.10c show these results on
Magnycours-48 for Get and Set requests, respectively. Similarly, Figures 5.10d and 5.10d show
these results on Niagara2-128 for Get and Set requests.

Magnycours-48. As seen in Figure 5.5, on Magnycours-48, Memcached/Get spends 79% of
its time in critical sections and improves performance by 1.80 times, which is consistent with the
performance improvements observed on SPLASH-2 and Phoenix in Figure 5.7b: Memcached/Get
spends more time in critical sections than Raytrace/Balls4 but less than Linear Regression, and
in these two experiments, RCL improves performance by 1.51 times and 1.86 times, respectively.
For Memcached/Set, RCL drastically improves performance, by 2.53 times, even though it only
spends 44.7% of its time in critical sections: this discrepancy is caused by the fact that in that
case, RCL does not only perform better because lock contention is high, it also increases locality.

Figure 5.11a shows the average number of cache misses inside critical sections (not counting
synchronization cache misses) in the original application and when RCL is used. All applications
other than Berkeley DB with TpccOverBkDB are run with their maximum number of threads
(h threads for SPLASH-2 and Phoenix 2, h/2 − 2 threads for Memcached), and for Berkeley
DB with TpccOverBkDB, one application thread per hardware thread is used. With RCL, the
number of cache misses is given per server for applications that use several RCL servers. The base
Memcached/Set application triggers a lot of cache misses (16.5) which slow down the execution
of the critical path, and RCL is able to improve locality, roughly dividing the number of L2 cache
misses by 3: after transformation, critical sections only trigger 5.7 cache misses on the RCL server.
The contended critical sections in Memcached/Set protect writes to the hashtable. With RCL,
large parts of the hashtable remain stored in the cache hierarchy of the server hardware thread,
hence why the number of cache misses drops and performance is vastly improved. However, as
seen in Figure 5.11, RCL does not always decrease the number of L2 cache misses significantly in
applications whose critical sections only trigger a few (< 5) cache misses because even though
it improves locality, RCL also adds cache misses for accessing context variables: a significant
amount of cache misses in critical sections seems to be needed for RCL to ensure better locality.

As seen in Figures 5.10a and and 5.10c, in both cases, RCL does not only improve performance,
it also improves scalability. In Memcached/Get, both the POSIX lock and the basic spinlock
start collapsing at around 11 hardware threads, MCS starts collapsing at around 16 hardware
threads, while RCL reaches a plateau from 18 hardware threads onwards. RCL is initially slower
than other lock algorithms due to the fact that it loses one hardware thread for the server, but
it reaches the performance of the POSIX lock, the basic spinlock and MCS at 6, 11 and 12
hardware threads respectively. In Memcached/Set, the POSIX lock, the basic spinlock and MCS
start collapsing at 4, 8 and 11 hardware threads respectively while RCL reaches a plateau at
around 14 hardware threads. RCL beats the performance of all other lock algorithms with only
5 hardware threads.

77

CHAPTER 5. EVALUATION

POSIX Spinlock MCS RCL

 1

 2

 3

 4

 5

 6

 7

 8

 1 6 12 18 22

S
p

e
e

d
u

p

threads

(a) Magnycours-48: Get

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 8 16 24 32 40 48 56 62

S
p

e
e

d
u

p

threads

(b) Niagara2-128: Get

POSIX Spinlock MCS RCL

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 6 12 18 22

S
p

e
e

d
u

p

threads

(c) Magnycours-48: Set

 0

 1

 2

 3

 4

 5

 1 8 16 24 32 40 48 56 62

S
p

e
e

d
u

p

threads

(d) Niagara2-128: Set

Figure 5.10: Memcached speedup

Niagara2-128. As seen in Figure 5.6, on Niagara2-128, Memcached/Get spends an amount of
time in critical sections that is between the lower and the upper threshold, which means that
using RCL should improve performance, but not necessarily more than other lock algorithms.
This is indeed what can be observed in Figure 5.7e: both the basic spinlock and RCL improve
performance, with a small advantage for RCL which might not be significant. However, as seen
on Figure 5.10b, even though RCL and the basic spinlock have similar peak performance, RCL
performs better when a large number of hardware threads is used: at 62 hardware threads, the
speedup of the application collapses to 3.3 times when the basic spinlock is used, whereas using
RCL makes it possible to maintain a speedup of 8.1 times.

Similarly to what was observed on Magnycours-48, for Memcached/Set, RCL improves
performance more than it should (1.3 times, better than other lock algorithms) given the
relatively low amount of time it spends in critical sections (20.2%). Again this is due to the
large number of cache misses per critical section for that experiment: 73.4 L1 cache misses.4
This number is more than halved when RCL is used: as seen on Figure 5.11b, with RCL, critical
sections only trigger 32.3 L1 cache misses with RCL because large parts of the hashtable remain
in the server’s cache hierarchy. Again, detailed results (see Figure 5.10d) show that using RCL
improves scalability as well as performance. As a side note, Figure 5.11b also shows that on

4This number might seem much higher than the number of cache misses for Memcached/Set on Magnycours-48,
but keep in mind that on Niagara2-128, L2 cache misses are measured instead of L1 cache misses. L1 cache misses
are triggered much more often than L2 cache misses because L1 caches are very small, and on Niagara2-128,
8 hardware threads share each L1 cache, which leads to frequent cache line evictions.

78

5.3. APPLICATIONS

RCL server
L2 CMs / CS

L2
C
M
s
in

ba
se

ap
p.

S1 S2

Radiosity 1.7 1.5
Raytrace / Car 0.6 1.0SPLASH-2
Raytrace / Balls4 1.4 1.0
Linear Regression 3.8 2.1
String Match 4.5 2.2Phoenix 2
Matrix Multiply 3.1 2.2
Get 2.1 3.0Memcached
Set 16.5 5.7

Berkeley DB Order Status 2.4 2.7 2.8
+ TPC-C Stock Level 2.4 2.6 2.7

(a) L2 cache misses on Magnycours-48

RCL server
L1 CMs / CS

L1
C
M
s
in

ba
se

ap
p.

S1 S2 S3

Radiosity 5.4 2.0
Raytrace / Car 4.6 4.1SPLASH-2
Raytrace / Balls4 3.8 3.0
Get 13.5 10.7Memcached
Set 73.4 32.3

Berkeley DB Order Status 4.0 2.1 2.8 3.1
+ TPC-C Stock Level 3.4 4.9 0.5

(b) L1 cache misses on Niagara2-128

Figure 5.11: Number of cache misses per critical section on the RCL server

Niagara2-128, locality is improved for all applications, even when the number of cache misses per
critical section is low.

5.3.5 Performance of Berkeley DB with TpccOverBkDb
As can be seen in Figures 5.5 and 5.6, using Berkeley DB with TpccOverBkDb is more complex
than using it with other applications because multiple locks are contended. Therefore, a
preliminary analysis is needed to decide how many servers to use and which server should handle
which locks. In Section 5.3.5.1, this analysis is performed in order to find an optimal configuration
for RCL. In Section 5.3.5.2, the benchmarks are run with this configuration and the results are
discussed. Since Berkeley DB with TpccOverBkDb is a benchmark that can use more client
threads there are than hardware threads on the machine, repeatedly yielding the processor in
busy-wait loops can be beneficial: in Section 5.3.5.3, this optimization is implemented for most of
the lock algorithms, including RCL. The influence of this change on the performance of Berkeley
DB with TpccOverBkDb is then discussed.

5.3.5.1 Experimental setup

A difficulty in transforming Berkeley DB for use with RCL is that the function call in the source
code that allocates the most used locks allocates eleven locks in total, and not all of them suffer
from high contention. The RCL runtime requires that for a given lock allocation site, all allocated
locks be implemented in the same way, and thus all eleven locks must be implemented as RCLs.
Using a single server to handle all locks would cause critical sections to be needlessly serialized,
and using eleven servers would waste computing power that could be used for client threads.
To prevent this, as explained in Chapter 4, the RCL runtime makes it possible to choose the
server where each lock will be dispatched. However, in order to choose the number of servers
used and to decide which locks will be handled by which server, the experiments must be run
once in order to gather statistics about the execution, which reveals which locks are the most
used. This analysis can either be performed with the profiler or with the RCL runtime itself
because the RCL runtime can provide statistics about each RCL server. The second option was
chosen in order to illustrate a use of the statistics provided by the RCL runtime.

79

CHAPTER 5. EVALUATION

The RCL runtime is able to provide statistics for each of its lock servers. The metrics it
measures are the following:

• Cache misses. The RCL server is able to measure the average number of cache misses
per critical section, either including synchronization costs (used for Figures 5.2 and 5.3) or
not (used for Figure 5.11, since the number of cache misses measured in the non-modified
applications are measured inside critical sections and do not include synchronization costs
either).

• Use rate. The use rate measures the server workload. It is defined as the total number of
executed critical sections in iterations where at least one critical section is executed, divided
by the number of client threads. Therefore, a use rate of 1.0 means that all elements of
the array contain pending critical section requests, whereas a low use rate means that the
server spends most of its time waiting for critical sections to execute. The reason why
iterations during which no critical sections are executed are ignored is that at the beginning
of an experiment, there can be a relatively long sequential initialization time during which
no critical sections are executed. This phase should not alter the results.

• False serialization rate. The false serialization rate is defined as the average number
of different locks that critical sections use during one active iteration of the server loop,
divided by the number of client threads. It measures the amount of false serialization, i.e.,
the needless serialization of independent critical sections that happens when one server
handles several locks.

• Other statistics are provided by the RCL runtime, such as the slow path rate which measures
how often the server uses the slow path as defined in Section 4.1.2.2, the number of times
the manager thread gets woken up, the number of times the is_alive flag was not set (see
Algorithm 11) and the total number of critical sections. These statistics can be useful for
debugging, but are not used in this section because they are not related to false sharing.

In order to find which locks are the most used in Berkeley DB with TpccOverBkDb, after
transformation, the experiment is run once with eleven RCL servers, each server handling one of
the locks that were found by the profiler. The experiment is run for both Order Status and Stock
Level requests on Magnycours-48 and Niagara2-128. The results are shown in Figure 5.12a. For
Order Status, on Magnycours-48, the four most used locks are L10, L3, L4 and L6, in that order.
On Niagara2-128, the four most used locks are L4, L3, L10, and L6. For Stock Level, the two
most used locks are L10 and L8 on Magnycours-48 and L8 and L10 on Niagara2-128, with all
other locks being much less used.5 Using this information, the five server configurations listed in
Figure 5.12b are constructed. The first and the last configurations put all locks on one server or
use one lock for each server, respectively. The three other configurations place the two, three and
four most used locks of the Order Status experiment on different servers in such a way that the
same configurations exhibit this characteristic on both machines. Other locks are distributed so
that all servers handle a similar number of locks. Additionally, configuration number 2 places the
two most used locks of the Stock Level experiment on two different servers for both machines,
with other locks being evenly distributed on both machines. Since, with Stock Level, two locks

5While the use rates differ slightly between Magnycours-48 and Niagara2-128, the lists of most used locks are
globally the same on both machines: only their order differ. The fact that the profiling results are quantitatively
similar on two machines with very different architectures could indicate that this profiling phase may not needed
for every new machine the application is run on.

80

5.3. APPLICATIONS

Use rate
L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1

Magnycours-48 1.4% 3.5% 1.4% 1.4% 1.5% 1.8% 1.6% 2.4% 2.6% 1.6% 1.6%
Order Status

Niagara2-128 0.7% 1.7% 0.7% 0.7% 0.7% 1.5% 0.9% 3.2% 2.7% 0.7% 0.7%
Magnycours-48 1.4% 5.5% 1.5% 6.7% 1.5% 1.5% 1.5% 1.5% 1.6% 1.6% 1.6%

Stock Level
Niagara2-128 0.7% 4.1% 0.7% 5.6% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7% 0.7%

(a) Use rate with one lock per hardware thread

Lock locations# srv. Server configuration
L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1

1 All locks on same server S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1
2 2 most cont. locks on 6= serv. (OS & SL) S2 S2 S2 S1 S2 S2 S1 S1 S1 S1 S1
3 3 most cont. locks on 6= serv. (OS) S3 S3 S3 S2 S2 S2 S1 S2 S1 S1 S1
4 4 most cont. locks on 6= serv. (OS) S4 S4 S3 S3 S2 S3 S2 S2 S1 S1 S1

11 One lock per server S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1

(b) RCL server configurations

Figure 5.12: Server configurations for Berkeley DB with TpccOverBkDB

are used much more than all the other ones and the other ones are all equally used, there is no
need to use a configuration for three or four servers for that type of request.

The experiments are run again for each configuration on Magnycours-48 and Niagara2-
128, with one client thread per hardware thread. The results are shown in Figure 5.13. The
configuration that gives the maximum number of transactions per second is considered optimal
and is used for the performance evaluation in Sections 5.3.5.2 and 5.3.5.3.

Magnycours-48. Results for Magnycours-48 are shown in Figure 5.13a. For Order Status,
when using only one server, the false serialization rate is high (66.3%), which indicates that
many independent critical sections are needlessly executed in mutual exclusion. Adding more
servers decreases the false serialization rate: with two, three, four and eleven servers, the false
serialization rate drops to 34.1%, 10.6%, 2.5% and 0.0% respectively. Similarly, the use rate
drops from 22.7% to 7.9%, 4.0%, 3.2% and 1.9%. This decrease is not only due to the load being
shared between servers: going from one server to two servers divides the use rate by more than 2
(2.87), because the execution is faster with two servers (+21%) than with one server due to the
decreased amount of false serialization: with one server, false serialization makes the server more
busy which leads to more clients waiting for their requests to be executed. Adding more servers
reduces false serialization but it also wastes hardware threads that could be used for clients,
which is why the peak performance is reached for two servers only. Using three or four servers
provides similar performance, which indicates that even if a developer does not perform a deep
contention analysis and mistakenly uses a few more servers than needed, the resulting overhead
should be low.

For Stock Level, with only one server, both the false serialization rate and the use rate are
high (46.4% and 58.5%, respectively). Using two servers is enough to make the false serialization
rate drop to almost zero (0.4%). The use rate is divided by 6 which shows that much fewer clients
are waiting for their critical section to be executed with two servers. Unsurprisingly, the peak
performance is obtained for two servers, but interestingly, using eleven servers is only slightly
slower than using two servers (< 3% performance drop), which shows again that using more
servers than needed does not decrease performance significantly: using trial and error to try to
decrease the false serialization rate should be sufficient for developers to obtain good results.

81

CHAPTER 5. EVALUATION

Use rate False serialization rate# srv. Tr. / s
S4 S3 S2 S1 Avg. S4 S3 S2 S1 Avg.

1 19,357 22.7% 22.7% 66.3% 66.3%
2 23,556 7.3% 8.4% 7.9% 23.9% 44.2% 34.1%
3 23,057 4.8% 3.8% 3.4% 4.0% 0.0% 21.2% 10.7% 10.6%
4 23,432 4.7% 2.1% 3.1% 3.0% 3.2% 0.0% 0.0% 10.1% 0.0% 2.5%

Order Status

11 21,706 <4.0% for all 11 servers 1.9% 0.0% for all 11 servers 0.0%
1 1,905 58.5% 58.5% 46.4% 46.4%
2 2,351 9.4% 11.5% 10.5% 0.1% 0.0% 0.0%Stock Level

11 2,286 <7.0% for all 11 servers 2.4% 0.0% for all 11 servers 0.0%

(a) RCL server statistics on Magnycours-48

Use rate False serialization rate# srv. Tr. / s
S4 S3 S2 S1 Avg. S4 S3 S2 S1 Avg.

1 11,100 20.3% 20.3% 45.1% 45.1%
2 18,551 1.8% 2.0% 1.9% 18.4% 35.3% 26.9%
3 23,925 1.8% 2.2% 1.7% 1.9% 0.0% 26.8% 12.7% 13.1%
4 23,319 1.7% 1.1% 2.4% 1.8% 1.8% 0.0% 0.0% 15.9% 0.0% 4.0%

Order Status

11 22,479 <4.0 for all 11 servers 1.3% 0.0% for all 11 servers 0.0%
1 844 10.9% 10.9% 44.2% 44.2%
2 946 3.8% 4.1% 3.9% 0.9% 0.0% 0.4%Stock Level

11 939 <6.0 for all 11 servers 2.4% 0.0% for all 11 servers 0.0%

(b) RCL server statistics on Niagara2-128

Figure 5.13: Impact of false serialization with RCL (Berkeley DB with TpccOverBkDb)

Niagara2-128. Results for Niagara2-128 are shown in Figure 5.13b. Again, increasing the num-
ber of servers decreases the false serialization rate and the use rate. However, since Niagara2-128
has more hardware threads than Magnycours-48, using more servers wastes relatively less CPU
resources for the client threads, and the fact that a degraded version of the RCL runtime is used
for Niagara2-128 makes false serialization more costly. Because of these two factors, more servers
may be needed to reach peak performance: for Order Status, it is reached for three servers instead
of two, with a much lower use rate (13.1%) than for the peak configuration of Magnycours-48
(34.1%). Similarly to what was observed on Magnycours-48, for Stock Level, using two servers is
enough to remove almost all false serialization. Moreover, adding more servers than needed only
slightly decreases performance: using eleven servers instead of the best configuration only leads
to overhead of 6.0% for Order Status, and 0.7% for Stock Level.

5.3.5.2 Performance analysis

Figure 5.14 shows the performance of Berkeley DB with TpccOverBkDb, using the server
configurations chosen in the previous section. In these experiments, each client uses its own
thread, and up to 384 clients are run concurrently, which is more than the number of hardware
threads of both machines.

Magnycours-48. The results for Magnycours-48 are shown in Figures 5.14a and 5.14c. For
both Order Status and Stock Level requests, MCS collapses when more client threads are used
than hardware threads because of the convoy effect described in Section 3.5. MCS-TP, which as
engineered to prevent convoys, does not suffer from this issue but its peak performance is much
lower than that of MCS (14.3K transactions per second instead of 21.7K for Order Status, 0.9K
transactions per second instead of 1.9K for Stock Level). CC-Synch and DSM-Synch exhibit
good peak performance, but these lock algorithms also collapse rapidly after hm48 = 48 client

82

5.3. APPLICATIONS

POSIX
Original

Spinlock
MCS

MCS-TP
 Flat Combining

CC-Synch
DSM-Synch

RCL

 100

 5,000

 10,000

 15,000

 20,000

 25,000

 1 48 96 128 256 384

G
lo

b
a

l #
 r

e
q

u
e

s
ts

 /
 s

e
c
o

n
d

clients

(a) Magnycours-48: Order Status

100

10,000

20,000

30,000

40,000

50,000

60,000

 1 48 96 128 256 384

G
lo

b
a

l #
 r

e
q

u
e

s
ts

 /
 s

e
c
o

n
d

clients

(b) Niagara2-128: Order Status

POSIX
Original

Spinlock
MCS

MCS-TP
 Flat Combining

CC-Synch
DSM-Synch

RCL

 100

 500

 1,000

 1,500

 2,000

 2,500

 1 48 96 128 256 384

G
lo

b
a

l #
 r

e
q

u
e

s
ts

 /
 s

e
c
o

n
d

clients

(c) Magnycours-48: Stock Level

100

500

1,000

1,500

2,000

2,500

 1 48 96 128 256 384

G
lo

b
a

l #
 r

e
q

u
e

s
ts

 /
 s

e
c
o

n
d

clients

(d) Niagara2-128: Stock Level

Figure 5.14: Berkeley DB with TpccOverBkDb speedup

threads, i.e., when there are more client threads than hardware threads, which seems to indicate
that they suffer from the convoy effect. The basic spinlock performs very poorly except when the
number of client threads is low. At 384 client threads, only RCL, the POSIX lock, Berkeley DB’s
custom lock algorithm (noted “Original” in the figures), Flat Combining and MCS-TP have not
collapsed. Interestingly, the POSIX lock is faster than Berkeley DB’s custom lock, which may
be due to the fact that the lock implementation of Berkeley DB is old and seems to have been
designed for SPARC architectures. RCL always performs better than all other lock algorithms:
it has the best peak performance (24.1K transactions per seconds for Order Status and 2.4K for
Stock Level), and at 384 client threads, for Order Status (resp. Stock Level), using RCL makes
the experiment’s throughput 89.6% (resp. 460.7%) higher than with the next best lock algorithm
(POSIX), and 207.3% (resp. 783.4%) higher than the base application.

Niagara2-128. The results for Niagara2-128 are shown in Figures 5.14c and 5.14d. For Order
Status requests, RCL has a lower peak performance (39.7K transactions per second) than
CC-Synch (50.2K transactions per second), DSM-Synch (47.4K transactions per second), MCS
(45.4K transactions per second), and Flat Combining (41.7K transactions per second). For Stock
Level requests, RCL’s peak throughput is similar to CC-Synch’s, DSM-Synch’s and MCS-TP’s.
However, MCS, CC-Synch and DSM-Synch collapse rapidly after hn128 = 128 client threads, i.e.,
when there are more client threads than hardware threads, which may be due to the convoy
effect. The basic spinlock performs poorly except when the number of client threads is low.
Moreover, when there are more client threads than hardware threads, RCL performs better than

83

CHAPTER 5. EVALUATION

all other lock algorithms: at 384 client threads, for Order Status (resp. Stock Level), using RCL
makes the throughput of the experiment 95.3% (resp. 48.3%) higher than with the next best
lock algorithm (POSIX), and 557.3% higher (resp. 761.4%) than the base application.

5.3.5.3 Yielding the processor in busy-wait loops

As was explained in Section 3.5, when more application threads are running than there are
hardware threads on the machine, lock algorithms that use busy-waiting other than RCL can get
preempted while they execute critical sections, with application threads waking up and wasting
their time quantum busy-waiting: this can lead to slowdowns and convoys. RCL, on the other
hand, always makes progress because its server threads run undisturbed on dedicated hardware
threads. However, one could suspect that the experiments from Section 5.3.5.2 are unfair for
other lock algorithms than RCL, because a lot of these lock algorithms could simply repeatedly
yield the processor in their busy-wait loops (i.e., replace the PAUSE instruction in busy-wait loops
with a call to the yield() function). This technique prevents waiting threads from needlessly
wasting CPU resources that could be used by a thread that makes actual progress. In order to
investigate the consequences of this optimization, the experiment is run again with modified
versions of the lock algorithms that repeatedly yield the processor in busy-wait loops.

Here is how the lock algorithms are modified. The POSIX lock and Berkeley DB’s custom
lock are not altered because they use sleeping, which already yields the processor. The basic
spinlock is not altered either since making it yield the processor in busy-wait loops would make it
behave like an inefficient blocking lock. For non-combining locks, application threads yield when
they are busy-waiting on their synchronization variable: for MCS, this is done by replacing the
pause() function call at line 13 of Algorithm 3 with a call to yield(), and for MCS-TP a call to
yield() is inserted between lines 32 and 33 of Algorithm 4 to make sure that threads yield the
processor at each iteration of the busy-wait loop. For combining locks and RCL, client threads
repeatedly yield the processor when they are waiting for the combiner or server to execute their
critical section: this is done by replacing the call to pause() by a call to yield() (i) at line 16
of Algorithm 6 for Flat Combining, (ii) at line 15 of Algorithm 7 for CC-Synch, (iii) at line 35 of
Algorithm 8 for DSM-Synch, and (iv) at line 8 of Algorithm 9 for RCL.

Magnycours-48. Results for Magnycours-48 are shown in Figures 5.15a and 5.15c. Yielding
the processor in busy-wait loops reduces the collapse of MCS, CC-Synch and DSM-Synch. It
greatly improves the performance of Flat Combining. With yielding, Flat Combining is much
more efficient than CC-Synch and DSM-Synch when there are more client threads than hardware
threads because Flat Combining always elects a server thread that is running, whereas CC-Synch
and DSM-Synch can hand over the role of the server to a descheduled thread, which significantly
slows down the critical path. With Stock Level however, CC-Synch and DSM-Synch have a
better peak performance than Flat Combining. RCL is still more efficient than all other lock
algorithms for any number of clients. Yielding the processor improves the throughput with RCL
when a lot of clients are used (+57.3% at 384 threads with Order Status, +5.0% at 384 threads
for Stock Level), because clients are able to supply more concurrent requests to the server. This
effect is more visible with Order Status than for Stock Level because Order Status has a much
higher throughput. At 384 client threads, for Order Status (resp. Stock Level), using RCL makes
the experiment’s throughput 3.4% (resp. 26.0%) higher than with the next best lock algorithm
(Flat Combining), and 383.6% (resp. 826.9%) higher than the base application.

84

5.3. APPLICATIONS

POSIX
Original

Spinlock
MCS/Y

MCS-TP/Y
 Flat Combining/Y

CC-Synch/Y
 DSM-Synch/Y

RCL/Y

 100

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

 1 48 96 128 256 384

G
lo

b
a

l #
 r

e
q

u
e

s
ts

 /
 s

e
c
o

n
d

clients

(a) Magnycours-48: Order Status

100

10,000

20,000

30,000

40,000

 1 48 96 128 256 384

G
lo

b
a

l #
 r

e
q

u
e

s
ts

 /
 s

e
c
o

n
d

clients

(b) Niagara2-128: Order Status

POSIX
Original

Spinlock
MCS/Y

MCS-TP/Y
 Flat Combining/Y

CC-Synch/Y
 DSM-Synch/Y

RCL/Y

 100

 500

 1,000

 1,500

 2,000

 2,500

 1 48 96 128 256 384

G
lo

b
a

l #
 r

e
q

u
e

s
ts

 /
 s

e
c
o

n
d

clients

(c) Magnycours-48: Stock Level

100

500

1,000

1,500

2,000

2,500

 1 48 96 128 256 384

G
lo

b
a

l #
 r

e
q

u
e

s
ts

 /
 s

e
c
o

n
d

clients

(d) Niagara2-128: Stock Level

Figure 5.15: Berkeley DB with TpccOverBkDb speedup, using sleeping

Niagara2-128. On Niagara2-128, yielding the processor in busy-wait loops alleviates the col-
lapse of MCS, CC-Synch and DSM-Synch, but it also reduces their peak performance significantly.
Yielding improves throughput in Order Status when a lot of clients are used (+20.6% at 384
threads). RCL has the best peak performance (equal to that of Flat Combining) and the best
performance at 384 threads of all of the lock algorithms, even when they yield the processor
in busy-wait loops. At 384 client threads, for Order Status (resp. Stock Level), using RCL
makes the experiment’s throughput 100.0% (resp. 562.6%) higher than with the next altered
lock algorithm (Flat Combining), and 692.7% higher (resp. 564.2%) than the base application.

To conclude this section, even though yielding the processor in busy-wait loops can improve
the performance of some lock algorithms when applications use more software threads than there
are hardware threads, it also improves the performance of RCL at high throughput, and RCL
still performs better than other lock algorithms with this optimization.

Note on the evaluation from the USENIX ATC paper. The reader may have noticed
that, while being quantitatively similar, some of the results shown in this thesis differ slightly
from those published in the USENIX ATC paper [71]. This is due to several factors. First,
Magnycours-48 is a different machine from the one that was used for the evaluation in the
USENIX ATC paper, even though it has similar characteristics. Moreover, the software it uses
(kernel options, library versions, environment, etc.) may not be exactly identical. Second, while

85

CHAPTER 5. EVALUATION

porting the codebase to Solaris, the profiler and some of the benchmarks have been optimized.
Here is a non-exhaustive list of modifications that were made to the codebase:

• The critical sections of the microbenchmark have been simplified since the original RCL
paper: instead of using a complex function that is able to access any number of cache lines
while using tricks to avoid prefetching, two highly optimized functions that directly access
either one or five cache lines are now used. Moreover, cycles are now measured by reading
the timestamp counter directly via assembly code, instead of using PAPI, similarly to what
has been done with the profiler and explained in Section 5.3.1.

• The profiler has been improved, as was explained in Section 5.3.1.

• When using Memcached, the hashtable is preloaded with more entries (30, 000 instead of
10, 000) when using Get requests. Preloading the hashtable with more entries puts more
pressure on locks because the critical sections that protect the hashtable lookup last longer.
While RCL significantly improves performance with 10, 000 entries, the performance gain
is higher when more entries are used and becomes stable for 30, 000 entries onwards. Since
it is not uncommon for a Memcached hashtable to contain 30, 000 entries or more, this
value was chosen for the new evaluation.

• Finally, a bug was found in the Berkeley DB experiment. The size of a pool of locks had to
be increased: when the throughput was high (many clients with a fast lock), some requests
could fail because the large number of concurrent requests could deplete the lock pool.
Fortunately, this bug only affected a few data points for the most efficient lock algorithms
and was mostly detrimental to RCL. Additionally, the way throughput is measured was
slightly modified: instead of averaging the throughputs per thread (which was the only
information given by the benchmark), the benchmark was modified to measure the global
throughput, which is more precise and may alter the results slightly. Finally the results
shown in Figure 5.14c may appear quantitatively different from the Berkeley DB graph
from Figure 11 of the USENIX ATC paper, but this is simply due to the fact that the new
graphs show the global throughput, instead of the average throughput per thread.

Both versions of the codebase are publicly available online. They include the the RCL runtime,
the Liblock, the profiler, the reengineering, the as well as the evaluated applications with the
scripts used for the evaluation. The download URL can be found in Chapter 6.

5.4 Conclusion
Section 5.2 has shown that on both Magnycours-48 and Niagara2-128, RCL performs better than
other lock algorithms on a custom microbenchmark that generates lock contention: it collapses
at a higher contention than other lock algorithms and it performs better at maximum contention.

As seen in Section 5.3, using the time spent in critical sections as a metric to identify when a
legacy application can benefit from RCL is an efficient criterion: out of the thirty-eight profiled
experiments that use POSIX locks (on each machine: ten experiments from SPLASH-2, seven
from Phoenix 2, and two for Memcached), only two false negatives were returned (Memcached/Set
on each machine), but using the number of cache misses as a secondary metric helped detecting
these false negatives. Only one false positive was found: Raytrace/Car on Niagara2, for which
POSIX locks were more efficient than all other lock algorithms even though the experiment
spends more time in critical sections than both thresholds.

86

5.4. CONCLUSION

In most cases, when the time spent in critical sections is high or when critical sections
have poor locality, RCL is more efficient than other lock algorithms: it improves both peak
performance and scalability, even compared to state-of-the-art lock algorithms like CC-Synch and
DSM-Synch. In particular, when a large number of application threads run or a lower number of
hardware threads, RCL performs very well because its threads that execute critical sections are
never preempted by application threads. A typical technique used to improve the performance of
lock algorithms in that case is to make locks yield the processor instead of busy-waiting, but
RCL still largely outperforms other lock algorithms when this optimization is used.

One drawback of RCL is that when several locks are contended, profiling the application
is needed in order to find optimal repartition of locks on servers. However, as shown in
Section 5.3.5.1, using trial and error in order to minimize the false serialization rate is sufficient
to obtain near-optimal performance.

87

Chapter 6

Conclusion

This thesis has presented RCL, a novel locking technique that focuses on both reducing lock
acquisition time and improving the execution speed of critical sections through increased data
locality. The key idea is to go one step further than combining locks, and to dedicate hardware
threads for the execution of critical sections: since current multicore architectures have dozens
of hardware threads at their disposal that cannot be fully exploited because applications lack
scalability, dedicating some of these hardware threads for a specific task such as serving critical
sections can only improve their performance. RCL takes the form of a runtime library for Linux
and Solaris that supports x86 and SPARC architectures. In order to ease the reengineering
of legacy applications, RCL proposes a profiler as well as a methodology for detecting highly
contended locks and locks whose critical sections suffer from poor data locality, since these two
kinds of locks can generally benefit from RCL. Once these locks have been identified, RCL can
be used with a minimal amount of work, thanks to a reengineering that encapsulates critical
sections into functions: this tool makes RCL as well as combining locks easily usable in legacy
applications.

RCL is evaluated on the applications from the SPLASH-2 and Phoenix 2 benchmark suites,
Memcached, and Berkeley DB with a TPC-C client. Two machines are used in the evaluation:
Magnycours-48, an x86 machine that runs Linux with four AMD Opteron processors and
48 hardware threads, and Niagara2-128, a SPARC machine that runs Solaris with two Sun
UltraSPARC T2+ processors and 128 hardware threads. The profiler efficiently finds locks
that can benefit from RCL: out of thirty-eight experiments in total, the profiler only returns
one false positive. Performance evaluations show that on both machines, when applications
suffer from high contention or poor data locality in critical sections, RCL improves both peak
performance and scalability: for instance, Memcached with Set requests on Magnycours-48
(resp. Niagara2-128) is 2.5 times (resp. 1.3 times) faster with RCL than it is with POSIX locks,
and it scales up to 19 hardware threads with RCL threads instead of only 3 hardware threads
for POSIX locks. RCL even offers significant performance and scalability gains over the most
recent state-of-the-art combining locks: for instance, on Magnycours-481, SPLASH-2’s Raytrace
is up to 37.3% (resp. 36.7%) faster with RCL than with CC-Synch (resp. DSM-Synch), and
it scales up to 23 hardware threads instead of 15 (resp. 18) hardware threads for CC-Synch
(resp. DSM-Synch). Furthermore, in contrast with combining locks, RCL performs very well
when more application threads are used than there are hardware threads on the machine: for
instance, on Berkeley DB with the TPC-C client, Stock Level requests and 384 client threads,

1Raytrace does not suffer from high contention or poor data locality in critical sections on Niagara2-128.

89

CHAPTER 6. CONCLUSION

RCL makes it possible to reach a throughput of more than 2, 000 (resp. 800) requests per second
on Magnycours-48 (resp. Niagara2-128), while the throughput collapses to less than 10 requests
per second with CC-Synch and DSM-Synch. Yielding the processor in busy-wait loops alleviates
the collapse of CC-Synch and DSM-Synch on Magnycours-48, but even with this optimization, the
throughput of Berkeley DB is 4.5 times (resp. 5.1 times) higher with RCL than with CC-Synch
(resp. DSM-Synch) in the same experiment. The reason why RCL performs well when there are
more application threads than hardware threads is that its server threads never get preempted:
the server always makes progress along the critical path.

Future research directions. In order to further improve the performance of RCL, four
research directions could be explored. First, an adaptive RCL runtime could be designed. Such
a runtime would (i) dynamically switch between locking strategies, so as to dedicate a server
hardware thread only when a lock is contented and (ii) migrate locks between multiple servers, in
order to dynamically balance the load and avoid false serialization. One of the challenges would
be to implement low-overhead runtime profiling and migration strategies. Second, a hierarchical
version of RCL could be designed, possibly using one transient server per cluster of hardware
threads, i.e., a group of hardware threads that is located either on a single die, CPU, or NUMA
node. Lock Cohorting [34] could serve as a basis to this approach, since it makes it possible to
build hierarchical locks out of non-hierarchical locks. The performance of a hierarchical version
of RCL could be compared to existing hierarchical locks, such as HBO [90], H-CLH [73], and
hierarchical locks created by Dice et al. thanks to Lock Cohorting. Third, a modified RCL
algorithm for real-time systems that supports thread priorities could be written. Brandenburg [16]
has started this work: in a paper published at RTAS ’13 that cites the RCL USENIX ATC paper,
he compares the performance of real-time locking protocols for partitioned fixed-priority (P-FP)
scheduling, and his Distributed FIFO Locking Protocol (DFLP) resembles RCL since it uses a
designated synchronization processor for executing critical sections. However, like combining
locks, it uses a FIFO queue for pending requests instead of an array. Finally, the last obstacle
to optimal performance with RCL is that each time a server executes a critical section, it has
to signal the corresponding client thread that its critical section has been executed. This is done
by resetting a variable in the client’s request mailbox, and writing to that mailbox may block
the execution of the server because it has to fetch the cache line that holds the variable from
the client in write mode. Implementing hardware support for allowing to always run this store
operation in the background, while the server keeps executing critical sections, would completely
eliminate all synchronization on the critical path and therefore allow RCL to reach optimal speed.

Perspectives. The evolution of CPUs goes through different phases. After an initial phase
during which CPU manufacturers were able to steadily increase clock frequency for decades
in order to improve sequential performance, a second phase started about fifteen years ago,
with the emergence of multicore computing that forced application developers to make their
applications exploit parallelism. Nowadays, as CPUs offer always more hardware threads, as
memory hierarchies become always more complex, as inter-core connections become network-like,
and as parallel algorithms that become more and more refined to try to exploit the newly offered
processing power, CPU manufacturing is entering a third phase. Two major evolutions are on
the brink of radically changing once more the way applications are designed: hardware support
for transactional memory and the rise of non-cache-coherent architectures.

Transactional memory has been proposed as an alternative to locking several decades ago [61,
54, 98], with the promise to greatly simplify the conception of parallel algorithms, by removing
issues that are inherent to locks such as deadlocks, livelocks and priority inversions. As applications

90

use more and more complex fine-grained locking schemes that lead developers to introduce various
concurrency bugs in their applications, using transactional memory is becoming more and more
appealing on modern multicore architectures. However, due to the lack of performance of
software implementations and a lack of hardware support until very recently, using transactional
memory is still rare in real-world applications, and locks are still the most used synchronization
primitive. Things may change with the latest generation of x86 Intel processors, codenamed
Haswell, since these processors come with Transactional Synchronization Extensions (TSX), i.e.,
hardware support for transactional memory. The fact that hardware transactional memory is now
supported on widely-available consumer CPUs may lead it to supplant locking in the near future.
In this context, applying the key concepts that make RCL so efficient at synchronization and
locality will have to be investigated in the context of transactional memory. Hassan et al. [47], in a
paper published at IPDPS ’14, have started this work, by proposing a new software transactional
memory algorithm that executes commit and invalidation routines on dedicated remote server
threads. Like RCL, they use cache-aligned communication between the client and server threads.
The efficient implementation they propose for their algorithm, RInval, uses RCL for locks. The
next step will be to produce a similar algorithm for hardware transactional memory.

Finally, as explained in Section 2.3.1.3, the overhead of the cache-coherence protocol becomes
worse when the number of cores increases. In the future, architectures will resemble more and more
distributed systems, in which hundreds, or thousands of cores, will communicate over a complex,
non-uniform network. Each core will own its own caches and memory banks, with no global
view of the whole memory: message-passing will have to be used for all communication between
threads. In this context, RCL is an interesting approach to locking, because it is reminiscent of
the way mutual exclusion is generally handled in distributed systems: a single server is dedicated
to the execution of work that must be executed sequentially. It would be interesting to analyze
how well RCL performs on such architectures. Petrovic̀ et al. [88] have started this analysis on
partially non-cache-coherent architectures: in a paper published at PPoPP ’14, they propose
a universal construction inspired from RCL and combining locks that dedicates servers to the
execution of critical sections on partially non-cache-coherent architectures. They show that this
approach outperforms combining locks on Tilera’s TILE-Gx partially non-cache-coherent CPUs.
Analyzing the performance of RCL on fully non-cache-coherent CPUs is the next step.

Later works that cite RCL. Following the publications that presented RCL (in USENIX
ATC ’12 [71] and CFSE ’8 [69], as well as the INRIA research report [72], the EuroSys 2011
poster and the SOSP ’11 WiP session abstract), RCL has been cited by several other papers.
As was mentioned in the previous paragraphs, (i) Brandenburg [16], in a paper published at
RTAS ’13, compares the performance of real-time locking protocols for partitioned fixed-priority
(P-FP) scheduling and cites RCL as an example of a distributed locking protocol: the DFLP
algorithm they use is reminiscent of RCL, (ii) Hassan et al. [47], in a paper published at
IPDPS ’14, propose a new algorithm for software transactional memories that executes commit
and invalidation routines on dedicated remote server threads, with an implementation that uses
RCL internally, and (iii) Petrovic̀ et al. [88], in a paper published at PPoPP ’14, propose a
universal construction inspired from RCL and combining locks that dedicates servers to the
execution of critical sections on partially non-cache-coherent architectures. Pusukuri et al. [89], in
a paper also published at PPoPP ’14, propose to migrate threads across multicore architectures
so that threads seeking locks are more likely to find them on the same core, which is similar to
RCL in that it improves data locality of critical sections. David et al. [30], in a paper published
at SOSP ’13, present an exhaustive study of synchronization that discusses RCL among other

91

CHAPTER 6. CONCLUSION

lock mechanisms. Gidra et al. [44], in a paper published at ASPLOS ’13, study the scalability of
stop-the-world garbage collectors on multicore architectures and cite the USENIX ATC RCL
paper as an example of a study that shows that synchronization is a bottleneck on architectures
with a large number of cores. RCL has also been cited in papers that were published (i) in
conferences such as OPODIS ’13 [21], Euro-Par ’13 [97], CLUSTER ’13 [3], ECRTS ’13 [20],
and SAMOS ’14 [84]; (ii) in journals [23, 19]; (iii) in workshops [36, 46]; and (iv) as technical
reports [109, 29]. Additionally, some articles published online cite RCL, such as Dmitry Vyukov’s
article about combiner/aggregator synchronization primitives from Intel’s Developer Zone [108].

Availability. The implementation of the RCL runtime, the Liblock, the profiler, the reengi-
neering, as well as the test scripts and results are available at the following URL:
http://rclrepository.gforge.inria.fr

92

Appendix A

French summary of the thesis
Synthèse du rapport de thèse en français

Following the rules of the Université Pierre et Marie Curie, this appendix is a short summary
of the thesis, written in French. Afin de suivre les règles de l’université Pierre et Marie Curie,
cette annexe contient une synthèse du rapport de thèse en français.

Résumé
Le passage à l’échelle des applications multi-fil sur les systèmes multi-cœur actuels est limité
par la performance des algorithmes de verrou, à cause des coûts d’accès à la mémoire sous forte
congestion et des défauts de cache. La contribution principale présentée dans cette thèse est
un nouvel algorithme, Remote Core Locking (RCL), qui a pour objectif d’améliorer la vitesse
d’exécution des sections critiques des applications patrimoniales sur les architectures multi-cœur.
L’idée de RCL est de remplacer les acquisitions de verrou par des appels de fonction distants
(RPC) optimisés vers un fil d’exécution matériel dédié appelé serveur. RCL réduit l’effondrement
des performances observé avec d’autres algorithmes de verrou lorsque de nombreux fils d’exécution
essaient d’obtenir un verrou de façon concurrente, et supprime le besoin de transférer les données
partagées protégées par le verrou vers le fil d’exécution matériel qui l’acquiert car ces données
peuvent souvent demeurer dans les caches du serveur.

D’autres contributions sont présentées dans cette thèse, notamment un profiler permettant
d’identifier les verrous qui sont des goulots d’étranglement dans les applications multi-fil et
qui peuvent par conséquent être remplacés par RCL afin d’améliorer les performances, ainsi
qu’un outil de réécriture de code développé avec l’aide de Julia Lawall. Cet outil transforme
les acquisitions de verrou POSIX en acquisitions RCL. L’évaluation de RCL a porté sur dix-
huit applications : les neuf applications des benchmarks SPLASH-2, les sept applications des
benchmarks Phoenix 2, Memcached, ainsi que Berkeley DB avec un client TPC-C. Huit de ces
applications sont incapables de passer à l’échelle à cause de leurs verrous et leur performance
est améliorée par RCL sur une machine x86 avec quatre processeurs AMD Opteron et 48 fils
d’exécution matériels. Utiliser RCL permet de multiplier les performances par 2.5 par rapport
aux verrous POSIX sur Memcached, et par 11.6 fois sur Berkeley DB avec le client TPC-C. Sur

93

APPENDIX A. FRENCH SUMMARY OF THE THESIS

une machine SPARC avec deux processeurs Sun Ultrasparc T2+ et 128 fils d’exécution matériels,
les performances de trois applications sont améliorées par RCL : les performances sont multipliées
par 1.3 par rapport aux verrous POSIX sur Memcached et par 7.9 fois sur Berkeley DB avec le
client TPC-C.

Mots-clé. Multicœur, synchronisation, verrou, combining, RPC, attente active, congestion
mémoire, profiling, transformation de code.

Contexte
Ce document présente les principaux travaux de recherche de Jean-Pierre Lozi, conduits au
sein des équipes Regal, puis Whisper, au Laboratoire d’Informatique de Paris 6 (LIP6), en vue
d’obtenir le titre de Docteur en Informatique de l’école doctorale “École Doctorale Informatique,
Télécommunications et Électronique” (EDITE) de Paris. Les travaux de recherche présentés
dans ce document ont été encadrés par Gilles Muller et Gaël Thomas (LIP6/INRIA). Ces
travaux ont permis les publications suivantes, à une conférence française ainsi qu’à une conférence
internationale :

• Le Remote Core Lock (RCL) : une nouvelle technique de verrouillage pour les
architectures multi-cœur. Jean-Pierre Lozi. 8ème Conférence Française en Systemes
d’Exploitation (CFSE ’8). Saint-Malo, France, 2011. Best Paper award. [69]

• Remote Core Locking: Migrating Critical-section Execution to Improve the
Performance of Multithreaded Applications. Jean-Pierre Lozi, Florian David, Gaël
Thomas, Julia Lawall and Gilles Muller. Dans Proceedings of the 2012 USENIX Conference
on Annual Technical Conference (USENIX ATC ’12). Boston, USA, 2012. [71]

Un rapport de recherche INRIA [72] a également été produit, et ces travaux ont été présentés
à de nombreuses occasions, comme par exemple à la session Posters d’EuroSys 2011 à Salzbourg,
en Autriche, et à la session Works in Progress (WiP) de SOSP’11 à Cascais, au Portugal.

Enfin, en parallèle avec ces travaux de recheche, j’ai participé à d’autres projets qui ont mené
aux publication suivantes :

• EHCtor: Detecting Resource-Release Omission Faults in Error-Handling Code
for Systems Software. Suman Saha et Jean-Pierre Lozi. 9ème Conférence Française en
Systemes d’Exploitation (CFSE ’9). Grenoble, France, 2013. [94]

• Hector: Detecting Resource-Release Omission Faults in Error-Handling Code
for Systems Software. Suman Saha, Jean-Pierre Lozi, Gaël Thomas, Julia Lawall, and
Gilles Muller. Dans Proceedings of the 43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN ’13). Budapest, 2013. Best Paper award. [95]

Bien qu’ayant été produits au cours du doctorat, ces travaux n’en étaient pas le travail
principal. Par conséquent, ils ne sont ni décrits dans cette synthèse, ni dans le rapport de thèse.

94

A.1. INTRODUCTION

A.1 Introduction
Jusqu’aux années 2000, les microprocesseurs voyaient leur performance s’améliorer de façon
continue grâce à l’augmentation de leur fréquence d’horloge. Cependant, dans les années 2000, des
limites physiques ont été atteintes qui ont rendu l’augmentation des fréquences d’horloge de plus en
plus difficile. Afin de continuer à augmenter la performance des microprocesseurs, les fondeurs ont
alors commencé à inclure plusieurs unités d’exécution dans le même microprocesseur. Ces unités
d’exécution sont appelées cœurs, et des technologies telles que le Simultaneous MultiThreading
(SMT) répliquent certaines parties de ces cœurs afin de leur permettre d’exécuter plusieurs
fils d’exécution matériels simultanément. Le nombre de fils d’exécution matériels qu’offrent les
microprocesseurs est en constante augmentation dans tous les appareils électroniques actuels, des
téléphones portables aux serveurs d’entreprise. Il n’est pas rare de nos jours pour les serveurs
multi-processeur actuels de disposer de dizaines de fils d’exécutions matériels.

Malheureusement, alors qu’augmenter la fréquence d’horloge des processeurs permettait
d’améliorer les performances des applications qu’ils exécutaient de manière quasi-automatique,
faire usage de la puissance de traitement offerte par des fils d’exécution matériels supplémentaires
est une tâche complexe car la plupart des programmes ne peuvent pas être complètement
parallélisés. La Loi d’Amdahl [4] montre que lorsque le nombre de fils d’exécution matériels
augmente, le chemin critique, c’est-à-dire les parties du code applicatif qui ne peuvent pas être
parallélisées, finit par être le facteur limitant l’amélioration des performances. C’est pourquoi,
afin d’utiliser les architectures multi-cœur efficacement, il est important de réduire le plus possible
la taille du chemin critique. Dans la plupart des applications patrimoniales, le chemin critique
consiste principalement en des sections critiques, c’est-à-dire des sections de code qui doivent
être exécutées en exclusion mutuelle. Les sections critiques sont généralement protégées par des
verrous, c’est-à-dire des mécanismes de synchronisation qui permettent à plusieurs fils d’exécution
d’assurer l’exécution en exclusion mutuelle de sections de code qui accèdent aux mêmes ressources.

Afin de mieux exploiter la puissance de traitement des architectures multi-cœur récentes, les
applications doivent être optimisées afin d’exploiter le parallélisme efficacement, ce qui peut se
révéler être une tâche complexe : alors que faire en sorte que les applications passent à l’échelle
jusqu’à quelques fils d’exécution matériels est relativement aisé en utilisant des techniques naïves
de parallélisation à gros grain, faire en sorte que les applications passent à l’échelle sur les
architectures multi-cœur actuelles, qui offrent des dizaines de fils d’exécution matériels, reste
un défi. Étant donné qu’un grand nombre d’applications complexes a été développé au cours
des dernières décennies pour des architectures n’offrant que quelques fils d’exécution matériels
tout au plus, réécrire une grande partie de leur code source afin d’exploiter les architectures
multi-cœur actuelles est une tâche complexe qui requiert un travail considérable.

Une manière de faire en sorte que les applications patrimoniales passent à l’échelle sur les
architectures multi-cœur est de réduire la taille des sections critiques, c’est-à-dire d’utiliser du
verrouillage à grain fin [6, 55] : bien que cette approche soit généralement considérée très efficace,
elle peut être extrêmement complexe à mettre en œuvre pour les développeurs. Il n’existe pas de
technique générale permettant de réduire la taille des sections critiques : les développeurs doivent
utiliser des approches différentes dans différents cas, et ce faisant, ils complexifient la logique
concurrente des applications et y insèrent souvent des bogues liés à la programmation concurrente.
Ces bogues sont connus pour être très difficiles à identifier. Il est également possible d’éviter
l’utilisation de sections critiques dans certains cas et d’utiliser uniquement des instructions
atomiques pour la synchronisation, grâce aux algorithmes et structures de données dits sans
verrou [56, 77, 52, 40, 62, 63]. Alors que ces algorithmes, très efficaces dans certains cas, ont été

95

APPENDIX A. FRENCH SUMMARY OF THE THESIS

proposés pour la plupart des structures de données classiques telles que les piles, les files d’attente,
ou les listes à enjambements, il n’est pas possible de remplacer n’importe quel ensemble de sections
critiques par un algorithme sans verrou efficace. Finalement, les mémoires transactionnelles,
implémentées au niveau logiciel ou matériel, ont été proposées comme remplacement pour les
verrous [61, 54, 98, 53, 45]. Bien que les mémoires transactionnelles soient moins complexes à
utiliser que les verrous, elles ne sont actuellement que peu utilisées à cause d’un manque de
support matériel efficace et des faibles performances des implémentations logicielles. De plus, avec
les mémoires transactionnelles, les sections critiques ne peuvent exécuter d’opérations pouvant
être annulées, comme par exemple la plupart des opérations d’entrée/sortie.

D’autres solutions ont été proposées pour exploiter au mieux les performances des architectures
multi-cœur. Certaines approches se concentrent sur l’optimisation d’un mécanisme bien particulier
pour ces machines, comme les appels de fonction à distance (Remote Procedure Calls, ou RPC) [10,
11, 42], mais ces techniques sont trop limitées pour rendre possible une utilisation efficace de la
puissance de traitement des machines multi-cœur dans le cas général. Certaines optimisations
spécifiques de certaines parties des systèmes d’exploitation comme par exemple l’ordonnanceur
ont été proposées pour ces machines [64], mais ces améliorations sont complémentaires à une
modification des applications pour les faire passer à l’échelle. De nouveaux systèmes d’exploitation
spécifiquement optimisés pour les machines multi-cœur ont été proposés, tels qu’Opal [22],
Corey [13], Multikernel [9], et Helios [78], mais les systèmes d’exploitation patrimoniaux ainsi
que leurs applications sont devenus si évolués au cours des dernières décennies que migrer vers de
nouveaux systèmes à l’heure actuelle pourrait engendrer une perte de productivité considérable.
En effet, il faudrait des années aux nouveaux systèmes d’exploitation pour qu’ils atteignent le
même niveau de fonctionnalité que les systèmes partimoniaux d’une part, et d’autre part, les
applications doivent souvent être complètement réécrites afin de pouvoir être utilisées sur ces
nouveaux systèmes. Certains outils ont été proposés pour aider à modifier les applications afin de
les rendre performantes sur les architectures multi-cœur actuelles, tels que les profilers [87, 65],
qui peuvent être utiles pour détecter leurs goulots d’étranglement. Les profilers ne proposent
cependant pas de solution pour supprimer ces goulots d’étranglement : ils permettent uniquement
de les identifier.

Une autre manière d’améliorer les performances des applications sur les architectures multi-
cœur est la mise au point de verrous plus efficaces. L’avantage principal de cette approche est
qu’elle ne nécessite pas de modification conséquente des applications. Ces vingt dernières années,
un nombre important de travaux [2, 8, 12, 49, 51, 59, 75, 96, 100, 102] ont eu pour objectif
d’améliorer la performance des verrous sur les architectures multi-cœur, soit en réduisant soit
la congestion d’accès, soit en améliorant localité mémoire. La congestion d’accès se produit
lorsque de nombreux fils d’exécution essaient d’entrer simultanément en section critique : les fils
d’exécution saturent le bus de données de messages de synchronisation avant qu’un fil d’exécution
ne soit enfin élu pour entrer seul en section critique. Le manque de localité mémoire devient
problématique lorsqu’une section critique accède à des données partagées qui ont récemment été
modifiées par un autre fil d’exécution, ce qui peut causer des défauts de cache et par conséquent
augmenter fortement le temps d’exécution des sections critiques. Diminuer la congestion d’accès
tout en améliorant la localité mémoire reste un défi, d’autant plus que lorsque le nombre de fils
d’exécution matériels augmente, l’augmentation du nombre de fils d’exécution s’exécutant en
parallèle a tendance à augmenter la congestion d’accès et à réduire la localité mémoire.

Récemment, plusieurs approches ont été proposées pour exécuter un grand nombre de sections
critiques de manière consécutive sur un seul fil d’exécution matériel serveur (ou combinateur)
afin d’améliorer la localité des données [51, 102, 39]. De telles approches utilisent un transfert de

96

A.1. INTRODUCTION

contrôle rapide entre le serveur et les autres fils d’exécution (clients) afin de réduire la congestion
d’accès. Suleman et al. [102] proposent une solution matérielle, évaluée en simulation, qui
introduit de nouvelles instructions afin de permettre le transfert de contrôle, et qui utilise un fil
d’exécution matériel sur un cœur rapide pour exécuter les sections critiques. Des algorithmes
ne nécessitant pas de modification de la couche matérielle ont également été proposés. Dans
ces algorithmes, les fils d’exécution clients deviennent tour à tour serveurs [82, 51, 39]. Ces
algorithmes sont appelés verrous à combinateur. Ces algorithmes sont plus rapides que les
verrous traditionnels, mais la gestion du rôle de serveur engendre parfois un surcoût, et ils
sont vulnérables à la préemption. De plus, ni l’algorithme de Suleman et al. ni les verrous à
combinateur ne proposent un mécanisme pour gérer les variables de condition, ce qui les rend
inutilisables pour de très nombreuses applications.

L’objectif des travaux présentés dans ce rapport de thèse est de diminuer le temps passé
par les applications à exécuter des sections critiques en évitant toute modification manuelle des
applications, et ce, en se concentrant sur la réduction du temps nécessaire pour entrer en section
critique et l’amélioration de la localité mémoire. La contribution principale présentée dans ce
rapport de thèse est une nouvelle technique de verrouillage, Remote Core Locking (RCL), qui
a pour but d’améliorer l’exécution des sections critiques en exécutant sur un ou plusieurs fils
d’exécution matériels dédiés les sections critiques qui sont protégés par des verrous souffrant de
forte congestion d’accès. Cette approche est complètement implémentée dans la couche logicielle
et vise les architectures x86 et SPARC. L’idée de RCL vient de l’observation suivante : sur les
architectures multi-cœur actuelles, les applications ne passent pas à l’échelle, et par conséquent,
de nombreux fils d’exécution matériels ne peuvent pas être exploités par ces applications. Par
conséquent, il est possible de les dédier à une autre tâche, en l’occurrence l’exécution de sections
critiques, afin d’améliorer la performance des applications. Il n’est par conséquent pas nécessaire
de faire porter la charge de serveur aux fils d’exécution applicatifs, comme le font les verrous
à combinateur. RCL améliore à la fois la gestion de la congestion d’accès et la localité des
données. La congestion est réduite grâce aux transferts de contrôle rapides entre clients et
serveurs, en utilisant une ligne de cache dédiée pour chaque client, sur laquelle le client et le
serveur se synchronisent par attente active. La localité est améliorée car les données partagées
restent dans les caches du serveur, ce qui permet à ce dernier d’y accéder sans causer de défauts
de cache. En ce qui concerne ce dernier point, RCL est similaire aux verrous à combinateur,
mais il s’agit d’une approche moins coûteuse qui résiste mieux à la congestion, et qui résiste
également mieux à la préemption car le fil d’exécution serveur progresse toujours. D’autre part,
RCL propose un mécanisme pour permettre l’utilisation de variables de condition, ce qui le rend
directement utilisable dans les applications réelles. RCL est un bon outil pour améliorer les
performances des applications patrimoniales dans lesquelles les verrous congestionnés sont un
goulot d’étranglement, puisque utiliser RCL permet d’améliorer la résistance à la congestion
et la localité sans nécessiter une compréhension poussée du code source. À l’inverse, modifier
les applications pour utiliser du verrouillage à grain fin, des algorithmes sans verrous ou des
mémoires transactionnelles nécessite des modifications majeures du code source, ce qui implique
des coûts de redéveloppement importants. De plus, ces approches n’améliorent pas la localité.

Cette thèse présente également une méthodologie ainsi qu’un ensemble d’outils qui facilitent
l’utilisation de RCL dans les applications patrimoniales. Comme RCL sérialise l’exécution
des section critiques associées aux verrous gérées par le même fil d’exécution matériel serveur,
transformer tous les verrous en RCL sur un nombre limité de serveurs induit de la fausse
sérialisation : certains serveurs sérialisent l’exécution de sections critiques qui sont protégées par
différents verrous et qui par conséquent ne nécessitent pas d’être exécutées en exclusion mutuelle.

97

APPENDIX A. FRENCH SUMMARY OF THE THESIS

Dans certains cas, la fausse sérialisation peut engendrer un surcoût conséquent. Par conséquent,
le programmeur doit d’abord décider quels verrous doivent être transformés en RCL et quels
serveurs gèrent quels verrous. Un profiler a été écrit dans ce but. Ce profiler permet d’identifier
quels verrous sont utilisés fréquemment par l’application, de mesurer le temps passé en section
critique, et d’estimer si la localité mémoire des sections critiques est bonne. À partir de ces
informations, un ensemble d’heuristiques simples sont proposées pour aider le programmer à
décider quels verrous doivent être transformés en RCL. Un outil de transformation automatique
de code a été développé avec l’aide de Julia Lawall pour modifier le code des sections critiques
afin qu’il puisse être exécuté comme appel de fonction à distance sur le fil d’exécution matériel
serveur : le code de chaque section critique doit être extrait dans une fonction. L’argument passé
à cette fonction est son objet de contexte, c’est-à-dire un objet qui contient des copies de toutes
les variables référencées ou mises à jour par la section critique qui sont déclarées dans la fonction
contenant le code de la section critique. RCL prend la forme d’un environnement d’exécution
pour Linux et pour Solaris qui est compatible avec les fils d’exécution POSIX, et qui permet
l’utilisation commune de verrous POSIX et RCL au sein de la même application.

Les performances de RCL sont comparées avec celles d’autres algorithmes de verrou à
l’aide d’un microbenchmark mesurant le temps d’exécution de sections critiques qui accèdent
à un nombre variable d’emplacements mémoire. De plus, grâce aux résultats du profiler, trois
applications de la suite SPLASH-2 [107, 99, 110], trois applications de la suite Phoenix 2 [101,
103, 112, 92], Memcached [26, 41], et Berkeley DB [80, 79] avec un benchmark TPC-C ont été
identifiés comme pouvant être rendues plus performantes grâce à RCL. Dans chacune de ces
applications, RCL est comparé à un verrou à attente active, aux verrous POSIX, à MCS [75],
et à Flat Combining [51]. RCL est aussi comparé avec CC-Synch et DSM-Synch [39], deux
algorithmes qui ont été publiés après RCL. Les comparaisons ont été faites pour le même nombre
de fils d’exécution matériels, ce qui veut dire qu’il y a moins de fils d’exécution applicatifs dans
le cas de RCL, puisqu’entre un et trois fils d’application matériels sont dédiés aux serveurs RCL.

RCL est évalué sur deux machines : (i) Magnycours-48, une machine x86 sous Linux qui
dispose de quatre microprocesseurs AMD Opteron pour un total de 48 fils d’exécution matériels,
et (ii) Niagara2-128, une machine SPARC sous Solaris qui dispose de deux microprocesseurs
UltraSPARC T2+ pour un total de 128 fils d’exécution matériels. Voici une sélection de résultats
provenant de l’évaluation1 :

• Sur le microbenchmark, sous forte congestion, RCL est plus rapide que toutes les autres
approches évaluées : sur Magnycours-48 (resp. Niagara2-128), RCL est 3.2 (resp. 1.8) fois
plus rapide que le deuxième meilleur verrou, CC-Synch, et 5.0 (resp. 7.2) fois plus rapide
que le verrou POSIX.

• Sur les applications des suites SPLASH-2 et Phoenix 2, Memcached, et Berkeley DB avec
un client TPC-C, les objets de contexte sont petits, et par conséquent les passer aux serveur
engendre un surcoût négligeable.

• Dans la plupart des expériences, seul un verrou est fréquemment utilisé, et par conséquent,
un seul serveur RCL est requis. La seule exception est Berkeley DB avec le client TPC-C,
puisque dans ce cas, deux à trois clients RCL sont requis pour atteindre la performance
optimale en réduisant la fausse sérialisation.

1Certains de ces résultats ne sont pas détaillés dans la section Évaluation de cette synthèse (Chapitre A.3).
Pour plus de détails, le lecteur pourra se réferer à la version non-synthétique du rapport de thèse.

98

A.2. CONTRIBUTION

• Sur Magnycours-48 (resp. Niagara2-128), RCL améliore la performance de cinq (resp. d’une)
applications des suites SPLASH-2 et Phoenix-2. Pour ces applications, RCL permet un
gain en performance supérieur à celui des autres verrous évalués.

• Pour Memcached avec l’utilisation de requêtes Set, sur Magnycours-48 (resp. Niagara2-128),
RCL permet de multiplier la bande passante par 2.5 (resp. 1.3) par rapport au verrou
POSIX, par 1.9 (resp 1.2) par rapport au verrou à attente active, et par 2.0 (resp. 1.2) par
rapport à MCS. Le nombre de défauts de cache dans les sections critiques est divisé par
2.9 (resp. 2.3) par RCL, ce qui montre que RCL peut beaucoup améliorer la localité. Les
verrous à combinateur n’ont pas été évalués dans cette expérience car ils ne permettent
pas l’utilisation de variables de condition, qui sont utilisées par Memcached.

• Pour Berkeley DB avec le benchmark TPC-C, lors de l’utilisation de requêtes de type Stock
Level, sur Magnycours-48 (resp. Niagara2-128), utiliser RCL multiplie la bande passante
par 11.6 (resp. 7.6) par rapport aux verrous de base de Berkeley DB à 48 (resp. 384) clients.
RCL résiste mieux à la charge que les autres verrous quand le nombre de clients simultanés
augmente. En particulier, RCL est beaucoup plus efficace que les autres verrous quand
l’application utilise plus de fils d’exécution client que la machine sous-jacente ne supporte
de fils d’exécution matériels, et ce, même lorsque les autres verrous sont modifiés pour
relâcher le processeur dans les boucles d’attente active.

La suite de cette annexe est organisée de la manière suivante. La Section A.2 présente RCL,
le profiler qui permet d’identifier quelles applications et quels verrous peuvent être rendus plus
performants en utilisant RCL, ainsi que l’outil permettant de transformer automatiquement les
applications afin qu’elles puissent être utilisées avec RCL. La Section A.3 évalue la performance
de RCL sur divers benchmarks. Finalement, la Section A.4 conclut.

A.2 Contribution
Ce chapitre présente les contributions principales des travaux de recherche présentés dans ce
document. La Section A.2.1 présente RCL, et la Section A.2.2 présente le profiler et l’outil de
transformation qui ont été brièvement décrits dans l’introduction.

A.2.1 Algorithme de RCL
Avec RCL, chaque section critique est remplacée par des appels de procédure distants à une
fonction qui exécute son code. Afin d’implémenter l’appel de fonction distant, chaque serveur
dispose d’un tableau de boîtes aux lettres (Figure A.1) qui est utilisé pour la communication
avec les fils d’exécution clients. Ce tableau est long de C · L octets, où C est une constante
qui représente le nombre maximum de clients (un grand nombre, typiquement bien supérieur
au nombre de fils d’exécution matériels), et L est la taille des lignes de cache de l’architecture.
Chaque boîte aux lettres reqi fait L octets et permet la communication entre un client ci et le
serveur. Le tableau est aligné de manière à ce que chaque boîte aux lettres reqi soit positionnée
sur une seule ligne de cache. Les trois premiers mots machine de chaque requête reqi contiennent
respectivement : (i) l’adresse du verrou associé à la section critique, (ii) l’adresse d’une structure
qui encapsule le contexte, c’est-à-dire les variables référencées ou mises à jour par la section
critique qui sont déclarées dans la fonction la contenant, et enfin (iii) l’adresse d’une fonction qui

99

APPENDIX A. FRENCH SUMMARY OF THE THESIS

Figure A.1: Le tableau de boîtes aux lettres

encapsule la section critique pour laquelle le client ci a demandé l’exécution, ou NULL si aucune
exécution de section critique n’est demandée.

Côté client. Afin d’exécuter une section critique, un client ci écrit d’abord l’adresse du verrou
dans le premier mot de la structure reqi, puis il écrit l’adresse de la structure de contexte dans le
deuxième mot, et pour finir, il écrit l’adresse de la fonction qui encapsule le code de la section
critique dans le troisième mot. Le client attend ensuite que le troisième mot de reqi soit remis à
NULL (attente active), ce qui indique que le serveur a exécuté la section critique.

Côté serveur. Un fil d’exécution de service itère sur les boîtes aux lettres, en attendant que
l’une des requêtes ait une valeur qui ne soit pas égale à NULL dans son troisième mot. Lorsqu’une
telle valeur est trouvée, le fil d’exécution de service vérifie que le verrou requis est libre, et, si
c’est le cas, il l’acquiert et exécute la section critique en utilisant le pointeur de fonction et le
contexte. Lorsque le fil d’exécution de service a terminé d’exécuter la section critique, en utilisant
le pointeur de fonction, il réinitialise le troisième mot à NULL, et recommence à itérer sur le
tableau de boîtes aux lettres.

Algorithme complet. L’algorithme présenté ci-dessus est une version simplifiée de RCL qui
n’est efficace si les sections critiques ne bloquent jamais (pour des I/O par exemple), ou n’utilisent
pas de synchronisation ad hoc (attente active). En pratique, l’environnement d’exécution RCL
gère ces cas grâce à un pool de fils d’exécution de service. Il permet également l’utilisation de
variables de condition.

A.2.2 Outils
Profiler. Afin de décider quels verrous transformer en RCL, un profiler a été implémenté sous
la forme d’une bibliothèque qui intercepte les appels liés aux verrous, variables de condition, et fils
d’exécution POSIX. Comme RCL améliore la performance des acquisitions de verrou sous forte
congestion ainsi que la localité des données, une application dont les performances peuvent être
améliorées par RCL est soit fortement congestionnée au niveau de ses verrous, soit ses sections
critiques ont une mauvaise localité mémoire. Par conséquent, le profiler mesure deux métriques :
(i) le temps total passé en sections critiques, en incluant les acquisitions et les relâchements de
verrous, ce qui permet de détecter les applications qui souffrent de forte congestion au niveau
de leurs verrous, et (ii) le nombre moyen de défauts de cache dans les sections critiques, ce qui
permet de détecter les applications dont les sections critiques ont une mauvaise localité. Ces
métriques permettent de détecter efficacement les sperformances de quels verrous peuvent être

100

A.3. ÉVALUATION

améliorées par RCL. Le profiler peut également mesurer les deux métriques pour chaque verrou
séparément.

Transformation. Si le profiler montre que les verrous d’une application peuvent être remplacés
par RCL afin d’améliorer les performances, le développeur doit encapsuler toutes les sections
critiques qui sont protégées par les verrous correspondants dans des fonctions qui sont passées au
serveur RCL. Cette transformation de code correspond à une transformation appelée “Extract
Method” [43]. Elle a été implémentée au cœur d’un outil de transformation automatique avec
l’aide de Julia Lawall, en utilisant 2115 lignes de code Coccinelle [83].

A.3 Évaluation
Ce chapitre décrit comment RCL peut être utilisé pour améliorer les performances des applications,
et évalue les performances de RCL par rapport aux autres algorithmes de verrou présentés dans
le Chapitre 3 sur une sélection d’applications. La Section A.3.2 présente un microbenchmark qui
est utilisé pour comparer les performances de RCL avec celles d’autres algorithmes de verrou.
La section A.3.2 présente une méthodologie qui permet aux développeurs de détecter quelles
applications peuvent voir leur performance améliorée par RCL. Le profiler est ensuite lancé sur
un ensemble d’applications dont le profiler a détecté qu’elles étaient potentiellement améliorables
avec RCL.

A.3.1 Microbenchmark
Un microbenchmark a été développé pour mesurer la performance de RCL par rapport à d’autres
algorithmes de verrou. Sept algorithmes de verrous ont été sélectionnés : un verrou à attente
active, le verrou POSIX, MCS, MCS-TP, Flat Combining, CC-Synch et DSM-Synch. Les cinq
derniers verrous sont connus pour offrir une bonne résistance en cas de forte congestion. Le
microbenchmark exécute des sections critiques de façon répétée sur tous les fils d’exécution
matériel (un fil d’exécution logiciel fixé sur chaque fil d’exécution matériel). Afin de faire varier
degré de congestion sur le verrou, le microbenchmark fait varier le temps d’attente entre le
moment où une section critique a fini d’être exécutée par un fil d’exécution et le début de la
prochaine demande de prise de verrou par ce fil d’exécution : plus le délai est court, plus la
congestion est élevée. Le microbenchmark fait varier la localité des sections critiques en les
faisant accéder à une ou cinq lignes de cache en lecture et en écriture. La Figure A.2 présente les
résultats du microbenchmark.

Magnycours-48. La Figure A.2a présente le temps d’exécution moyen d’une section critique
(en haut) et le nombre de cache misses (en bas) lorsque chaque fil d’exécution exécute 10,000
sections critiques qui accèdent chacune à une ligne de cache sur Magnycours-48. Le délai entre
les tentatives d’exécution des sections critiques varie en abscisse. Cette expérience mesure
principalement l’effet de la congestion lors de l’accès aux verrous. La Figure 5.2b présente
l’augmentation du temps d’exécution lorsque chaque section critique accède à cinq lignes de cache
au lieu d’une. Cette expérience se concentre davantage sur l’effet de la localité des données des
lignes de cache partagées. Sous forte congestion (court délai, à gauche sur les graphes), avec cinq
accès, RCL est plusieurs fois plus rapide que tous les autres verrous. CC-Synch et DSM-Synch
sont ~323% plus lents que RCL. Les deux algorithmes ont une performance comparable, même si
Magnycours-48 est une machine NUMA. Flat Combining, sur lesquels ces algorithmes sont basés,
est 49% plus lent qu’eux. MCS est beaucoup plus lent que les verrous à combinateur : il est

101

APPENDIX A. FRENCH SUMMARY OF THE THESIS

POSIX
Spinlock

MCS
MCS-TP

 Flat Combining
CC-Synch

DSM-Synch
RCL

 1000

 10000

 100000

 1e+06

 1e+07

 1000 10000 100000 1e+06

T
e

m
p

s
 d

'e
x
é

c
u

tio
n

 (
c
y
c
le

s
)

 1

 10

 100

100 1 000 10 000 100 000 1e+06

N
b

.
d

é
f.

 c
a

c
h

e
 L

2

Delai (cycles)

(a) Magnycours-48 : une ligne de cache par SC

 1000

 10000

 100000

 1e+06

 1e+07

 1000 10000 100000 1e+06

T
e

m
p

s
 d

'e
x
é

c
u

tio
n

 (
c
y
c
le

s
)

 1

 10

 100

100 1 000 10 000 100 000 1e+06

N
b

.
d

é
f.

 c
a

c
h

e
 L

2

Delai (cycles)

(b) Magnycours-48 : cinq lignes de cache par SC

 1000

 10000

 100000

 1e+06

 1e+07

 1000 10000 100000 1e+06 1e+07

T
e

m
p

s
 d

'e
x
é

c
u

tio
n

 (
c
y
c
le

s
)

 1

 10

 100

 1000

100 1 000 10 000 100 000 1e+06 1+e07

N
b

.
d

é
f.

 c
a

c
h

e
 L

1

Delai (cycles)

(c) Niagara2-128 : une ligne de cache par SC

 1000

 10000

 100000

 1e+06

 1e+07

 1000 10000 100000 1e+06 1e+07

T
e

m
p

s
 d

'e
x
é

c
u

tio
n

 (
c
y
c
le

s
)

 1

 10

 100

 1000

100 1 000 10 000 100 000 1e+06 1+e07

N
b

.
d

é
f.

 c
a

c
h

e
 L

1

Delai (cycles)

(d) Niagara2-128 : cinq lignes de cache par SC

Figure A.2: Résultats du microbenchmark

~277% plus lent que CC-Synch et DSM-Synch, et 153% plus lent que Flat Combining. MCS-TP
est une variante de MCS qui résiste mieux à la préemption, cependant, ce verrou est 30% plus lent
que MCS dans ce microbenchmark où la préemption est impossible (autant de fils d’exécution
logiciels que de fils d’exécution matériels, threads fixés sur des cœurs). La performance du verrou
POSIX est assez bonne sous très forte congestion (entre celle de Flat Combining et celle de
MCS), mais sa performance diminue lorsque la congestion est moyenne : il devient moins efficace
que MCS et MCS-TP. Finalement, la performance du verrou à attente active (noté Spinlock)
sous forte congestion est très mauvaise car l’attente active par de nombreux fils d’exécution sur
un seul emplacement mémoire sature le bus de messages du protocole de cohérence de cache. À
faible congestion, pour un accès, tous les verrous se comportent de manière équivalente, sauf
Flat Combining qui est plus lent d’un ordre de grandeur. Avec 5 accès, la performance de tous
les verrous est dégradée à cause des défauts de cache supplémentaires, sauf pour RCL : dans ce
cas, les données restent dans les caches du cœur serveur, et les défauts de cache sont évités.

Niagara2-128. Les Figures A.2c et A.2d présentent les résultats du microbenchmark sur
Niagara2-128. Bien que l’architecture de Niagara2-128 soit différente (SPARC a lieu de x86 pour

102

A.3. ÉVALUATION

Magnycours-48, 8 fils d’exécution matériel par cœur au lieu d’un seul pour Magnycours-48), les
résultats sont quantitativement similaires.

A.3.2 Applications
Profiling. Le profiler présenté dans la Section A.3.1 permet de prédire efficacement quels
verrous peuvent bénéficier de meilleures performances grâce à RCL. Pour ce faire, le temps
passé en section critique et le temps d’exécution des sections critiques, deux métriques mesurées
respectivement par le profiler et par le microbenchmark, sont corrélées. La Figure A.3 montre
les résultats obtenus lorsque microbenchmark avec le verrou POSIX et un accès mémoire est
lancé avec le profiler : le pourcentage de temps passé en section critique est tracé en fonction du
délai. D’après la Figure A.2a, sur Magnycours-48, le verrou POSIX s’effondre lorsque le délai est
inférieur à 60, 000 cycles. D’après la Figure A.3a, il peut être déduit de cette information que le
verrou POSIX s’effondre lorsque le microbenchmark passe 15% de son temps ou plus en section
critique (seuil inférieur), et que RCL est plus performant que tous les autres verrous lorsque le
microbenchmark passe 60% de son temps en section critique (seuil supérieur). Ces résultats sont
préservés, ou améliorés, lorsque le nombre d’accès mémoire augmentent, car le temps d’exécution
augmente au moins autant, et souvent davantage, pour pour les autres algorithmes que RCL. Par
conséquent, deux seuils pour les applications évaluées dans cette section peuvent être identifiés
sur Magnycours-48 : en supposant qu’elles utilisent des verrous POSIX, si les applications passent
plus de 15% en section critique, utiliser RCL est susceptible d’améliorer leur performance, mais
pas nécessairement davantage que d’autres verrous que le verrou POSIX (seuil inférieur). Si elles
passent plus de 60% de leur temps en section critique, utiliser RCL améliorera les performances
davantage que d’utiliser n’importe quel autre verrou (seuil supérieur). Une évaluation similaire
sur Niagara2-128 (voir Figure A.3b), indique que sur cette machine, le seuil inférieur est de 10%
et le seuil supérieur est de 85%.

Performance applicative. Les deux métriques que mesurent le profiler, c’est-à-dire le temps
passé en section critique et le nombre de défauts de cache, ne permettent bien sûr pas de déterminer
avec certitude si une application verra ses performances améliorées grâce à l’utilisation de RCL.
De nombreux autres facteurs (longueur des sections critiques, interactions entre verrous, etc.)
entrent en compte lors de l’exécution des sections critiques. Cependant, comme expliqué ci-
dessous, utiliser le temps passé en section critique en tant que métrique principale et le nombre
de défauts de cache dans les sections critiques en tant que métrique secondaire est une technique
efficace. Le temps passé en section critique est un bon indicateur de la congestion des verrous, et
le nombre de défauts de cache permet d’estimer la localité des données dans les sections critiques.
Les performances de RCL sont estimées sur les applications suivantes :

• Les 9 application de deuxième version de la suite de benchmarks Stanford ParalleL Ap-
plications for SHared memory, connue sous le nom de SPLASH-2 [107, 99, 110]. Il s’agit
d’applications scientifiques parallèles. L’application Raytrace est proposée avec deux fichiers
d’entrée possible, par conséquent, elle donne lieu à deux expériences.

• Les 7 applications de la suite de benchmarks Phoenix 2.0.0 [101, 103, 112, 92], également
développée à Stanford. Ces applications implémentent des usages types du modèle de
programmation MapReduce [31] proposé par Google.

• Memcached 1.4.6 [26, 41], un système de cache distribué utilisé par des sites internet tels
que YouTube, Wikipedia ou Reddit. Memcached est lancé sur la moitié des fils d’exécution

103

APPENDIX A. FRENCH SUMMARY OF THE THESIS

 0

 20

 40

 60

 80

 100

100 1000 10000 100000 1e+06

%
 d

e
 t

e
m

p
s
 e

n
 S

C

Délai (cycles)

Éffondrement de POSIX (105 000 cycles): 15%

Éffondrement de MCS (60 000 cycles): 60%

(a) Temps passé en section critique sur Magnycours-48

 0

 20

 40

 60

 80

 100

100 1000 10000 100000 1e+06 1e+07

%
 d

e
 t

e
m

p
s
 e

n
 S

C

Délai (cycles)

Effondrement de POSIX (240 000 cycles): 15%

Effondrement de MCS (60 000 cycles): 85%

(b) Temps passé en section critique sur Niagara2-128

cycles % en CS
Seuil supérieur 60,000 60%Magnycours-48
Seuil inférieur 105,000 15%
Seuil supérieur 60,000 85%Niagara2-128
Seuil inférieur 240,000 15%

(c) Seuils

Figure A.3: Temps passé en section critique dans le microbenchmark et seuils

matériels de chaque machine, l’autre moitié étant dédié au client Memslap de Libmemcached
1.0.2 [28] qui simule des clients demandant à Memcached l’exécution de requêtes. Deux
expériences sont utilisées : dans l’une, seules des requêtes Get (lectures du cache) sont
exécutées, dans l’autre, seules des requêtes Set (écriture dans le cache) sont exécutées.

• Berkeley DB 5.2.28 [80, 79], un Système de Gestion de Bases de Données (SGBD) maintenu
par Oracle, avec un benchmark TPC-C [67] nommé TpccOverBkDb, qui a été écrit par
Alexandra Fedorova et Justin Fuston à l’université Simon Fraser. Cinq expériences sont
utilisés, une pour chaque type de requêtes offert par TPC-C. Le benchmark est une
application qui crée un fil d’exécution pour chaque client. Berkeley DB est implémenté
sous la forme d’une bibliothèque, et tous les fils d’exécution appellent des fonctions offertes
par cette bibliothèque.

Chacune des expériences ci-dessus sont lancées une première fois avec le profiler, afin de
savoir si le temps qu’elles passent en section critique est supérieur à l’un des seuils. Si c’est le cas,
ses performances sont présentées dans la Figure A.4. Cette figure rappelle également certaines
données du profiler, et le pourcentage de temps en section critique est situé par rapport aux
seuils inférieur et supérieur (notés tl et tu) correspondant à chaque expérience. Les paramètres
utilisés pour les expériences sont détaillés dans la Figure A.4c.

SPLASH-2 et Phoenix. Pour SPLASH-2 et Phoenix, toutes les expériences ont un nombre
de défauts de cache faible (inférieur à 5), par conséquent, cette métrique est ignorée : les sections

104

A.3. ÉVALUATION

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

POSIX
1
0
6
3
6
.
7

t
/
s

8
2
9
5
.
7

t
/
s

4
3
3
.
6

t
/
s

3
7
1
.
3

t
/
s

Spinlock

2
4
3
1
.
3

t
/
s

2
5
3
.
3

t
/
s

1
4
8
.
5

t
/
s

<
1
0
0

t
/
s

MCS

1
0
3
8
2
.
7

t
/
s

<
1
0
0

t
/
s

1
5
6
9
.
1

t
/
s

<
1
0
0

t
/
s

Flat Combining

1
9
0
7
3
.
1

t
/
s

2
0
3
2
.
8

t
/
s

1
4
5
4
.
6

t
/
s

1
4
0
.
3

t
/
s

CC-Synch

2
2
3
3
2
.
4

t
/
s

<
1
0
0

t
/
s

2
3
1
0
.
4

t
/
s

<
1
0
0

t
/
s

DSM-Synch

1
6
9
0
1
.
8

t
/
s

<
1
0
0

t
/
s

2
0
8
7
.
1

t
/
s

<
1
0
0

t
/
s

RCL

2
4
1
0
1
.
7

t
/
s

1
5
7
3
1
.
3

t
/
s

2
3
6
6
.
4

t
/
s

2
0
8
1
.
5

t
/
s

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

POSIX Spinlock MCS Flat Combining CC-Synch DSM-Synch RCL

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

POSIX Spinlock MCS Flat Combining CC-Synch DSM-Synch RCL

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

P2: String Match S2: Raytrace/Balls4 P2: Linear Regr. S2: Radiosity S2: Raytrace/Car P2: Matrix Multiply
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

M
e

ill
e

u
re

 p
e

rf
o

rm
a

n
c
e

 /
 m

e
ill

e
u

re
 p

e
rf

o
rm

a
n

c
e

 a
v
e

c
 P

O
S

IX

×
1
1
.
8
:
3
8

×
2
2
.
7
:
3
1

×

4
.
2
:
1
1

×

9
.
5
:
1
4

×

3
.
1
:

5

×

3
.
7
:
1
9

×

9
.
3
:
2
2

×
2
3
.
3
:
2
8

×

4
.
3
:
1
1

×
1
0
.
0
:
1
2

×

4
.
9
:

7

×

3
.
6
:

8

×
1
3
.
9
:
4
2

×
3
2
.
1
:
4
8

×

5
.
9
:
1
9

×
1
5
.
0
:
3
2

×

4
.
6
:
1
0

×

5
.
1
:
1
9

×
1
3
.
8
:
3
9

×
2
9
.
9
:
4
8

×

7
.
1
:
1
7

×
1
5
.
9
:
4
7

×

5
.
3
:
1
6

×

5
.
7
:
1
9

×
1
4
.
0
:
3
3

×
3
4
.
0
:
4
7

×

7
.
4
:
1
9

×
2
0
.
6
:
4
4

×

6
.
9
:
1
5

×

5
.
9
:
1
9

×
1
4
.
0
:
3
5

×
3
3
.
5
:
4
8

×

7
.
4
:
1
7

×
2
0
.
6
:
4
2

×

6
.
9
:
1
8

×

5
.
9
:
1
9

×
1
4
.
3
:
3
1
/
3
1

×
3
4
.
3
:
4
9
/
3
2

×

7
.
7
:
1
9
/
1
8

×
2
4
.
1
:
4
7
/
1
9

×

9
.
4
:
3
1
/

9

×

6
.
3
:
1
9
/

7

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

P2: String Match S2: Raytrace/Balls4 P2: Linear Regr. S2: Radiosity S2: Raytrace/Car P2: Matrix Multiply
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

63.9% en CS (>tu)
4.5 DCs L2

65.7% en CS (>tu)
1.4 DCs L2

81.6% en CS (>tu)
3.8 DCs L2

87.7% en CS (>tu)
1.7 DCs L2

90.2% en CS (>tu)
0.6 DCs L2

92.2% en CS (>tu)
3.1 DCs L2

(a) Magnycours-48 : SPLASH-2 et Phoenix 2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Memcached: Set Memcached: GetM
e

ill
e

u
re

 p
e

rf
o

rm
a

n
c
e

 /
 m

e
ill

e
u

re
 p

e
rf

o
rm

a
n

c
e

 a
v
e

c
 P

O
S

IX

×

1
.
6
:

3

×

4
.
3
:
1
0

×

2
.
2
:

6

×

6
.
3
:
1
0

×

2
.
1
:
1
0

×

7
.
2
:
1
5

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

×

4
.
1
:
1
9
/

5

×

7
.
7
:
2
0
/
1
2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Memcached: Set Memcached: Get

44.7% L2 en CS (<tu)
16.5 DCs L2

79.0% L2 en CS (>tu)
2.1 DCs L2

(b) Magnycours-48 : Memcached

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

POSIX

1
0
6
3
6
.
7

t
/
s

8
2
9
5
.
7

t
/
s

4
3
3
.
6

t
/
s

3
7
1
.
3

t
/
s

Spinlock

2
4
3
1
.
3

t
/
s

2
5
3
.
3

t
/
s

1
4
8
.
5

t
/
s

<
1
0
0

t
/
s

MCS

1
0
3
8
2
.
7

t
/
s

<
1
0
0

t
/
s

1
5
6
9
.
1

t
/
s

<
1
0
0

t
/
s

Flat Combining

1
9
0
7
3
.
1

t
/
s

2
0
3
2
.
8

t
/
s

1
4
5
4
.
6

t
/
s

1
4
0
.
3

t
/
s

CC-Synch

2
2
3
3
2
.
4

t
/
s

<
1
0
0

t
/
s

2
3
1
0
.
4

t
/
s

<
1
0
0

t
/
s

DSM-Synch

1
6
9
0
1
.
8

t
/
s

<
1
0
0

t
/
s

2
0
8
7
.
1

t
/
s

<
1
0
0

t
/
s

RCL

2
4
1
0
1
.
7

t
/
s

1
5
7
3
1
.
3

t
/
s

2
3
6
6
.
4

t
/
s

2
0
8
1
.
5

t
/
s

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

POSIX Spinlock MCS Flat Combining CC-Synch DSM-Synch RCL

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

POSIX Spinlock MCS Flat Combining CC-Synch DSM-Synch RCL

-batch -ae 500Radiosity
-bf 0.005

Fichiers d’entrée:Raytrace/Car
car.env/geo

Fichiers d’entrée:

SPLASH-2

Raytrace/Balls4
balls4.env/geo

Jeu de données moyen:Linear Regression
Fichier de 100Mo
Jeu de données moyen:String Match
Fichiers de 100Mo
Jeu de données moyen:

Phoenix 2

Matrix Multiply
Matrice 500x500
30,000 entrées (init.)Get
30,000 requêtes Get
10,000 entrées (init.)

Memcached
Set

10,000 requêtes Set
Berkeley DB Order Status 300 requests per client
+ TPC-C Stock Level 300 requests per client

(c) Paramètres des benchmarks

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

S2: Raytrace/Balls4 S2: Radiosity S2: Raytrace/CarM
e

ill
e

u
re

 p
e

rf
o

rm
a

n
c
e

 /
 m

e
ill

e
u

re
 p

e
rf

o
rm

a
n

c
e

 a
v
e

c
 P

O
S

IX

×
6
0
.
2
:
1
2
3

×
2
9
.
8
:

7
2

×
1
5
.
7
:

4
2

×
6
2
.
0
:
1
2
3

×
3
2
.
7
:

8
4

×
1
5
.
4
:

5
8

×
6
0
.
4
:
1
2
4

×
3
4
.
0
:
1
1
3

×
1
4
.
8
:

5
8

×
6
0
.
0
:
1
2
5

×
3
3
.
3
:

9
9

×
1
4
.
7
:

5
8

×
5
9
.
7
:
1
2
3

×
3
4
.
1
:

8
9

×
1
5
.
1
:

5
9

×
6
1
.
7
:
1
2
4

×
3
2
.
9
:
1
0
8

×
1
4
.
9
:

5
8

×
6
1
.
2
:
1
2
6

×
3
4
.
4
:

9
4

×
1
4
.
9
:

5
8

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

S2: Raytrace/Balls4 S2: Radiosity S2: Raytrace/Car

14.3% en CS (<tl)
4.6 DCs L1

38.7% en CS (<tu)
4.4 DCs L1

79.1% en CS (<tu)
3.8 DCs L1

(d) Niagara2-128 : SPLASH-2

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

Memcached: Set Memcached: GetM
e

ill
e

u
re

 p
e

rf
o

rm
a

n
c
e

 /
 m

e
ill

e
u

re
 p

e
rf

o
rm

a
n

c
e

 a
v
e

c
 P

O
S

IX

×

3
.
4
:
6
0

×

7
.
9
:
5
2

×

3
.
9
:
2
0

×

9
.
2
:
2
4

×

3
.
7
:
2
0

×

6
.
5
:
1
6

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

 D
o

e
s
 n

o
t
ru

n

×

4
.
5
:
3
2
/
1
6

×

9
.
3
:
2
8
/
2
8

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

Memcached: Set Memcached: Get

20.2% (<tu) en CS
73.4 DCs L1

69.2% (<tu) en CS
13.5 DCs L1

(e) Niagara2-128 : Memcached

Order Status, 48 cl. Order Status, 384 cl. Stock Level, 48 cl. Stock Level, 384 cl.

Base

4
2
6
0
.
4

t
/
s

5
1
1
7
.
7

t
/
s

2
0
4
.
1

t
/
s

2
3
5
.
6

t
/
s

POSIX

1
0
6
3
6
.
7

t
/
s

8
2
9
5
.
7

t
/
s

4
3
3
.
6

t
/
s

3
7
1
.
3

t
/
s

Spinlock

2
4
3
1
.
3

t
/
s

2
5
3
.
3

t
/
s

1
4
8
.
5

t
/
s

<
1
0
0

t
/
s

MCS

1
0
3
8
2
.
7

t
/
s

<
1
0
0

t
/
s

1
5
6
9
.
1

t
/
s

<
1
0
0

t
/
s

MCS-TP

1
3
0
0
9
.
7

t
/
s

2
3
7
4
.
5

t
/
s

8
9
5
.
4

t
/
s

1
0
6
.
5

t
/
s

Flat Combining

1
9
0
7
3
.
1

t
/
s

2
0
3
2
.
8

t
/
s

1
4
5
4
.
6

t
/
s

1
4
0
.
3

t
/
s

CC-Synch

2
2
3
3
2
.
4

t
/
s

<
1
0
0

t
/
s

2
3
1
0
.
4

t
/
s

<
1
0
0

t
/
s

DSM-Synch

1
6
9
0
1
.
8

t
/
s

<
1
0
0

t
/
s

2
0
8
7
.
1

t
/
s

<
1
0
0

t
/
s

RCL

2
4
1
0
1
.
7

t
/
s

1
5
7
3
1
.
3

t
/
s

2
3
6
6
.
4

t
/
s

2
0
8
1
.
5

t
/
s

Order Status, 48 cl. Order Status, 384 cl. Stock Level, 48 cl. Stock Level, 384 cl.

Base

POSIX

Spinlock

MCS

MCS-TP

Flat Combining

CC-Synch

DSM-Synch

RCL

Order Status, 48 cl. Order Status, 384 cl. Stock Level, 48 cl. Stock Level, 384 cl.

Base

POSIX

Spinlock

MCS

MCS-TP

Flat Combining

CC-Synch

DSM-Synch

RCL

 1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Order Status, 48 cl. Order Status, 384 cl. Stock Level, 48 cl. Stock Level, 384 cl.

M
e

ill
e

u
re

 p
e

rf
o

rm
a

n
c
e

 p
a

r
ra

p
p

o
rt

 à
 l
'a

p
p

lic
a

tio
n

 d
e

 b
a

s
e

4
2
6
0
.
4

t
/
s

5
1
1
7
.
7

t
/
s

2
0
4
.
1

t
/
s

2
3
5
.
6

t
/
s

1
0
6
3
6
.
7

t
/
s

8
2
9
5
.
7

t
/
s

4
3
3
.
6

t
/
s

3
7
1
.
3

t
/
s

2
4
3
1
.
3

t
/
s

2
5
3
.
3

t
/
s

1
4
8
.
5

t
/
s

<
1
0
0

t
/
s

1
0
3
8
2
.
7

t
/
s

<
1
0
0

t
/
s

1
5
6
9
.
1

t
/
s

<
1
0
0

t
/
s

1
3
0
0
9
.
7

t
/
s

2
3
7
4
.
5

t
/
s

8
9
5
.
4

t
/
s

1
0
6
.
5

t
/
s

1
9
0
7
3
.
1

t
/
s

2
0
3
2
.
8

t
/
s

1
4
5
4
.
6

t
/
s

1
4
0
.
3

t
/
s

2
2
3
3
2
.
4

t
/
s

<
1
0
0

t
/
s

2
3
1
0
.
4

t
/
s

<
1
0
0

t
/
s

1
6
9
0
1
.
8

t
/
s

<
1
0
0

t
/
s

2
0
8
7
.
1

t
/
s

<
1
0
0

t
/
s

2
4
1
0
1
.
7

t
/
s

1
5
7
3
1
.
3

t
/
s

2
3
6
6
.
4

t
/
s

2
0
8
1
.
5

t
/
s

 1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Order Status, 48 cl. Order Status, 384 cl. Stock Level, 48 cl. Stock Level, 384 cl.

40.1% en CS (<tu)
2.4 DCs L1

46.3% en CS (<tu)
2.4 DCs L1

(f) Magnycours-48 : Berkeley DB

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

Order Status, 48 cl. Order Status, 384 cl. Stock Level, 48 cl. Stock Level, 384 cl.

M
e

ill
e

u
re

 p
e

rf
o

rm
a

n
c
e

 p
a

r
ra

p
p

o
rt

 à
 l
'a

p
p

lic
a

tio
n

 d
e

 b
a

s
e

7
8
0
6
.
5

t
/
s

2
7
1
9
.
3

t
/
s

5
3
2
.
4

t
/
s

1
0
9
.
8

t
/
s

2
0
0
0
3
.
3

t
/
s

9
1
4
8
.
3

t
/
s

1
2
2
4
.
1

t
/
s

5
6
3
.
4

t
/
s

3
0
0
8
7
.
2

t
/
s

<
1
0
0

t
/
s

1
6
6
1
.
7

t
/
s

<
1
0
0

t
/
s

4
5
4
0
3
.
5

t
/
s

<
1
0
0

t
/
s

2
3
3
2
.
0

t
/
s

<
1
0
0

t
/
s

1
3
5
8
1
.
8

t
/
s

3
0
0
1
.
4

t
/
s

7
8
7
.
7

t
/
s

1
3
6
.
5

t
/
s

3
9
6
7
0
.
6

t
/
s

4
9
9
9
.
6

t
/
s

2
1
8
8
.
5

t
/
s

1
6
3
.
6

t
/
s

4
4
8
3
9
.
8

t
/
s

<
1
0
0

t
/
s

2
3
3
5
.
8

t
/
s

<
1
0
0

t
/
s

4
2
6
8
2
.
4

t
/
s

<
1
0
0

t
/
s

2
2
9
6
.
1

t
/
s

<
1
0
0

t
/
s

3
8
4
2
3
.
5

t
/
s

1
7
8
6
8
.
4

t
/
s

2
3
2
0
.
4

t
/
s

8
3
5
.
8

t
/
s

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

Order Status, 48 cl. Order Status, 384 cl. Stock Level, 48 cl. Stock Level, 384 cl.

76.4% en CS (<tu)
4.0 DCs L1

87.1% en CS (>tu)
3.4 DCs L1

(g) Niagara2-128 : Berkeley DB
Note : dans cette figure, tl et tu représentent respectivement le seuil inférieur et supérieur correspondant à chaque expérience.

Figure A.4: Performance des différents verrous dans les applications

critiques ont toutes une bonne localité. Les Figures A.4a et A.4d donnent les résultats pour
toutes les expériences des suites de benchmarks SPLASH-2 et Phoenix dont le temps passé en
section critique est supérieur à l’un des seuils, c’est-à-dire les expériences dans lesquelles RCL
peut améliorer les performances par rapport au verrou POSIX car leur congestion est élevée.

105

APPENDIX A. FRENCH SUMMARY OF THE THESIS

Toutes les expériences satisfaisant ces critères passent un temps en section critique supérieur
au seuil haut sur Magnycours-48 (Figure A.4a), alors que toutes les expériences satisfaisant
ces critères passent un temps en section critique situé entre les deux seuils pour Niagara2-128
(Figure A.4d). Les résultats pour Raytrace/Balls4 (SPLASH-2) sont également présentés pour
Niagara2-128 à titre d’exemple, même si le temps passé en section critique par cette expérience
est en dessous des deux seuils.

Dans toutes les expériences de SPLASH-2 et Phoenix sur Magnycours-48 (voir Figure A.4a),
RCL est plus performant que les autres verrous. Les verrous peuvent être classés en trois
catégories : (i) POSIX et le verrou à attente active offrent des performances faibles, (ii) MCS
et Flat Combining offrent des performances moyennes, (iii) CC-Synch et DSM-Synch offrent
de bonnes performances, et (iv) RCL offre de très bonnes performances. Plus l’expérience
passe de temps en section critique, meilleure est l’amélioration des performances offerte par
les autres verrous que POSIX, et ce d’autant plus que le verrou est rapide. Par conséquent,
plus le temps passé en section critique est élevé, plus RCL permet de gagner en performance.
La seule expérience pour laquelle ce constat n’est pas vrai est Matrix Multiply (Phoenix 2),
pour laquelle les autres verrous que POSIX n’améliorent que peu les performances malgré le
temps important passé en section critique. Cela est dû au fait que Matrix Multiply a d’autres
goulots d’étranglement que les verrous : RCL permet de faire chuter le temps passé en section
critique à moins de 1%, ce qui montre bien que les verrous ne sont plus un goulot d’étranglement
après transformation. Sur Niagara2-128 (voir Figure A.4d), pour Raytrace/Balls4 (SPLASH-2),
changer de verrou n’améliore pas les performances, comme prévu, car le temps passé en section
critique est inférieur aux deux seuils, par conséquent, la congestion sur les verrous n’est pas un
goulot d’étranglement. Sur Radiosity (SPLASH-2), comme prévu, RCL améliore les performance
mais pas significativement plus que les autres verrous, puisque le temps passé en section critique
se trouve entre les deux seuils. Pour Raytrace/Car (SPLASH-2) changer de verrou n’améliore
pas les performances. Encore une fois, une analyse plus poussée montre que d’autres goulots
d’étranglement sont à l’œuvre. Afin de vérifier que le profiler ne donne pas de faux négatifs,
les performances des expériences pour lesquelles le temps passé en section critique est inférieur
aux deux seuils a été mesuré, et dans ce cas, changer de verrou n’altère jamais les performances
significativement. Par conséquent, sur 16 expériences des suites SPLASH-2 et Phoenix sur
chacune des machines (32 au total), le profiler n’a pas su prévoir le gain potentiel pour seulement
deux d’entre elles : Matrix Multiply (Phoenix) sur Magnycours-48, et Raytrace/Car (SPLASH-2)
sur Niagara2-128. Cependant, pour Matrix Multiply, même si le gain est plus faible que ce qui
aurait pu être espéré au vu des autres expériences, le profiler a prévu avec succès que RCL serait
plus performant que tous les autres verrous (temps en section critique supérieur au seuil haut).

Memcached. Pour Memcached, les verrous à combinateur (Flat Combining, CC-Synch et
DSM-Synch) ne sont pas évalués car ils ne proposent pas d’implémentation pour les variables de
condition alors que celles-ci sont utilisées par l’application. Sur Magnycours-48 (voir Figure A.4b),
l’expérience Get passe plus de temps en section critique que le seuil supérieur. Comme prévu,
dans cette expérience, RCL permet de gagner plus que les autres verrous. Même si l’expérience
Set passe moins de temps en section critique que le seuil, elle génère un nombre important de
défauts de cache en section critique (16.5). C’est pourquoi, pour cette expérience, RCL améliore
très fortement les performances (plus que dans l’expérience Get), même si le temps passé en
section critique se situe entre les deux seuils. RCL améliore fortement la localité en divisant le
nombre de défauts de cache dans les sections critiques par 2.9. Les résultats sur Niagara2-128

106

A.3. ÉVALUATION

POSIX Spinlock MCS RCL

 1

 2

 3

 4

 5

 6

 7

 8

 1 6 12 18 22

A
c
c
é

lé
ra

tio
n

Nombre de fils d'exécution matériels

(a) Magnycours-48 : Get

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 8 16 24 32 40 48 56 62

A
c
c
é

lé
ra

tio
n

Nombre de fils d'exécution matériels

(b) Niagara2-128 : Get

POSIX Spinlock MCS RCL

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 6 12 18 22

A
c
c
é

lé
ra

tio
n

Nombre de fils d'exécution matériels

(c) Magnycours-48 : Set

 0

 1

 2

 3

 4

 5

 1 8 16 24 32 40 48 56 62

A
c
c
é

lé
ra

tio
n

Nombre de fils d'exécution matériels

(d) Niagara2-128 : Set

Figure A.5: Memcached speedup

(voir Figure A.4e), sont quantitativement similaires à ceux de Magnycours-48. Le nombre de
défauts de cache en section critique (73.4) est divisé par 2.3 par RCL.

La Figure A.5 présente les résultats détaillés pour Memcached, c’est-à-dire son accélération
par rapport à la version de base de l’application lorsque le nombre de fils d’exécution matériels
varie. Sur Magnycours-48, pour Memcached/Get et pour Memcached/Set, RCL n’améliore pas
seulement les performances, il permet aussi à l’application de mieux passer à l’échelle. Pour
Memcached/Get sur Magnycours-48 (voir Figure A.5a), les performances du verrou POSIX ainsi
que celles du verrou à attente active s’effondrent à partir de 11 fils d’exécution et les performances
de MCS s’effondrent à partir de 16 fils d’exécution. Les performances de RCL, en revanche,
atteignent un plateau à partir de 18 fils d’exécution. Utiliser RCL est initialement plus lent
qu’utiliser les autres verrous à nombre de fils d’exécution matériels égaux, à cause du fait que
RCL perd un fil d’exécution pour l’exécution de son serveur. Cependant, malgré cet handicap
initial, RCL permet d’atteindre la performance du verrou POSIX, du verrou à attente active
et de MCS à partir de seulement, 6, 11 ou 12 fils d’exécution matériels, respectivement. En
ce qui concerne Memcached/Set sur Magnycours-48 (voir Figure A.5b), les performances du
verrou POSIX, du verrou à attente active, ainsi que de MCS commencent à s’effondrer à partir
de 4, 8 ou 11 fils d’exécution matériels, respectivement. RCL, quant à lui, atteint un plateau
à partir de 14 fils d’exécution matériels. Dans cette expérience, RCL est plus performant que
tous les autres verrous à partir de seulement cinq fils d’exécution matériels. Sur Niagara2-128
(voir Figures A.5b, et A.5d), les gains de performance sont moindres, mais RCL offre néanmoins

107

APPENDIX A. FRENCH SUMMARY OF THE THESIS

toujours la meilleure performance de pointe, et a tendance à mieux passer à l’échelle que les
autres verrous.

Berkeley DB avec TpccOverBkDb. Pour Berkeley DB, seules les expériences avec les
requêtes de type Order Status et Stock Level passent un temps en section critique qui n’est
pas inférieur aux deux seuils. Les expériences Order Status et Stock Level passent un temps
en section critique qui se trouve soit entre les deux seuils, soit au dessus des deux seuils (voir
Figures A.4f et A.4g). Cependant, les mesures de temps en section critique sont sous-estimées
pour Berkeley DB, car cette application utilise des verrous (notés « Original » sur les figures)
qui utilisent de l’attente active avant de prendre un verrou POSIX, et seul le temps d’acquisition
du verrou POSIX est compté par le profiler, car celui-ci est spécialisé pour les verrous POSIX.

Comme le montrent les Figures A.4f et A.4g, RCL permet d’améliorer les performances au
moins autant que tous les autres verrous. Dans ce benchmark, lorsque le nombre de clients de la
base de données est important, il peut y avoir plus de fils d’exécution clients qu’il n’y a de fils
d’exécution matériels dans la machine. Lorsque cela arrive (384 clients sur les histogrammes), le
verrou à attente active, MCS, CC-Synch et DSM-Synch s’effondrent à cause d’un phénomène
appelé convoi [64] : le fil d’exécution qui possède le verrou se fait préempter, et l’ordonnanceur
réveille les fils d’exécution dans un ordre tel qu’il faut au minimum un quantum de temps entier
de l’ordonnanceur pour passer d’une prise de verrou à l’autre. Lorsque ce phénomène se produit,
les temps d’exécution sont si longs que les barres des histogrammes ne sont pas visibles sur
les figures. MCS-TP est un verrou basé sur MCS qui est spécialement conçu pour résister à
ce phénomène, mais ses performances sont faibles. RCL est très efficace lorsque le nombre de
clients est élevé, car les sections critiques ne se font jamais préempter, grâce au fait qu’elles sont
exécutées sur un cœur serveur dédié.

A.4 Conclusion
RCL est une nouvelle technique de verrouillage qui permet de réduire le temps de prise de verrou
et d’accélérer l’exécution des sections critique en améliorant leur localité. L’idée principale de
RCL est de migrer l’exécution de sections critiques vers un ou plusieurs fils d’exécution matériels
serveurs. RCL a été implémenté pour Linux et pour Solaris, et supporte les architectures x86
et SPARC. Un profiler permet de détecter les applications patrimoniales qui peuvent bénéficier
de RCL. Avec l’aide de Julia Lawall, un outil a été écrit pour transformer automatiquement les
applications patrimoniales de manière à ce qu’elles utilisent RCL. L’évaluation de RCL, qui porte
sur de nombreux benchmarks, montre que RCL permet un meilleur gain en performance que de
nombreux autres verrous qui ont pourtant pour objectif de bien résister à la congestion.

Perspectives. Une amélioration possible pour RCL serait la mise au point d’un environnement
d’exécution RCL adaptatif qui (i) passe automatiquement d’un verrou POSIX à un RCL lorsque
la congestion sur le verrou augmente ou lorsque la localité de ses sections critiques diminue, et
(ii) migre les verrous entre serveurs, afin de balancer la charge des serveurs dynamiquement. L’un
des défis de l’écriture d’un tel environnement d’exécution est la mise au point de stratégies de
profiling et de migration à faible coût.

108

Bibliography

[1] J. L. Abellán, J. Fernández, and M. E. Acacio. Glocks: efficient support for highly-contended
locks in many-core CMPs. In Proceedings of the 2011 IEEE International Parallel and
Distributed Processing Symposium, IPDPS ’11, pages 893–905, Washington, DC, USA,
2011. IEEE Computer Society.

[2] A. Agarwal and M. Cherian. Adaptive backoff synchronization techniques. In Proceedings
of the 16th Annual International Symposium on Computer Architecture, ISCA ’89, pages
396–406, New York, NY, USA, 1989. ACM.

[3] H. Akkan, M. Lang, and L. Ionkov. HPC runtime support for fast and power efficient
locking and synchronization. In Proceedings of the 2013 IEEE International Conference on
Cluster Computing, CLUSTER ’13, pages 1–7. IEEE, 2013.

[4] G. M. Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Computer Conference,
AFIPS ’67 (Spring), pages 483–485, New York, NY, USA, 1967. ACM.

[5] T. E. Anderson. The performance of spin lock alternatives for shared-memory multiproces-
sors. IEEE Transactions on Parallel and Distributed Systems, 1(1):6–16, Jan. 1990.

[6] G. R. Andrews. Concurrent Programming: Principles and Practice. Benjamin-Cummings
Publishing Co., Inc., Redwood City, CA, USA, 1991.

[7] M. Auslander, D. Edelsohn, O. Krieger, B. Rosenburg, and R. Wisniewski. Enhancement
to the MCS lock for increased functionality and improved programmability. U.S. patent
application 10/128,745. Oct. 2003.

[8] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin locks: featherweight synchro-
nization for java. In Proceedings of the ACM SIGPLAN 1998 Conference on Programming
Language Design and Implementation, PLDI ’98, pages 258–268, New York, NY, USA,
1998. ACM.

[9] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A. Schüp-
bach, and A. Singhania. The multikernel: a new os architecture for scalable multicore
systems. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles, SOSP ’09, pages 29–44, New York, NY, USA, 2009. ACM.

[10] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy. Lightweight remote
procedure call. ACM Transansactions on Computer Systems, 8(1):37–55, Feb. 1990.

109

BIBLIOGRAPHY

[11] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy. URPC: a toolkit for
prototyping remote procedure calls. The Computer Journal, 39, no. 6:525–540, June 1996.

[12] L. Boguslavsky, K. Harzallah, A. Kreinen, K. Sevcik, and A. Vainshtein. Optimal strategies
for spinning and blocking. Journal of Parallel and Distributed Computing, 21(2):246–254,
May 1994.

[13] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris, A. Pesterev,
L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey: an operating system for many
cores. In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation, OSDI ’08, pages 43–57, Berkeley, CA, USA, 2008. USENIX Association.

[14] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek, R. Morris,
and N. Zeldovich. An analysis of linux scalability to many cores. In Proceedings of the
9th USENIX Symposium on Operating Systems Design and Implementation, OSDI ’10,
Vancouver, Canada, 2010. USENIX Association.

[15] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich. Non-scalable locks are
dangerous. In Proceedings of the 13th Ottawa Linux Symposium, OLS ’13, Ottawa, Canada,
July 2012.

[16] B. B. Brandenburg. Improved analysis and evaluation of real-time semaphore protocols for
P-FP scheduling. In Proceedings of the 2013 IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS ’13, pages 141–152, Washington, DC, USA, 2013. IEEE
Computer Society.

[17] A. Brodsky, F. Ellen, and P. Woelfel. Fully-adaptive algorithms for long-lived renaming.
In Proceedings of the 20th International Conference on Distributed Computing, DISC ’06,
pages 413–427, Berlin, Heidelberg, 2006. Springer-Verlag.

[18] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming
interface for performance evaluation on modern processors. International Journal of High
Performance Computing Applications, 14(3):189–204, Aug. 2000.

[19] A. Burns and A. J. Wellings. Locking policies for multiprocessor ada. Ada Letters,
33(2):59–65, Nov. 2013.

[20] A. Burns and A. J. Wellings. A schedulability compatible multiprocessor resource sharing
protocol – MrsP. In Proceedings of the 2013 IEEE Euromicro Conference on Real-Time
Systems, ECRTS ’13, pages 282–291, Washington, DC, USA, 2013. IEEE Computer Society.

[21] I. Calciu, D. Dice, T. Harris, M. Herlihy, A. Kogan, V. Marathe, and M. Moir. Message
passing or shared memory: evaluating the delegation abstraction for multicores. In
Proceedings of the 17th International Conference on Principles of Distributed Systems,
OPODIS ’13, pages 83–97, Nice, France, 2013. Springer International Publishing.

[22] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing and protection
in a single-address-space operating system. ACM Transactions on Computer Systems,
12(4):271–307, Nov. 1994.

[23] J. Cleary, O. Callanan, M. Purcell, and D. Gregg. Fast asymmetric thread synchronization.
ACM Transactions on Architecture and Code Optimization, 9(4):27:1–27:22, Jan. 2013.

110

BIBLIOGRAPHY

[24] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes. Cache hierarchy
and memory subsystem of the amd opteron processor. IEEE Micro, 30(2):16–29, Mar.
2010.

[25] T. S. Craig. Building FIFO and priority-queueing spin locks from atomic swap. Technical
Report TR 93-02-02, Department of Computer Science, University of Washington, Feb.
2003.

[26] Danga Interactive. Memcached: distributed memory object caching system. http://me.
mcached.org.

[27] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers, V. Quema, and
M. Roth. Traffic management: a holistic approach to memory placement on NUMA systems.
In Proceedings of the Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’13, pages 381–394, New York,
NY, USA, 2013. ACM.

[28] Data Differential. Libmemcached. https://launchpad.net/libmemcached.

[29] F. David, G. Thomas, L. Lawall, Julia, and G. Muller. Continuously measuring critical
section pressure with the free lunch profiler. Research Report RR-8486, INRIA, Mar. 2014.

[30] T. David, R. Guerraoui, and V. Trigonakis. Everything you always wanted to know
about synchronization but were afraid to ask. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13, pages 33–48, New York, NY, USA,
2013. ACM.

[31] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
Communication of the ACM, 51(1):107–113, Jan. 2008.

[32] D. Dice. Polite busy-waiting with wrpause on sparc. https://blogs.oracle.com/dave.
/entry/polite_busy_waiting_with_wrpause, Oct. 2012.

[33] D. Dice, V. J. Marathe, and N. Shavit. Flat-combining NUMA locks. In Proceedings of
the Twenty-third Annual ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’11, pages 65–74, New York, NY, USA, 2011. ACM.

[34] D. Dice, V. J. Marathe, and N. Shavit. Lock cohorting: a general technique for designing
NUMA locks. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’12, pages 247–256, New York, NY, USA, 2012.
ACM.

[35] E. W. Dijkstra. Cooperating sequential processes. Published as EWD:EWD123pub, Sept.
1965.

[36] G. Drescher, T. Hönig, S. Maier, B. Oechslein, and W. Schröder-Preikschat. A Scalability-
Aware Kernel Executive for Many-Core Operating Systems. In Proceedings of the 1st
Workshop on Runtime and Operating Systems for the Many-core Era, WROSME ’13, pages
1–10, Aachen, Germany, 2013.

111

BIBLIOGRAPHY

[37] J. Eastep, D. Wingate, M. D. Santambrogio, and A. Agarwal. Smartlocks: lock acquisition
scheduling for self-aware synchronization. In Proceedings of the 7th International Conference
on Autonomic Computing, ICAC ’10, pages 215–224, New York, NY, USA, 2010. ACM.

[38] P. Fatourou and N. D. Kallimanis. Sim: a highly-efficient wait-free universal construction.
https://code.google.com/p/sim-universal-construction/.

[39] P. Fatourou and N. D. Kallimanis. Revisiting the combining synchronization technique. In
Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’12, pages 257–266, New York, NY, USA, 2012. ACM.

[40] F. Fich, D. Hendler, and N. Shavit. On the inherent weakness of conditional synchronization
primitives. In Proceedings of the Twenty-third Annual ACM Symposium on Principles of
Distributed Computing, PODC ’04, pages 80–87, New York, NY, USA, 2004. ACM.

[41] B. Fitzpatrick. Distributed caching with memcached. Linux Journal, 2004(124):5–, Aug.
2004.

[42] B. Ford and J. Lepreau. Evolving mach 3.0 to a migrating thread model. In Proceedings of
the USENIX Winter 1994 Technical Conference, WTEC’94, pages 9–9, Berkeley, CA, USA,
1994. USENIX Association.

[43] M. Fowler. Refactoring: improving the Design of Existing Code. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

[44] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. A study of the scalability of stop-the-
world garbage collectors on multicores. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’13, pages 229–240, New York, NY, USA, 2013. ACM.

[45] T. Harris and K. Fraser. Language support for lightweight transactions. SIGPLAN Notices,
38(11):388–402, Oct. 2003.

[46] T. Harris, M. Herlihy, Y. Lev, Y. Liu, V. Luchangco, V. Marathe, and M. Moir. To-
wards whatever-scale abstractions for data-driven parallelism. In Proceedings of the 1st
International Workshop on Rack Scale Computing, WRSC ’14, 2014.

[47] A. Hassan, R. Palmieri, and B. Ravindran. Remote invalidation: optimizing the critical
path of memory transactions. In Proceedings of the 2014 IEEE International Parallel and
Distributed Processing Symposium, IPDPS ’14, Phoenix, AZ, USA, 2014. IEEE Computer
Society.

[48] B. He, W. N. Scherer III, and M. L. Scott. Time-published queue-based spin locks. http.
://www.cs.rochester.edu/research/synchronization/pseudocode/tp_locks.html.

[49] B. He, W. N. Scherer III, and M. L. Scott. Preemption adaptivity in time-published
queue-based spin locks. In Proceedings of the 11th International Conference on High
Performance Computing, HiPC’05, pages 7–18, 2005.

[50] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the synchronization-
parallelism tradeoff. http://mcg.cs.tau.ac.il/projects/flat-combining.

112

BIBLIOGRAPHY

[51] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the synchronization-
parallelism tradeoff. In Proceedings of the Twenty-second Annual ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’10, pages 355–364, New York, NY,
USA, 2010. ACM.

[52] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: double-ended
queues as an example. In Proceedings of the 23rd International Conference on Distributed
Computing Systems, ICDCS ’03, pages 522–529, Washington, DC, USA, 2003. IEEE
Computer Society.

[53] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transactional memory
for dynamic-sized data structures. In Proceedings of the Twenty-second Annual Symposium
on Principles of Distributed Computing, PODC ’03, pages 92–101, New York, NY, USA,
2003. ACM.

[54] M. Herlihy and J. E. B. Moss. Transactional memory: architectural support for lock-free
data structures. In Proceedings of the 20th Annual International Symposium on Computer
Architecture, ISCA ’93, pages 289–300, New York, NY, USA, 1993. ACM.

[55] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008.

[56] M. P. Herlihy. Impossibility and universality results for wait-free synchronization. In
Proceedings of the 7th Symposium on Principles of Distributed Computing, PODC ’88,
pages 276–290, New York, NY, USA, 1988. ACM.

[57] C. A. R. Hoare. Monitors: an operating system structuring concept. Communications of
the ACM, 17(10):549–557, Oct. 1974.

[58] Innovative Computing Laboratory. Performance Application Programming Interface
(PAPI). http://icl.cs.utk.edu/papi/.

[59] F. R. Johnson, R. Stoica, A. Ailamaki, and T. C. Mowry. Decoupling contention manage-
ment from scheduling. In Proceedings of the Fifteenth Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems, ASPLOS XV, pages 117–128,
New York, NY, USA, 2010. ACM.

[60] H. Kang and J. L. Wong. To hardware prefetch or not to prefetch?: a virtualized environment
study and core binding approach. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’13,
pages 357–368, New York, NY, USA, 2013. ACM.

[61] T. Knight. An architecture for mostly functional languages. In Proceedings of the 1986
ACM Conference on LISP and Functional Programming, LFP ’86, pages 105–112, New
York, NY, USA, 1986. ACM.

[62] A. Kogan and E. Petrank. Wait-free queues with multiple enqueuers and dequeuers. In Pro-
ceedings of the 16th ACM Symposium on Principles and Practice of Parallel Programming,
PPoPP ’11, pages 223–234, New York, NY, USA, 2011. ACM.

113

BIBLIOGRAPHY

[63] A. Kogan and E. Petrank. A methodology for creating fast wait-free data structures. In
Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’12, pages 141–150, New York, NY, USA, 2012. ACM.

[64] D. Koufaty, D. Reddy, and S. Hahn. Bias scheduling in heterogeneous multi-core architec-
tures. In Proceedings of the 5th European Conference on Computer Systems, EuroSys ’10,
pages 125–138, New York, NY, USA, 2010. ACM.

[65] R. Lachaize, B. Lepers, and V. Quéma. Memprof: a memory profiler for NUMA multicore
systems. In Proceedings of the 2012 USENIX Conference on Annual Technical Conference,
USENIX ATC ’12, pages 5–5, Berkeley, CA, USA, 2012. USENIX Association.

[66] A. L. Leiner. System specifications for the DYSEAC. Journal of the ACM, 1(2):57–81,
Apr. 1954.

[67] S. T. Leutenegger and D. Dias. A modeling study of the TPC-C benchmark. In Proceedings
of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD
’93, pages 22–31, New York, NY, USA, 1993. ACM.

[68] T. Liu and E. D. Berger. Sheriff: precise detection and automatic mitigation of false
sharing. In Proceedings of the 2011 ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’11, pages 3–18, New York,
NY, USA, 2011. ACM.

[69] J.-P. Lozi. Le Remote Core Lock (RCL) : une nouvelle technique de verrouillage pour les
architectures multi-cœur. CFSE ’8, 2011.

[70] J.-P. Lozi. PHP bug report #62064. https://bugs.php.net/bug.php?id=62064, May
2012.

[71] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller. Remote Core Locking: migrating
critical-section execution to improve the performance of multithreaded applications. In
Proceedings of the 2012 USENIX Annual Technical Conference, USENIX ATC ’12, pages
65–76, Berkeley, CA, USA, 2012. USENIX Association.

[72] J.-P. Lozi, G. Thomas, J. L. Lawall, and G. Muller. Efficient locking for multicore
architectures. Research Report RR-7779, INRIA, Nov. 2011.

[73] V. Luchangco, D. Nussbaum, and N. Shavit. A hierarchical clh queue lock. In Proceedings
of the 12th International Conference on Parallel Processing, Euro-Par’06, pages 801–810,
Berlin, Heidelberg, 2006. Springer-Verlag.

[74] P. Magnussen, A. Landin, and E. Hagersten. Queue locks on cache coherent multiprocessors.
In Proceedings of the 8th International Parallel Processing Symposium, IPPS ’94, pages
165–171, Cancun, Mexico, Apr. 1994. IEEE Computer Society Press.

[75] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21–65,
Feb. 1991.

114

BIBLIOGRAPHY

[76] J. M. Mellor-Crummey and M. L. Scott. Synchronization without contention. In Proceedings
of the Fourth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS IV, pages 269–278, New York, NY, USA, 1991. ACM.

[77] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In Proceedings of the Fifteenth Annual ACM Symposium
on Principles of Distributed Computing, PODC ’96, pages 267–275, New York, NY, USA,
1996. ACM.

[78] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and G. Hunt. Helios: heterogeneous
multiprocessing with satellite kernels. In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, SOSP ’09, pages 221–234, New York, NY, USA, 2009.
ACM.

[79] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley db. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference, USENIX ATC ’99, pages 43–43,
Berkeley, CA, USA, 1999. USENIX Association.

[80] Oracle Corporation. Berkeley DB. http://www.oracle.com/technetwork/database/b.
erkeleydb.

[81] J. K. Ousterhout. Scheduling techniques for concurrent systems. In Proceedings of the
3rd International Conference on Distributed Computing Systems, ICDCS ’82, pages 22–30,
1982.

[82] Y. Oyama, K. Taura, and A. Yonezawa. Executing parallel programs with synchronization
bottlenecks efficiently. In Proceedings of the International Workshop on Parallel and
Distributed Computing for Symbolic and Irregular Applications, PDSIA ’99.

[83] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Documenting and automating
collateral evolutions in linux device drivers. In Proceedings of the 3rd European Conference
on Computer Systems 2008, Eurosys ’08, pages 247–260, New York, NY, USA, 2008. ACM.

[84] L. Papadopoulos, I. Walulya, P. Tsigas, D. Soudris, and B. Barry. Evaluation of message
passing synchronization algorithms in embedded systems. In Proceedings Of The 14th
International Conference On Embedded Computer Systems: architectures, Modeling, And
Simulation, SAMOS ’14, Samos, Greece, 2014.

[85] M. S. Papamarcos and J. H. Patel. A low-overhead coherence solution for multiprocessors
with private cache memories. In Proceedings of the 11th Annual International Symposium
on Computer Architecture, ISCA ’84, pages 348–354, New York, NY, USA, 1984. ACM.

[86] D. A. Patterson and J. L. Hennessy. Computer Organization and Design: the Hard-
ware/Software Interface. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
third edition, 2007.

[87] A. Pesterev, N. Zeldovich, and R. T. Morris. Locating cache performance bottlenecks
using data profiling. In Proceedings of the 5th European Conference on Computer Systems,
EuroSys ’10, pages 335–348, New York, NY, USA, 2010. ACM.

115

BIBLIOGRAPHY

[88] D. Petrović, T. Ropars, and A. Schiper. Leveraging hardware message passing for efficient
thread synchronization. In Proceedings of the 19th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’14, pages 143–154, New York, NY,
USA, 2014. ACM.

[89] K. K. Pusukuri, R. Gupta, and L. N. Bhuyan. Lock contention aware thread migrations. In
Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’14, pages 369–370, New York, NY, USA, 2014. ACM.

[90] Z. Radovic and E. Hagersten. Hierarchical backoff locks for nonuniform communication
architectures. In Proceedings of the 9th International Symposium on High-Performance
Computer Architecture, HPCA ’03, pages 241–253, Washington, DC, USA, 2003. IEEE
Computer Society.

[91] K. S. Ramesh. Design and development of MINIX distributed operating system. In
Proceedings of the 1988 ACM Sixteenth Annual Conference on Computer Science, CSC ’88,
pages 685–685, New York, NY, USA, 1988. ACM.

[92] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluating
MapReduce for multi-core and multiprocessor systems. In Proceedings of the 2007 IEEE
13th International Symposium on High Performance Computer Architecture, HPCA ’07,
pages 13–24, Washington, DC, USA, 2007. IEEE Computer Society.

[93] B. R. Rau and J. A. Fisher. Instruction-level parallel processing: history, overview, and
perspective. Journal of Supercomputing, 7(1-2):9–50, May 1993.

[94] S. Saha and J.-P. Lozi. EHCtor: detecting resource-release omission faults in error-handling
code for systems software. CFSE ’9, 2013.

[95] S. Saha, J.-P. Lozi, G. Thomas, J. L. Lawall, and G. Muller. Hector: detecting resource-
release omission faults in error-handling code for systems software. In Proceedings of the
43rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN ’13, pages 1–12, Washington, DC, USA, 2013. IEEE Computer Society.

[96] M. L. Scott and W. N. Scherer. Scalable queue-based spin locks with timeout. In
Proceedings of the Eighth ACM SIGPLAN Symposium on Principles and Practices of
Parallel Programming, PPoPP ’01, pages 44–52, New York, NY, USA, 2001. ACM.

[97] C. Sharp and G. Morgan. Hugh: a semantically aware universal construction for transac-
tional memory systems. In Proceedings of the 19th International Conference on Parallel
Processing, Euro-Par ’13, pages 470–481, Aachen, Germany, 2013. Springer-Verlag.

[98] N. Shavit and D. Touitou. Software transactional memory. In Proceedings of the Fourteenth
Annual ACM Symposium on Principles of Distributed Computing, PODC ’95, pages 204–213,
New York, NY, USA, 1995. ACM.

[99] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: stanford parallel applications for
shared-memory. SIGARCH Computer Architecture News, 20(1):5–44, Mar. 1992.

[100] S. Sridharan, B. Keck, R. Murphy, S. Chandra, and P. Kogge. Thread migration to improve
synchronization performance. In In Proceedings of the 2nd Workshop on Operating System
Interference in High Performance Applications, OSIHPA ’06, 2006.

116

BIBLIOGRAPHY

[101] Stanford University. The Phoenix system for MapReduce programming. http://mapre.
duce.stanford.edu.

[102] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. Accelerating critical section
execution with asymmetric multi-core architectures. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS XIV, pages 253–264, New York, NY, USA, 2009. ACM.

[103] J. Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++: modular MapReduce for shared-
memory systems. In Proceedings of the Second International Workshop on MapReduce and
Its Applications, MapReduce ’11, pages 9–16, New York, NY, USA, 2011. ACM.

[104] A. S. Tanenbaum. Distributed operating systems anno 1992. what have we learned so far?
Distributed Systems Engineering, 1(1):3–10, 1993.

[105] The PHP Group. PHP: hypertext preprocessor. http://www.php.net.

[106] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: maximizing on-
chip parallelism. In Proceedings of the 22nd Annual International Symposium on Computer
Architecture, ISCA ’95, pages 392–403, New York, NY, USA, 1995. ACM.

[107] University of Delaware. The modified SPLASH-2 home page. http://www.capsl.udel .
.edu/splash.

[108] D. Vyukov. Combiner/aggregator synchronization primitive. https://software.intel.
.com/en-us/blogs/2013/02/22/combineraggregator-synchronization-primitive,
Feb. 2013.

[109] J.-T. Wamhoff, S. Diestelhorst, C. Fetzer, P. Marlier, P. Felber, and D. Dice. Selective
core boosting: the return of the turbo button. Technical Report TUD-Fl13-02, Technische
Universität Dresden, Nov. 2013.

[110] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs:
characterization and methodological considerations. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, ISCA ’95, pages 24–36, New York,
NY, USA, 1995. ACM.

[111] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad hoc synchronization considered
harmful. In Proceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation, OSDI ’10, pages 1–8, Berkeley, CA, USA, 2010. USENIX Association.

[112] R. M. Yoo, A. Romano, and C. Kozyrakis. Phoenix rebirth: scalable MapReduce on a large-
scale shared-memory system. In Proceedings of the 2009 IEEE International Symposium
on Workload Characterization, IISWC ’09, pages 198–207, Washington, DC, USA, 2009.
IEEE Computer Society.

[113] K. Yotov, K. Pingali, and P. Stodghill. Automatic measurement of memory hierarchy
parameters. In Proceedings of the 2005 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS ’05, pages 181–192, New
York, NY, USA, 2005. ACM.

117

BIBLIOGRAPHY

[114] J. Zhou and B. Demsky. Memory management for many-core processors with software
configurable locality policies. In Proceedings of the 2012 International Symposium on
Memory Management, ISMM ’12, pages 3–14, New York, NY, USA, 2012. ACM.

118

List of Illustrations

Figures

2.1 Example of a multicore architecture . 8
2.2 CPU cache associativity . 11

(a) Direct mapped cache . 11
(b) 2-way set associative cache . 11

2.3 Communication between hardware threads with the MOESI protocol 14
2.4 Local and remote NUMA accesses . 16
2.5 Cache latencies and architecture of Magnycours-48 19

(a) Cost of local and remote accesses . 19
(b) Architecture . 19

2.6 Cost of local and remote accesses on Niagara2-128 20
2.7 Cost of cache accesses and instructions . 21

(a) Cache access latencies . 21
(b) Overhead of contention on store and CAS instructions 21

2.8 SPLASH-2 results . 23
(a) Single-threaded . 23
(b) 48 threads . 23
(c) 128 threads . 23

3.1 Comparison of lock algorithms . 41

4.1 Critical sections with traditional locks vs. RCL 45
(a) Traditional locks . 45
(b) RCL . 45

4.2 The request array . 47
4.3 Ad hoc synchronization example . 49
4.4 Comparison of lock algorithms with RCL . 53
4.5 Tuning the profiler: number of cache misses . 56

(a) Magnycours-48 . 56
(b) Niagara2-128, with profiler v2 . 56

5.1 Influence of MAX_COMBINER_CS on CC-Synch and DSM-Synch 63
5.2 Microbenchmark results on Magnycours-48 . 64

(a) One shared cache line per CS . 64
(b) Five shared cache lines per CS . 64

119

BIBLIOGRAPHY

(c) Comparison of the lock algorithms for five shared cache lines 64
5.3 Microbenchmark results on Niagara2-128 . 66

(a) One shared cache line per CS . 66
(b) Five shared cache lines per CS . 66
(c) Comparison of the lock algorithms for five shared cache lines 66

5.4 Time spent in critical sections in the microbenchmark and thresholds 68
(a) Time spent in critical sections on Magnycours-48 68
(b) Time spent in critical sections on Niagara2-128 68
(c) Thresholds . 68

5.5 Profiling results for the evaluated applications on Magnycours-48 69
5.6 Profiling results for the evaluated applications on Niagara2-128. 71
5.7 Application performance overview . 73

(a) Magnycours-48: SPLASH-2 and Phoenix 2 73
(b) Magnycours-48: Memcached . 73
(c) Benchmark parameters . 73
(d) Niagara2-128: SPLASH-2 . 73
(e) Niagara2-128: Memcached . 73
(f) Magnycours-48: Berkeley DB . 73
(g) Niagara2-128: Berkeley DB . 73

5.8 SPLASH-2 and Phoenix 2 speedup on Magnycours-48 75
(a) Phoenix 2: String Match . 75
(b) SPLASH-2: Raytrace/Balls4 . 75
(c) Phoenix 2: Linear Regression . 75
(d) SPLASH-2: Radiosity . 75
(e) SPLASH-2: Raytrace/Car . 75
(f) Phoenix 2: Matrix Multiply . 75

5.9 SPLASH-2 speedup on Niagara2-128 . 76
(a) Raytrace/Balls4 . 76
(b) Radiosity . 76
(c) Raytrace/Car . 76

5.10 Memcached speedup . 78
(a) Magnycours-48: Get . 78
(b) Niagara2-128: Get . 78
(c) Magnycours-48: Set . 78
(d) Niagara2-128: Set . 78

5.11 Number of cache misses per critical section on the RCL server 79
(a) L2 cache misses on Magnycours-48 . 79
(b) L1 cache misses on Niagara2-128 . 79

5.12 Server configurations for Berkeley DB with TpccOverBkDB 81
(a) Use rate with one lock per hardware thread 81
(b) RCL server configurations . 81

5.13 Impact of false serialization with RCL (Berkeley DB with TpccOverBkDb) . . . 82
(a) RCL server statistics on Magnycours-48 . 82
(b) RCL server statistics on Niagara2-128 . 82

5.14 Berkeley DB with TpccOverBkDb speedup . 83
(a) Magnycours-48: Order Status . 83
(b) Niagara2-128: Order Status . 83

120

BIBLIOGRAPHY

(c) Magnycours-48: Stock Level . 83
(d) Niagara2-128: Stock Level . 83

5.15 Berkeley DB with TpccOverBkDb speedup, using sleeping 85
(a) Magnycours-48: Order Status . 85
(b) Niagara2-128: Order Status . 85
(c) Magnycours-48: Stock Level . 85
(d) Niagara2-128: Stock Level . 85

A.1 Le tableau de boîtes aux lettres . 100
A.2 Résultats du microbenchmark . 102

(a) Magnycours-48 : une ligne de cache par SC 102
(b) Magnycours-48 : cinq lignes de cache par SC 102
(c) Niagara2-128 : une ligne de cache par SC 102
(d) Niagara2-128 : cinq lignes de cache par SC 102

A.3 Temps passé en section critique dans le microbenchmark et seuils 104
(a) Temps passé en section critique sur Magnycours-48 104
(b) Temps passé en section critique sur Niagara2-128 104
(c) Seuils . 104

A.4 Performance des différents verrous dans les applications 105
(a) Magnycours-48 : SPLASH-2 et Phoenix 2 105
(b) Magnycours-48 : Memcached . 105
(c) Paramètres des benchmarks . 105
(d) Niagara2-128 : SPLASH-2 . 105
(e) Niagara2-128 : Memcached . 105
(f) Magnycours-48 : Berkeley DB . 105
(g) Niagara2-128 : Berkeley DB . 105

A.5 Memcached speedup . 107
(a) Magnycours-48 : Get . 107
(b) Niagara2-128 : Get . 107
(c) Magnycours-48 : Set . 107
(d) Niagara2-128 : Set . 107

Algorithms

1 Basic spinlock . 27
2 CLH . 29
3 MCS . 30
4 MCS-TP, lock() function . 33
5 MCS-TP, unlock() function . 34
6 Flat Combining . 36
7 CC-Synch . 38
8 DSM-Synch . 39

9 Executing a critical section (client) . 50
10 Structures and servicing thread (server) . 51
11 Management and backup threads (server) . 52

121

BIBLIOGRAPHY

Listings
1 Critical section from Raytrace . 57
2 Critical section from Listing 1, after transformation 58

122

